Upload README.md
Browse files
README.md
CHANGED
@@ -8,7 +8,7 @@ tags:
|
|
8 |
|
9 |
---
|
10 |
|
11 |
-
#
|
12 |
|
13 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
|
@@ -26,12 +26,9 @@ Then you can use the model like this:
|
|
26 |
|
27 |
```python
|
28 |
from sentence_transformers import SentenceTransformer
|
29 |
-
sentences = ["
|
30 |
-
"Menara Eifel terletak di Paris, Perancis",
|
31 |
-
"Pizza adalah makanan khas Italia",
|
32 |
-
"Saya kuliah di Carneige Mellon University"]
|
33 |
|
34 |
-
model = SentenceTransformer('
|
35 |
embeddings = model.encode(sentences)
|
36 |
print(embeddings)
|
37 |
```
|
@@ -54,15 +51,11 @@ def mean_pooling(model_output, attention_mask):
|
|
54 |
|
55 |
|
56 |
# Sentences we want sentence embeddings for
|
57 |
-
sentences = [
|
58 |
-
"Menara Eifel terletak di Paris, Perancis",
|
59 |
-
"Pizza adalah makanan khas Italia",
|
60 |
-
"Saya kuliah di Carneige Melon University"]
|
61 |
-
|
62 |
|
63 |
# Load model from HuggingFace Hub
|
64 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
65 |
-
model = AutoModel.from_pretrained('
|
66 |
|
67 |
# Tokenize sentences
|
68 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -92,7 +85,7 @@ The model was trained with the parameters:
|
|
92 |
|
93 |
**DataLoader**:
|
94 |
|
95 |
-
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length
|
96 |
```
|
97 |
{'batch_size': 16}
|
98 |
```
|
@@ -107,7 +100,7 @@ The model was trained with the parameters:
|
|
107 |
Parameters of the fit()-Method:
|
108 |
```
|
109 |
{
|
110 |
-
"epochs":
|
111 |
"evaluation_steps": 0,
|
112 |
"evaluator": "NoneType",
|
113 |
"max_grad_norm": 1,
|
@@ -117,7 +110,7 @@ Parameters of the fit()-Method:
|
|
117 |
},
|
118 |
"scheduler": "WarmupLinear",
|
119 |
"steps_per_epoch": null,
|
120 |
-
"warmup_steps":
|
121 |
"weight_decay": 0.01
|
122 |
}
|
123 |
```
|
|
|
8 |
|
9 |
---
|
10 |
|
11 |
+
# {MODEL_NAME}
|
12 |
|
13 |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
|
|
|
26 |
|
27 |
```python
|
28 |
from sentence_transformers import SentenceTransformer
|
29 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
|
|
|
|
|
|
30 |
|
31 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
32 |
embeddings = model.encode(sentences)
|
33 |
print(embeddings)
|
34 |
```
|
|
|
51 |
|
52 |
|
53 |
# Sentences we want sentence embeddings for
|
54 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
|
|
|
|
|
|
|
|
55 |
|
56 |
# Load model from HuggingFace Hub
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
58 |
+
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
59 |
|
60 |
# Tokenize sentences
|
61 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
85 |
|
86 |
**DataLoader**:
|
87 |
|
88 |
+
`sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 19861 with parameters:
|
89 |
```
|
90 |
{'batch_size': 16}
|
91 |
```
|
|
|
100 |
Parameters of the fit()-Method:
|
101 |
```
|
102 |
{
|
103 |
+
"epochs": 5,
|
104 |
"evaluation_steps": 0,
|
105 |
"evaluator": "NoneType",
|
106 |
"max_grad_norm": 1,
|
|
|
110 |
},
|
111 |
"scheduler": "WarmupLinear",
|
112 |
"steps_per_epoch": null,
|
113 |
+
"warmup_steps": 9930,
|
114 |
"weight_decay": 0.01
|
115 |
}
|
116 |
```
|