Merge pull request #3 from aredden/improved_precision
Browse files- README.md +33 -28
- float8_quantize.py +85 -18
- flux_pipeline.py +95 -59
- main.py +18 -0
- modules/conditioner.py +10 -10
- modules/flux_model.py +234 -51
- modules/flux_model_f8.py +0 -491
- util.py +20 -8
README.md
CHANGED
@@ -41,6 +41,19 @@ Note:
|
|
41 |
- [Examples](#examples)
|
42 |
- [License](#license)
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
## Installation
|
45 |
|
46 |
This repo _requires_ at least pytorch with cuda=12.4 and an ADA gpu with fp8 support, otherwise `torch._scaled_mm` will throw a CUDA error saying it's not supported. To install with conda/mamba:
|
@@ -106,30 +119,8 @@ python main.py --config-path <path_to_config> --port <port_number> --host <host_
|
|
106 |
- `--no-offload-ae`: Disable offloading the autoencoder to the CPU when not being used to increase e2e inference speed (default: True [implies it will offload, setting this flag sets it to False]).
|
107 |
- `--no-offload-text-enc`: Disable offloading the text encoder to the CPU when not being used to increase e2e inference speed (default: True [implies it will offload, setting this flag sets it to False]).
|
108 |
- `--prequantized-flow`: Load the flow model from a prequantized checkpoint, which reduces the size of the checkpoint by about 50% & reduces startup time (default: False).
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
### Running the Server
|
113 |
-
|
114 |
-
```bash
|
115 |
-
python main.py --config-path configs/config-dev-1-4090.json --port 8088 --host 0.0.0.0
|
116 |
-
```
|
117 |
-
|
118 |
-
Or if you need more granular control over the all of the settings, you can run the server with something like this:
|
119 |
-
|
120 |
-
```bash
|
121 |
-
python main.py --port 8088 --host 0.0.0.0 \
|
122 |
-
--flow-model-path /path/to/your/flux1-dev.sft \
|
123 |
-
--text-enc-path /path/to/your/t5-v1_1-xxl-encoder-bf16 \
|
124 |
-
--autoencoder-path /path/to/your/ae.sft \
|
125 |
-
--model-version flux-dev \
|
126 |
-
--flux-device cuda:0 \
|
127 |
-
--text-enc-device cuda:0 \
|
128 |
-
--autoencoder-device cuda:0 \
|
129 |
-
--compile \
|
130 |
-
--quant-text-enc qfloat8 \
|
131 |
-
--quant-ae
|
132 |
-
```
|
133 |
|
134 |
## Configuration
|
135 |
|
@@ -185,7 +176,10 @@ Example configuration file for a single 4090 (`configs/config-dev-offload-1-4090
|
|
185 |
"compile_blocks": true, // compile the single-blocks and double-blocks
|
186 |
"offload_text_encoder": true, // offload the text encoder to cpu when not in use
|
187 |
"offload_vae": true, // offload the autoencoder to cpu when not in use
|
188 |
-
"offload_flow": false // offload the flow transformer to cpu when not in use
|
|
|
|
|
|
|
189 |
}
|
190 |
```
|
191 |
|
@@ -232,6 +226,17 @@ Other things to change can be the
|
|
232 |
- `"ae_device": "cuda:0",`
|
233 |
device for autoencoder (default: cuda:0) - set this to a different device - e.g. `"cuda:1"` if you have multiple gpus so you can set offloading for ae to false, does not need to be the same as flux_device or text_enc_device
|
234 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
## API Endpoints
|
236 |
|
237 |
### Generate Image
|
@@ -256,10 +261,10 @@ Other things to change can be the
|
|
256 |
### Running the Server
|
257 |
|
258 |
```bash
|
259 |
-
python main.py --config-path configs/config-dev-
|
260 |
```
|
261 |
|
262 |
-
|
263 |
|
264 |
```bash
|
265 |
python main.py --port 8088 --host 0.0.0.0 \
|
@@ -275,7 +280,7 @@ python main.py --port 8088 --host 0.0.0.0 \
|
|
275 |
--quant-ae
|
276 |
```
|
277 |
|
278 |
-
### Generating an
|
279 |
|
280 |
Send a POST request to `http://<host>:<port>/generate` with the following JSON body:
|
281 |
|
|
|
41 |
- [Examples](#examples)
|
42 |
- [License](#license)
|
43 |
|
44 |
+
### Updates 08/24/24
|
45 |
+
|
46 |
+
- Add config options for levels of quantization for the flow transformer:
|
47 |
+
- `quantize_modulation`: Quantize the modulation layers in the flow model. If false, adds ~2GB vram usage for moderate precision improvements `(default: true)`
|
48 |
+
- `quantize_flow_embedder_layers`: Quantize the flow embedder layers in the flow model. If false, adds ~512MB vram usage, but precision improves considerably. `(default: false)`
|
49 |
+
- Override default config values when loading FluxPipeline, e.g. `FluxPipeline.load_pipeline_from_config_path(config_path, **config_overrides)`
|
50 |
+
|
51 |
+
#### Fixes
|
52 |
+
|
53 |
+
- Fix bug where loading text encoder from HF with bnb will error if device is not set to cuda:0
|
54 |
+
|
55 |
+
**note:** prequantized flow models will only work with the specified quantization levels as when they were created. e.g. if you create a prequantized flow model with `quantize_modulation` set to false, it will only work with `quantize_modulation` set to false, same with `quantize_flow_embedder_layers`.
|
56 |
+
|
57 |
## Installation
|
58 |
|
59 |
This repo _requires_ at least pytorch with cuda=12.4 and an ADA gpu with fp8 support, otherwise `torch._scaled_mm` will throw a CUDA error saying it's not supported. To install with conda/mamba:
|
|
|
119 |
- `--no-offload-ae`: Disable offloading the autoencoder to the CPU when not being used to increase e2e inference speed (default: True [implies it will offload, setting this flag sets it to False]).
|
120 |
- `--no-offload-text-enc`: Disable offloading the text encoder to the CPU when not being used to increase e2e inference speed (default: True [implies it will offload, setting this flag sets it to False]).
|
121 |
- `--prequantized-flow`: Load the flow model from a prequantized checkpoint, which reduces the size of the checkpoint by about 50% & reduces startup time (default: False).
|
122 |
+
- `--no-quantize-flow-modulation`: Disable quantization of the modulation layers in the flow transformer, which improves precision _moderately_ but adds ~2GB vram usage.
|
123 |
+
- `--quantize-flow-embedder-layers`: Quantize the flow embedder layers in the flow transformer, reduces precision _considerably_ but saves ~512MB vram usage.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
## Configuration
|
126 |
|
|
|
176 |
"compile_blocks": true, // compile the single-blocks and double-blocks
|
177 |
"offload_text_encoder": true, // offload the text encoder to cpu when not in use
|
178 |
"offload_vae": true, // offload the autoencoder to cpu when not in use
|
179 |
+
"offload_flow": false, // offload the flow transformer to cpu when not in use
|
180 |
+
"prequantized_flow": false, // load the flow transformer from a prequantized checkpoint, which reduces the size of the checkpoint by about 50% & reduces startup time (default: false)
|
181 |
+
"quantize_modulation": true, // quantize the modulation layers in the flow transformer, which reduces precision moderately but saves ~2GB vram usage (default: true)
|
182 |
+
"quantize_flow_embedder_layers": false, // quantize the flow embedder layers in the flow transformer, if false, improves precision considerably at the cost of adding ~512MB vram usage (default: false)
|
183 |
}
|
184 |
```
|
185 |
|
|
|
226 |
- `"ae_device": "cuda:0",`
|
227 |
device for autoencoder (default: cuda:0) - set this to a different device - e.g. `"cuda:1"` if you have multiple gpus so you can set offloading for ae to false, does not need to be the same as flux_device or text_enc_device
|
228 |
|
229 |
+
- `"prequantized_flow": false,`
|
230 |
+
load the flow transformer from a prequantized checkpoint, which reduces the size of the checkpoint by about 50% & reduces startup time (default: false)
|
231 |
+
|
232 |
+
- Note: MUST be a prequantized checkpoint created with the same quantization settings as the current config, and must have been quantized using this repo.
|
233 |
+
|
234 |
+
- `"quantize_modulation": true,`
|
235 |
+
quantize the modulation layers in the flow transformer, which improves precision at the cost of adding ~2GB vram usage (default: true)
|
236 |
+
|
237 |
+
- `"quantize_flow_embedder_layers": false,`
|
238 |
+
quantize the flow embedder layers in the flow transformer, which improves precision considerably at the cost of adding ~512MB vram usage (default: false)
|
239 |
+
|
240 |
## API Endpoints
|
241 |
|
242 |
### Generate Image
|
|
|
261 |
### Running the Server
|
262 |
|
263 |
```bash
|
264 |
+
python main.py --config-path configs/config-dev-1-4090.json --port 8088 --host 0.0.0.0
|
265 |
```
|
266 |
|
267 |
+
Or if you need more granular control over the all of the settings, you can run the server with something like this:
|
268 |
|
269 |
```bash
|
270 |
python main.py --port 8088 --host 0.0.0.0 \
|
|
|
280 |
--quant-ae
|
281 |
```
|
282 |
|
283 |
+
### Generating an image on a client
|
284 |
|
285 |
Send a POST request to `http://<host>:<port>/generate` with the following JSON body:
|
286 |
|
float8_quantize.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
from torchao.float8.float8_utils import (
|
@@ -10,7 +11,8 @@ import math
|
|
10 |
from torch.compiler import is_compiling
|
11 |
from torch import __version__
|
12 |
from torch.version import cuda
|
13 |
-
|
|
|
14 |
|
15 |
IS_TORCH_2_4 = __version__ < (2, 4, 9)
|
16 |
LT_TORCH_2_4 = __version__ < (2, 4)
|
@@ -42,7 +44,7 @@ class F8Linear(nn.Module):
|
|
42 |
float8_dtype=torch.float8_e4m3fn,
|
43 |
float_weight: torch.Tensor = None,
|
44 |
float_bias: torch.Tensor = None,
|
45 |
-
num_scale_trials: int =
|
46 |
input_float8_dtype=torch.float8_e5m2,
|
47 |
) -> None:
|
48 |
super().__init__()
|
@@ -183,6 +185,11 @@ class F8Linear(nn.Module):
|
|
183 |
1, dtype=self.weight.dtype, device=self.weight.device, requires_grad=False
|
184 |
)
|
185 |
|
|
|
|
|
|
|
|
|
|
|
186 |
def quantize_input(self, x: torch.Tensor):
|
187 |
if self.input_scale_initialized:
|
188 |
return to_fp8_saturated(x * self.input_scale, self.input_float8_dtype)
|
@@ -279,10 +286,12 @@ class F8Linear(nn.Module):
|
|
279 |
return f8_lin
|
280 |
|
281 |
|
|
|
282 |
def recursive_swap_linears(
|
283 |
model: nn.Module,
|
284 |
float8_dtype=torch.float8_e4m3fn,
|
285 |
input_float8_dtype=torch.float8_e5m2,
|
|
|
286 |
) -> None:
|
287 |
"""
|
288 |
Recursively swaps all nn.Linear modules in the given model with F8Linear modules.
|
@@ -300,6 +309,8 @@ def recursive_swap_linears(
|
|
300 |
all linear layers in the model will be using 8-bit quantization.
|
301 |
"""
|
302 |
for name, child in model.named_children():
|
|
|
|
|
303 |
if isinstance(child, nn.Linear) and not isinstance(
|
304 |
child, (F8Linear, CublasLinear)
|
305 |
):
|
@@ -315,7 +326,35 @@ def recursive_swap_linears(
|
|
315 |
)
|
316 |
del child
|
317 |
else:
|
318 |
-
recursive_swap_linears(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
319 |
|
320 |
|
321 |
@torch.inference_mode()
|
@@ -325,6 +364,10 @@ def quantize_flow_transformer_and_dispatch_float8(
|
|
325 |
float8_dtype=torch.float8_e4m3fn,
|
326 |
input_float8_dtype=torch.float8_e5m2,
|
327 |
offload_flow=False,
|
|
|
|
|
|
|
|
|
328 |
) -> nn.Module:
|
329 |
"""
|
330 |
Quantize the flux flow transformer model (original BFL codebase version) and dispatch to the given device.
|
@@ -334,19 +377,36 @@ def quantize_flow_transformer_and_dispatch_float8(
|
|
334 |
Allows for fast dispatch to gpu & quantize without causing OOM on gpus with limited memory.
|
335 |
|
336 |
After dispatching, if offload_flow is True, offloads the model to cpu.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
"""
|
338 |
for module in flow_model.double_blocks:
|
339 |
module.to(device)
|
340 |
module.eval()
|
341 |
recursive_swap_linears(
|
342 |
-
module,
|
|
|
|
|
|
|
343 |
)
|
344 |
torch.cuda.empty_cache()
|
345 |
for module in flow_model.single_blocks:
|
346 |
module.to(device)
|
347 |
module.eval()
|
348 |
recursive_swap_linears(
|
349 |
-
module,
|
|
|
|
|
|
|
350 |
)
|
351 |
torch.cuda.empty_cache()
|
352 |
to_gpu_extras = [
|
@@ -367,23 +427,30 @@ def quantize_flow_transformer_and_dispatch_float8(
|
|
367 |
if isinstance(m_extra, nn.Linear) and not isinstance(
|
368 |
m_extra, (F8Linear, CublasLinear)
|
369 |
):
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
m_extra,
|
375 |
float8_dtype=float8_dtype,
|
376 |
input_float8_dtype=input_float8_dtype,
|
377 |
-
|
378 |
-
|
379 |
-
del m_extra
|
380 |
-
elif module != "final_layer":
|
381 |
-
recursive_swap_linears(
|
382 |
-
m_extra,
|
383 |
-
float8_dtype=float8_dtype,
|
384 |
-
input_float8_dtype=input_float8_dtype,
|
385 |
-
)
|
386 |
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
387 |
if offload_flow:
|
388 |
flow_model.to("cpu")
|
389 |
torch.cuda.empty_cache()
|
|
|
1 |
+
from loguru import logger
|
2 |
import torch
|
3 |
import torch.nn as nn
|
4 |
from torchao.float8.float8_utils import (
|
|
|
11 |
from torch.compiler import is_compiling
|
12 |
from torch import __version__
|
13 |
from torch.version import cuda
|
14 |
+
|
15 |
+
from modules.flux_model import Modulation
|
16 |
|
17 |
IS_TORCH_2_4 = __version__ < (2, 4, 9)
|
18 |
LT_TORCH_2_4 = __version__ < (2, 4)
|
|
|
44 |
float8_dtype=torch.float8_e4m3fn,
|
45 |
float_weight: torch.Tensor = None,
|
46 |
float_bias: torch.Tensor = None,
|
47 |
+
num_scale_trials: int = 12,
|
48 |
input_float8_dtype=torch.float8_e5m2,
|
49 |
) -> None:
|
50 |
super().__init__()
|
|
|
185 |
1, dtype=self.weight.dtype, device=self.weight.device, requires_grad=False
|
186 |
)
|
187 |
|
188 |
+
def set_weight_tensor(self, tensor: torch.Tensor):
|
189 |
+
self.weight.data = tensor
|
190 |
+
self.weight_initialized = False
|
191 |
+
self.quantize_weight()
|
192 |
+
|
193 |
def quantize_input(self, x: torch.Tensor):
|
194 |
if self.input_scale_initialized:
|
195 |
return to_fp8_saturated(x * self.input_scale, self.input_float8_dtype)
|
|
|
286 |
return f8_lin
|
287 |
|
288 |
|
289 |
+
@torch.inference_mode()
|
290 |
def recursive_swap_linears(
|
291 |
model: nn.Module,
|
292 |
float8_dtype=torch.float8_e4m3fn,
|
293 |
input_float8_dtype=torch.float8_e5m2,
|
294 |
+
quantize_modulation: bool = True,
|
295 |
) -> None:
|
296 |
"""
|
297 |
Recursively swaps all nn.Linear modules in the given model with F8Linear modules.
|
|
|
309 |
all linear layers in the model will be using 8-bit quantization.
|
310 |
"""
|
311 |
for name, child in model.named_children():
|
312 |
+
if isinstance(child, Modulation) and not quantize_modulation:
|
313 |
+
continue
|
314 |
if isinstance(child, nn.Linear) and not isinstance(
|
315 |
child, (F8Linear, CublasLinear)
|
316 |
):
|
|
|
326 |
)
|
327 |
del child
|
328 |
else:
|
329 |
+
recursive_swap_linears(
|
330 |
+
child,
|
331 |
+
float8_dtype=float8_dtype,
|
332 |
+
input_float8_dtype=input_float8_dtype,
|
333 |
+
quantize_modulation=quantize_modulation,
|
334 |
+
)
|
335 |
+
|
336 |
+
|
337 |
+
@torch.inference_mode()
|
338 |
+
def swap_to_cublaslinear(model: nn.Module):
|
339 |
+
if not isinstance(CublasLinear, torch.nn.Module):
|
340 |
+
return
|
341 |
+
for name, child in model.named_children():
|
342 |
+
if isinstance(child, nn.Linear) and not isinstance(
|
343 |
+
child, (F8Linear, CublasLinear)
|
344 |
+
):
|
345 |
+
cublas_lin = CublasLinear(
|
346 |
+
child.in_features,
|
347 |
+
child.out_features,
|
348 |
+
bias=child.bias is not None,
|
349 |
+
dtype=child.weight.dtype,
|
350 |
+
device=child.weight.device,
|
351 |
+
)
|
352 |
+
cublas_lin.weight.data = child.weight.clone().detach()
|
353 |
+
cublas_lin.bias.data = child.bias.clone().detach()
|
354 |
+
setattr(model, name, cublas_lin)
|
355 |
+
del child
|
356 |
+
else:
|
357 |
+
swap_to_cublaslinear(child)
|
358 |
|
359 |
|
360 |
@torch.inference_mode()
|
|
|
364 |
float8_dtype=torch.float8_e4m3fn,
|
365 |
input_float8_dtype=torch.float8_e5m2,
|
366 |
offload_flow=False,
|
367 |
+
swap_linears_with_cublaslinear=True,
|
368 |
+
flow_dtype=torch.float16,
|
369 |
+
quantize_modulation: bool = True,
|
370 |
+
quantize_flow_embedder_layers: bool = True,
|
371 |
) -> nn.Module:
|
372 |
"""
|
373 |
Quantize the flux flow transformer model (original BFL codebase version) and dispatch to the given device.
|
|
|
377 |
Allows for fast dispatch to gpu & quantize without causing OOM on gpus with limited memory.
|
378 |
|
379 |
After dispatching, if offload_flow is True, offloads the model to cpu.
|
380 |
+
|
381 |
+
if swap_linears_with_cublaslinear is true, and flow_dtype == torch.float16, then swap all linears with cublaslinears for 2x performance boost on consumer GPUs.
|
382 |
+
Otherwise will skip the cublaslinear swap.
|
383 |
+
|
384 |
+
For added extra precision, you can set quantize_flow_embedder_layers to False,
|
385 |
+
this helps maintain the output quality of the flow transformer moreso than fully quantizing,
|
386 |
+
at the expense of ~512MB more VRAM usage.
|
387 |
+
|
388 |
+
For added extra precision, you can set quantize_modulation to False,
|
389 |
+
this helps maintain the output quality of the flow transformer moreso than fully quantizing,
|
390 |
+
at the expense of ~2GB more VRAM usage, but- has a much higher impact on image quality than the embedder layers.
|
391 |
"""
|
392 |
for module in flow_model.double_blocks:
|
393 |
module.to(device)
|
394 |
module.eval()
|
395 |
recursive_swap_linears(
|
396 |
+
module,
|
397 |
+
float8_dtype=float8_dtype,
|
398 |
+
input_float8_dtype=input_float8_dtype,
|
399 |
+
quantize_modulation=quantize_modulation,
|
400 |
)
|
401 |
torch.cuda.empty_cache()
|
402 |
for module in flow_model.single_blocks:
|
403 |
module.to(device)
|
404 |
module.eval()
|
405 |
recursive_swap_linears(
|
406 |
+
module,
|
407 |
+
float8_dtype=float8_dtype,
|
408 |
+
input_float8_dtype=input_float8_dtype,
|
409 |
+
quantize_modulation=quantize_modulation,
|
410 |
)
|
411 |
torch.cuda.empty_cache()
|
412 |
to_gpu_extras = [
|
|
|
427 |
if isinstance(m_extra, nn.Linear) and not isinstance(
|
428 |
m_extra, (F8Linear, CublasLinear)
|
429 |
):
|
430 |
+
if quantize_flow_embedder_layers:
|
431 |
+
setattr(
|
432 |
+
flow_model,
|
433 |
+
module,
|
434 |
+
F8Linear.from_linear(
|
435 |
+
m_extra,
|
436 |
+
float8_dtype=float8_dtype,
|
437 |
+
input_float8_dtype=input_float8_dtype,
|
438 |
+
),
|
439 |
+
)
|
440 |
+
del m_extra
|
441 |
+
elif module != "final_layer":
|
442 |
+
if quantize_flow_embedder_layers:
|
443 |
+
recursive_swap_linears(
|
444 |
m_extra,
|
445 |
float8_dtype=float8_dtype,
|
446 |
input_float8_dtype=input_float8_dtype,
|
447 |
+
quantize_modulation=quantize_modulation,
|
448 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
449 |
torch.cuda.empty_cache()
|
450 |
+
if swap_linears_with_cublaslinear and flow_dtype == torch.float16:
|
451 |
+
swap_to_cublaslinear(flow_model)
|
452 |
+
elif swap_linears_with_cublaslinear and flow_dtype != torch.float16:
|
453 |
+
logger.warning("Skipping cublas linear swap because flow_dtype is not float16")
|
454 |
if offload_flow:
|
455 |
flow_model.to("cpu")
|
456 |
torch.cuda.empty_cache()
|
flux_pipeline.py
CHANGED
@@ -31,6 +31,7 @@ from torchvision.transforms import functional as TF
|
|
31 |
from tqdm import tqdm
|
32 |
from util import (
|
33 |
ModelSpec,
|
|
|
34 |
into_device,
|
35 |
into_dtype,
|
36 |
load_config_from_path,
|
@@ -80,29 +81,17 @@ class FluxPipeline:
|
|
80 |
This class is responsible for preparing input tensors for the Flux model, generating
|
81 |
timesteps and noise, and handling device management for model offloading.
|
82 |
"""
|
|
|
|
|
|
|
|
|
83 |
self.debug = debug
|
84 |
self.name = name
|
85 |
-
self.device_flux = (
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
)
|
90 |
-
self.device_ae = (
|
91 |
-
ae_device
|
92 |
-
if isinstance(ae_device, torch.device)
|
93 |
-
else torch.device(ae_device)
|
94 |
-
)
|
95 |
-
self.device_clip = (
|
96 |
-
clip_device
|
97 |
-
if isinstance(clip_device, torch.device)
|
98 |
-
else torch.device(clip_device)
|
99 |
-
)
|
100 |
-
self.device_t5 = (
|
101 |
-
t5_device
|
102 |
-
if isinstance(t5_device, torch.device)
|
103 |
-
else torch.device(t5_device)
|
104 |
-
)
|
105 |
-
self.dtype = dtype
|
106 |
self.offload = offload
|
107 |
self.clip: "HFEmbedder" = clip
|
108 |
self.t5: "HFEmbedder" = t5
|
@@ -116,6 +105,8 @@ class FluxPipeline:
|
|
116 |
self.offload_text_encoder = config.offload_text_encoder
|
117 |
self.offload_vae = config.offload_vae
|
118 |
self.offload_flow = config.offload_flow
|
|
|
|
|
119 |
if not self.offload_flow:
|
120 |
self.model.to(self.device_flux)
|
121 |
if not self.offload_vae:
|
@@ -124,40 +115,16 @@ class FluxPipeline:
|
|
124 |
self.clip.to(self.device_clip)
|
125 |
self.t5.to(self.device_t5)
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
num_steps=25,
|
135 |
-
guidance=3.5,
|
136 |
-
seed=10,
|
137 |
-
)
|
138 |
-
self.generate(**warmup_dict)
|
139 |
-
to_gpu_extras = [
|
140 |
-
"vector_in",
|
141 |
-
"img_in",
|
142 |
-
"txt_in",
|
143 |
-
"time_in",
|
144 |
-
"guidance_in",
|
145 |
-
"final_layer",
|
146 |
-
"pe_embedder",
|
147 |
-
]
|
148 |
-
if self.config.compile_blocks:
|
149 |
-
for block in self.model.double_blocks:
|
150 |
-
block.compile()
|
151 |
-
for block in self.model.single_blocks:
|
152 |
-
block.compile()
|
153 |
-
if self.config.compile_extras:
|
154 |
-
for extra in to_gpu_extras:
|
155 |
-
getattr(self.model, extra).compile()
|
156 |
-
|
157 |
-
def set_seed(self, seed: int | None = None) -> torch.Generator:
|
158 |
if isinstance(seed, (int, float)):
|
159 |
seed = int(abs(seed)) % MAX_RAND
|
160 |
-
|
161 |
elif isinstance(seed, str):
|
162 |
try:
|
163 |
seed = abs(int(seed)) % MAX_RAND
|
@@ -166,14 +133,71 @@ class FluxPipeline:
|
|
166 |
f"Recieved string representation of seed, but was not able to convert to int: {seed}, using random seed"
|
167 |
)
|
168 |
seed = abs(self.rng.seed()) % MAX_RAND
|
|
|
169 |
else:
|
170 |
seed = abs(self.rng.seed()) % MAX_RAND
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
|
|
175 |
return cuda_generator, seed
|
176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
@torch.inference_mode()
|
178 |
def prepare(
|
179 |
self,
|
@@ -608,12 +632,18 @@ class FluxPipeline:
|
|
608 |
|
609 |
@classmethod
|
610 |
def load_pipeline_from_config_path(
|
611 |
-
cls, path: str, flow_model_path: str = None, debug: bool = False
|
612 |
) -> "FluxPipeline":
|
613 |
with torch.inference_mode():
|
614 |
config = load_config_from_path(path)
|
615 |
if flow_model_path:
|
616 |
config.ckpt_path = flow_model_path
|
|
|
|
|
|
|
|
|
|
|
|
|
617 |
return cls.load_pipeline_from_config(config, debug=debug)
|
618 |
|
619 |
@classmethod
|
@@ -639,7 +669,13 @@ class FluxPipeline:
|
|
639 |
|
640 |
if not config.prequantized_flow:
|
641 |
flow_model = quantize_flow_transformer_and_dispatch_float8(
|
642 |
-
flow_model,
|
|
|
|
|
|
|
|
|
|
|
|
|
643 |
)
|
644 |
else:
|
645 |
flow_model.eval().requires_grad_(False)
|
|
|
31 |
from tqdm import tqdm
|
32 |
from util import (
|
33 |
ModelSpec,
|
34 |
+
ModelVersion,
|
35 |
into_device,
|
36 |
into_dtype,
|
37 |
load_config_from_path,
|
|
|
81 |
This class is responsible for preparing input tensors for the Flux model, generating
|
82 |
timesteps and noise, and handling device management for model offloading.
|
83 |
"""
|
84 |
+
|
85 |
+
if config is None:
|
86 |
+
raise ValueError("ModelSpec config is required!")
|
87 |
+
|
88 |
self.debug = debug
|
89 |
self.name = name
|
90 |
+
self.device_flux = into_device(flux_device)
|
91 |
+
self.device_ae = into_device(ae_device)
|
92 |
+
self.device_clip = into_device(clip_device)
|
93 |
+
self.device_t5 = into_device(t5_device)
|
94 |
+
self.dtype = into_dtype(dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
self.offload = offload
|
96 |
self.clip: "HFEmbedder" = clip
|
97 |
self.t5: "HFEmbedder" = t5
|
|
|
105 |
self.offload_text_encoder = config.offload_text_encoder
|
106 |
self.offload_vae = config.offload_vae
|
107 |
self.offload_flow = config.offload_flow
|
108 |
+
# If models are not offloaded, move them to the appropriate devices
|
109 |
+
|
110 |
if not self.offload_flow:
|
111 |
self.model.to(self.device_flux)
|
112 |
if not self.offload_vae:
|
|
|
115 |
self.clip.to(self.device_clip)
|
116 |
self.t5.to(self.device_t5)
|
117 |
|
118 |
+
# compile the model if needed
|
119 |
+
if config.compile_blocks or config.compile_extras:
|
120 |
+
self.compile()
|
121 |
+
|
122 |
+
def set_seed(
|
123 |
+
self, seed: int | None = None, seed_globally: bool = False
|
124 |
+
) -> torch.Generator:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
if isinstance(seed, (int, float)):
|
126 |
seed = int(abs(seed)) % MAX_RAND
|
127 |
+
cuda_generator = torch.Generator("cuda").manual_seed(seed)
|
128 |
elif isinstance(seed, str):
|
129 |
try:
|
130 |
seed = abs(int(seed)) % MAX_RAND
|
|
|
133 |
f"Recieved string representation of seed, but was not able to convert to int: {seed}, using random seed"
|
134 |
)
|
135 |
seed = abs(self.rng.seed()) % MAX_RAND
|
136 |
+
cuda_generator = torch.Generator("cuda").manual_seed(seed)
|
137 |
else:
|
138 |
seed = abs(self.rng.seed()) % MAX_RAND
|
139 |
+
cuda_generator = torch.Generator("cuda").manual_seed(seed)
|
140 |
+
|
141 |
+
if seed_globally:
|
142 |
+
torch.cuda.manual_seed_all(seed)
|
143 |
+
np.random.seed(seed)
|
144 |
+
random.seed(seed)
|
145 |
return cuda_generator, seed
|
146 |
|
147 |
+
@torch.inference_mode()
|
148 |
+
def compile(self):
|
149 |
+
"""
|
150 |
+
Compiles the model and extras.
|
151 |
+
|
152 |
+
First, if:
|
153 |
+
|
154 |
+
- A) Checkpoint which already has float8 quantized weights and tuned input scales.
|
155 |
+
In which case, it will not run warmups since it assumes the input scales are already tuned.
|
156 |
+
|
157 |
+
- B) Checkpoint which has not been quantized, in which case it will be quantized
|
158 |
+
and the input scales will be tuned. via running a warmup loop.
|
159 |
+
- If the model is flux-schnell, it will run 3 warmup loops since each loop is 4 steps.
|
160 |
+
- If the model is flux-dev, it will run 1 warmup loop for 12 steps.
|
161 |
+
|
162 |
+
"""
|
163 |
+
|
164 |
+
# Run warmups if the checkpoint is not prequantized
|
165 |
+
if not self.config.prequantized_flow:
|
166 |
+
logger.info("Running warmups for compile...")
|
167 |
+
warmup_dict = dict(
|
168 |
+
prompt="A beautiful test image used to solidify the fp8 nn.Linear input scales prior to compilation 😉",
|
169 |
+
height=768,
|
170 |
+
width=768,
|
171 |
+
num_steps=12,
|
172 |
+
guidance=3.5,
|
173 |
+
seed=10,
|
174 |
+
)
|
175 |
+
if self.config.version == ModelVersion.flux_schnell:
|
176 |
+
warmup_dict["num_steps"] = 4
|
177 |
+
for _ in range(3):
|
178 |
+
self.generate(**warmup_dict)
|
179 |
+
else:
|
180 |
+
self.generate(**warmup_dict)
|
181 |
+
|
182 |
+
# Compile the model and extras
|
183 |
+
to_gpu_extras = [
|
184 |
+
"vector_in",
|
185 |
+
"img_in",
|
186 |
+
"txt_in",
|
187 |
+
"time_in",
|
188 |
+
"guidance_in",
|
189 |
+
"final_layer",
|
190 |
+
"pe_embedder",
|
191 |
+
]
|
192 |
+
if self.config.compile_blocks:
|
193 |
+
for block in self.model.double_blocks:
|
194 |
+
block.compile()
|
195 |
+
for block in self.model.single_blocks:
|
196 |
+
block.compile()
|
197 |
+
if self.config.compile_extras:
|
198 |
+
for extra in to_gpu_extras:
|
199 |
+
getattr(self.model, extra).compile()
|
200 |
+
|
201 |
@torch.inference_mode()
|
202 |
def prepare(
|
203 |
self,
|
|
|
632 |
|
633 |
@classmethod
|
634 |
def load_pipeline_from_config_path(
|
635 |
+
cls, path: str, flow_model_path: str = None, debug: bool = False, **kwargs
|
636 |
) -> "FluxPipeline":
|
637 |
with torch.inference_mode():
|
638 |
config = load_config_from_path(path)
|
639 |
if flow_model_path:
|
640 |
config.ckpt_path = flow_model_path
|
641 |
+
for k, v in kwargs.items():
|
642 |
+
if hasattr(config, k):
|
643 |
+
logger.info(
|
644 |
+
f"Overriding config {k}:{getattr(config, k)} with value {v}"
|
645 |
+
)
|
646 |
+
setattr(config, k, v)
|
647 |
return cls.load_pipeline_from_config(config, debug=debug)
|
648 |
|
649 |
@classmethod
|
|
|
669 |
|
670 |
if not config.prequantized_flow:
|
671 |
flow_model = quantize_flow_transformer_and_dispatch_float8(
|
672 |
+
flow_model,
|
673 |
+
flux_device,
|
674 |
+
offload_flow=config.offload_flow,
|
675 |
+
swap_linears_with_cublaslinear=flux_dtype == torch.float16,
|
676 |
+
flow_dtype=flux_dtype,
|
677 |
+
quantize_modulation=config.quantize_modulation,
|
678 |
+
quantize_flow_embedder_layers=config.quantize_flow_embedder_layers,
|
679 |
)
|
680 |
else:
|
681 |
flow_model.eval().requires_grad_(False)
|
main.py
CHANGED
@@ -129,6 +129,22 @@ def parse_args():
|
|
129 |
+ "and then saving the state_dict as a safetensors file), "
|
130 |
+ "which reduces the size of the checkpoint by about 50% & reduces startup time",
|
131 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
return parser.parse_args()
|
133 |
|
134 |
|
@@ -171,6 +187,8 @@ def main():
|
|
171 |
offload_ae=args.offload_ae,
|
172 |
offload_text_enc=args.offload_text_enc,
|
173 |
prequantized_flow=args.prequantized_flow,
|
|
|
|
|
174 |
)
|
175 |
app.state.model = FluxPipeline.load_pipeline_from_config(config)
|
176 |
|
|
|
129 |
+ "and then saving the state_dict as a safetensors file), "
|
130 |
+ "which reduces the size of the checkpoint by about 50% & reduces startup time",
|
131 |
)
|
132 |
+
parser.add_argument(
|
133 |
+
"-nqfm",
|
134 |
+
"--no-quantize-flow-modulation",
|
135 |
+
action="store_false",
|
136 |
+
default=True,
|
137 |
+
dest="quantize_modulation",
|
138 |
+
help="Disable quantization of the modulation layers in the flow model, adds ~2GB vram usage for moderate precision improvements",
|
139 |
+
)
|
140 |
+
parser.add_argument(
|
141 |
+
"-qfl",
|
142 |
+
"--quantize-flow-embedder-layers",
|
143 |
+
action="store_true",
|
144 |
+
default=False,
|
145 |
+
dest="quantize_flow_embedder_layers",
|
146 |
+
help="Quantize the flow embedder layers in the flow model, saves ~512MB vram usage, but precision loss is very noticeable",
|
147 |
+
)
|
148 |
return parser.parse_args()
|
149 |
|
150 |
|
|
|
187 |
offload_ae=args.offload_ae,
|
188 |
offload_text_enc=args.offload_text_enc,
|
189 |
prequantized_flow=args.prequantized_flow,
|
190 |
+
quantize_modulation=args.quantize_modulation,
|
191 |
+
quantize_flow_embedder_layers=args.quantize_flow_embedder_layers,
|
192 |
)
|
193 |
app.state.model = FluxPipeline.load_pipeline_from_config(config)
|
194 |
|
modules/conditioner.py
CHANGED
@@ -56,6 +56,16 @@ class HFEmbedder(nn.Module):
|
|
56 |
self.max_length = max_length
|
57 |
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
if self.is_clip:
|
60 |
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(
|
61 |
version, max_length=max_length
|
@@ -64,11 +74,6 @@ class HFEmbedder(nn.Module):
|
|
64 |
self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(
|
65 |
version,
|
66 |
**hf_kwargs,
|
67 |
-
quantization_config=(
|
68 |
-
auto_quantization_config(quantization_dtype)
|
69 |
-
if quantization_dtype
|
70 |
-
else None
|
71 |
-
),
|
72 |
)
|
73 |
|
74 |
else:
|
@@ -78,11 +83,6 @@ class HFEmbedder(nn.Module):
|
|
78 |
self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(
|
79 |
version,
|
80 |
**hf_kwargs,
|
81 |
-
quantization_config=(
|
82 |
-
auto_quantization_config(quantization_dtype)
|
83 |
-
if quantization_dtype
|
84 |
-
else None
|
85 |
-
),
|
86 |
)
|
87 |
|
88 |
def offload(self):
|
|
|
56 |
self.max_length = max_length
|
57 |
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state"
|
58 |
|
59 |
+
auto_quant_config = (
|
60 |
+
auto_quantization_config(quantization_dtype) if quantization_dtype else None
|
61 |
+
)
|
62 |
+
|
63 |
+
# BNB will move to cuda:0 by default if not specified
|
64 |
+
if isinstance(auto_quant_config, BitsAndBytesConfig):
|
65 |
+
hf_kwargs["device_map"] = {"": self.device.index}
|
66 |
+
if auto_quant_config is not None:
|
67 |
+
hf_kwargs["quantization_config"] = auto_quant_config
|
68 |
+
|
69 |
if self.is_clip:
|
70 |
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(
|
71 |
version, max_length=max_length
|
|
|
74 |
self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(
|
75 |
version,
|
76 |
**hf_kwargs,
|
|
|
|
|
|
|
|
|
|
|
77 |
)
|
78 |
|
79 |
else:
|
|
|
83 |
self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(
|
84 |
version,
|
85 |
**hf_kwargs,
|
|
|
|
|
|
|
|
|
|
|
86 |
)
|
87 |
|
88 |
def offload(self):
|
modules/flux_model.py
CHANGED
@@ -1,7 +1,11 @@
|
|
1 |
from collections import namedtuple
|
2 |
import os
|
|
|
3 |
import torch
|
4 |
|
|
|
|
|
|
|
5 |
DISABLE_COMPILE = os.getenv("DISABLE_COMPILE", "0") == "1"
|
6 |
torch.backends.cuda.matmul.allow_tf32 = True
|
7 |
torch.backends.cudnn.allow_tf32 = True
|
@@ -14,11 +18,6 @@ from torch import Tensor, nn
|
|
14 |
from pydantic import BaseModel
|
15 |
from torch.nn import functional as F
|
16 |
|
17 |
-
try:
|
18 |
-
from cublas_ops import CublasLinear
|
19 |
-
except ImportError:
|
20 |
-
CublasLinear = nn.Linear
|
21 |
-
|
22 |
|
23 |
class FluxParams(BaseModel):
|
24 |
in_channels: int
|
@@ -116,11 +115,39 @@ def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 10
|
|
116 |
|
117 |
|
118 |
class MLPEmbedder(nn.Module):
|
119 |
-
def __init__(
|
|
|
|
|
|
|
|
|
120 |
super().__init__()
|
121 |
-
self.in_layer =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
self.silu = nn.SiLU()
|
123 |
-
self.out_layer =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
def forward(self, x: Tensor) -> Tensor:
|
126 |
return self.out_layer(self.silu(self.in_layer(x)))
|
@@ -148,14 +175,38 @@ class QKNorm(torch.nn.Module):
|
|
148 |
|
149 |
|
150 |
class SelfAttention(nn.Module):
|
151 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
super().__init__()
|
|
|
|
|
153 |
self.num_heads = num_heads
|
154 |
head_dim = dim // num_heads
|
155 |
|
156 |
-
self.qkv =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
self.norm = QKNorm(head_dim)
|
158 |
-
self.proj =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
self.K = 3
|
160 |
self.H = self.num_heads
|
161 |
self.KH = self.K * self.H
|
@@ -178,11 +229,21 @@ ModulationOut = namedtuple("ModulationOut", ["shift", "scale", "gate"])
|
|
178 |
|
179 |
|
180 |
class Modulation(nn.Module):
|
181 |
-
def __init__(self, dim: int, double: bool):
|
182 |
super().__init__()
|
|
|
|
|
183 |
self.is_double = double
|
184 |
self.multiplier = 6 if double else 3
|
185 |
-
self.lin =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
self.act = nn.SiLU()
|
187 |
|
188 |
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
|
@@ -202,37 +263,83 @@ class DoubleStreamBlock(nn.Module):
|
|
202 |
mlp_ratio: float,
|
203 |
qkv_bias: bool = False,
|
204 |
dtype: torch.dtype = torch.float16,
|
|
|
|
|
205 |
):
|
206 |
super().__init__()
|
|
|
|
|
207 |
self.dtype = dtype
|
208 |
|
209 |
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
210 |
self.num_heads = num_heads
|
211 |
self.hidden_size = hidden_size
|
212 |
-
self.img_mod = Modulation(
|
|
|
|
|
213 |
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
214 |
self.img_attn = SelfAttention(
|
215 |
-
dim=hidden_size,
|
|
|
|
|
|
|
216 |
)
|
217 |
|
218 |
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
219 |
self.img_mlp = nn.Sequential(
|
220 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
nn.GELU(approximate="tanh"),
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
)
|
224 |
|
225 |
-
self.txt_mod = Modulation(
|
|
|
|
|
226 |
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
227 |
self.txt_attn = SelfAttention(
|
228 |
-
dim=hidden_size,
|
|
|
|
|
|
|
229 |
)
|
230 |
|
231 |
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
232 |
self.txt_mlp = nn.Sequential(
|
233 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
nn.GELU(approximate="tanh"),
|
235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
)
|
237 |
self.K = 3
|
238 |
self.H = self.num_heads
|
@@ -301,8 +408,12 @@ class SingleStreamBlock(nn.Module):
|
|
301 |
mlp_ratio: float = 4.0,
|
302 |
qk_scale: float | None = None,
|
303 |
dtype: torch.dtype = torch.float16,
|
|
|
|
|
304 |
):
|
305 |
super().__init__()
|
|
|
|
|
306 |
self.dtype = dtype
|
307 |
self.hidden_dim = hidden_size
|
308 |
self.num_heads = num_heads
|
@@ -311,9 +422,25 @@ class SingleStreamBlock(nn.Module):
|
|
311 |
|
312 |
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
313 |
# qkv and mlp_in
|
314 |
-
self.linear1 =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
# proj and mlp_out
|
316 |
-
self.linear2 =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
|
318 |
self.norm = QKNorm(head_dim)
|
319 |
|
@@ -321,7 +448,11 @@ class SingleStreamBlock(nn.Module):
|
|
321 |
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
322 |
|
323 |
self.mlp_act = nn.GELU(approximate="tanh")
|
324 |
-
self.modulation = Modulation(
|
|
|
|
|
|
|
|
|
325 |
|
326 |
self.K = 3
|
327 |
self.H = self.num_heads
|
@@ -350,11 +481,11 @@ class LastLayer(nn.Module):
|
|
350 |
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
|
351 |
super().__init__()
|
352 |
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
353 |
-
self.linear =
|
354 |
hidden_size, patch_size * patch_size * out_channels, bias=True
|
355 |
)
|
356 |
self.adaLN_modulation = nn.Sequential(
|
357 |
-
nn.SiLU(),
|
358 |
)
|
359 |
|
360 |
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
@@ -369,50 +500,96 @@ class Flux(nn.Module):
|
|
369 |
Transformer model for flow matching on sequences.
|
370 |
"""
|
371 |
|
372 |
-
def __init__(self,
|
373 |
super().__init__()
|
374 |
|
375 |
self.dtype = dtype
|
376 |
-
self.params = params
|
377 |
-
self.in_channels = params.in_channels
|
378 |
self.out_channels = self.in_channels
|
379 |
-
|
|
|
|
|
|
|
|
|
|
|
380 |
raise ValueError(
|
381 |
-
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
|
382 |
)
|
383 |
-
pe_dim = params.hidden_size // params.num_heads
|
384 |
-
if sum(params.axes_dim) != pe_dim:
|
385 |
raise ValueError(
|
386 |
-
f"Got {params.axes_dim} but expected positional dim {pe_dim}"
|
387 |
)
|
388 |
-
self.hidden_size = params.hidden_size
|
389 |
-
self.num_heads = params.num_heads
|
390 |
self.pe_embedder = EmbedND(
|
391 |
dim=pe_dim,
|
392 |
-
theta=params.theta,
|
393 |
-
axes_dim=params.axes_dim,
|
394 |
dtype=self.dtype,
|
395 |
)
|
396 |
-
self.img_in =
|
397 |
-
|
398 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
self.guidance_in = (
|
400 |
-
MLPEmbedder(
|
401 |
-
|
|
|
|
|
|
|
|
|
|
|
402 |
else nn.Identity()
|
403 |
)
|
404 |
-
self.txt_in =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
405 |
|
406 |
self.double_blocks = nn.ModuleList(
|
407 |
[
|
408 |
DoubleStreamBlock(
|
409 |
self.hidden_size,
|
410 |
self.num_heads,
|
411 |
-
mlp_ratio=params.mlp_ratio,
|
412 |
-
qkv_bias=params.qkv_bias,
|
413 |
dtype=self.dtype,
|
|
|
|
|
414 |
)
|
415 |
-
for _ in range(params.depth)
|
416 |
]
|
417 |
)
|
418 |
|
@@ -421,10 +598,12 @@ class Flux(nn.Module):
|
|
421 |
SingleStreamBlock(
|
422 |
self.hidden_size,
|
423 |
self.num_heads,
|
424 |
-
mlp_ratio=params.mlp_ratio,
|
425 |
dtype=self.dtype,
|
|
|
|
|
426 |
)
|
427 |
-
for _ in range(params.depth_single_blocks)
|
428 |
]
|
429 |
)
|
430 |
|
@@ -477,13 +656,17 @@ class Flux(nn.Module):
|
|
477 |
return img
|
478 |
|
479 |
@classmethod
|
480 |
-
def from_pretrained(
|
|
|
|
|
481 |
from util import load_config_from_path
|
482 |
from safetensors.torch import load_file
|
483 |
|
484 |
config = load_config_from_path(path)
|
485 |
with torch.device("meta"):
|
486 |
-
klass = cls(
|
|
|
|
|
487 |
|
488 |
ckpt = load_file(config.ckpt_path, device="cpu")
|
489 |
klass.load_state_dict(ckpt, assign=True)
|
|
|
1 |
from collections import namedtuple
|
2 |
import os
|
3 |
+
from typing import TYPE_CHECKING
|
4 |
import torch
|
5 |
|
6 |
+
if TYPE_CHECKING:
|
7 |
+
from util import ModelSpec
|
8 |
+
|
9 |
DISABLE_COMPILE = os.getenv("DISABLE_COMPILE", "0") == "1"
|
10 |
torch.backends.cuda.matmul.allow_tf32 = True
|
11 |
torch.backends.cudnn.allow_tf32 = True
|
|
|
18 |
from pydantic import BaseModel
|
19 |
from torch.nn import functional as F
|
20 |
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
class FluxParams(BaseModel):
|
23 |
in_channels: int
|
|
|
115 |
|
116 |
|
117 |
class MLPEmbedder(nn.Module):
|
118 |
+
def __init__(
|
119 |
+
self, in_dim: int, hidden_dim: int, prequantized: bool = False, quantized=False
|
120 |
+
):
|
121 |
+
from float8_quantize import F8Linear
|
122 |
+
|
123 |
super().__init__()
|
124 |
+
self.in_layer = (
|
125 |
+
nn.Linear(in_dim, hidden_dim, bias=True)
|
126 |
+
if not prequantized
|
127 |
+
else (
|
128 |
+
F8Linear(
|
129 |
+
in_features=in_dim,
|
130 |
+
out_features=hidden_dim,
|
131 |
+
bias=True,
|
132 |
+
)
|
133 |
+
if quantized
|
134 |
+
else nn.Linear(in_dim, hidden_dim, bias=True)
|
135 |
+
)
|
136 |
+
)
|
137 |
self.silu = nn.SiLU()
|
138 |
+
self.out_layer = (
|
139 |
+
nn.Linear(hidden_dim, hidden_dim, bias=True)
|
140 |
+
if not prequantized
|
141 |
+
else (
|
142 |
+
F8Linear(
|
143 |
+
in_features=hidden_dim,
|
144 |
+
out_features=hidden_dim,
|
145 |
+
bias=True,
|
146 |
+
)
|
147 |
+
if quantized
|
148 |
+
else nn.Linear(hidden_dim, hidden_dim, bias=True)
|
149 |
+
)
|
150 |
+
)
|
151 |
|
152 |
def forward(self, x: Tensor) -> Tensor:
|
153 |
return self.out_layer(self.silu(self.in_layer(x)))
|
|
|
175 |
|
176 |
|
177 |
class SelfAttention(nn.Module):
|
178 |
+
def __init__(
|
179 |
+
self,
|
180 |
+
dim: int,
|
181 |
+
num_heads: int = 8,
|
182 |
+
qkv_bias: bool = False,
|
183 |
+
prequantized: bool = False,
|
184 |
+
):
|
185 |
super().__init__()
|
186 |
+
from float8_quantize import F8Linear
|
187 |
+
|
188 |
self.num_heads = num_heads
|
189 |
head_dim = dim // num_heads
|
190 |
|
191 |
+
self.qkv = (
|
192 |
+
nn.Linear(dim, dim * 3, bias=qkv_bias)
|
193 |
+
if not prequantized
|
194 |
+
else F8Linear(
|
195 |
+
in_features=dim,
|
196 |
+
out_features=dim * 3,
|
197 |
+
bias=qkv_bias,
|
198 |
+
)
|
199 |
+
)
|
200 |
self.norm = QKNorm(head_dim)
|
201 |
+
self.proj = (
|
202 |
+
nn.Linear(dim, dim)
|
203 |
+
if not prequantized
|
204 |
+
else F8Linear(
|
205 |
+
in_features=dim,
|
206 |
+
out_features=dim,
|
207 |
+
bias=True,
|
208 |
+
)
|
209 |
+
)
|
210 |
self.K = 3
|
211 |
self.H = self.num_heads
|
212 |
self.KH = self.K * self.H
|
|
|
229 |
|
230 |
|
231 |
class Modulation(nn.Module):
|
232 |
+
def __init__(self, dim: int, double: bool, quantized_modulation: bool = False):
|
233 |
super().__init__()
|
234 |
+
from float8_quantize import F8Linear
|
235 |
+
|
236 |
self.is_double = double
|
237 |
self.multiplier = 6 if double else 3
|
238 |
+
self.lin = (
|
239 |
+
nn.Linear(dim, self.multiplier * dim, bias=True)
|
240 |
+
if not quantized_modulation
|
241 |
+
else F8Linear(
|
242 |
+
in_features=dim,
|
243 |
+
out_features=self.multiplier * dim,
|
244 |
+
bias=True,
|
245 |
+
)
|
246 |
+
)
|
247 |
self.act = nn.SiLU()
|
248 |
|
249 |
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
|
|
|
263 |
mlp_ratio: float,
|
264 |
qkv_bias: bool = False,
|
265 |
dtype: torch.dtype = torch.float16,
|
266 |
+
quantized_modulation: bool = False,
|
267 |
+
prequantized: bool = False,
|
268 |
):
|
269 |
super().__init__()
|
270 |
+
from float8_quantize import F8Linear
|
271 |
+
|
272 |
self.dtype = dtype
|
273 |
|
274 |
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
275 |
self.num_heads = num_heads
|
276 |
self.hidden_size = hidden_size
|
277 |
+
self.img_mod = Modulation(
|
278 |
+
hidden_size, double=True, quantized_modulation=quantized_modulation
|
279 |
+
)
|
280 |
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
281 |
self.img_attn = SelfAttention(
|
282 |
+
dim=hidden_size,
|
283 |
+
num_heads=num_heads,
|
284 |
+
qkv_bias=qkv_bias,
|
285 |
+
prequantized=prequantized,
|
286 |
)
|
287 |
|
288 |
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
289 |
self.img_mlp = nn.Sequential(
|
290 |
+
(
|
291 |
+
nn.Linear(hidden_size, mlp_hidden_dim, bias=True)
|
292 |
+
if not prequantized
|
293 |
+
else F8Linear(
|
294 |
+
in_features=hidden_size,
|
295 |
+
out_features=mlp_hidden_dim,
|
296 |
+
bias=True,
|
297 |
+
)
|
298 |
+
),
|
299 |
nn.GELU(approximate="tanh"),
|
300 |
+
(
|
301 |
+
nn.Linear(mlp_hidden_dim, hidden_size, bias=True)
|
302 |
+
if not prequantized
|
303 |
+
else F8Linear(
|
304 |
+
in_features=mlp_hidden_dim,
|
305 |
+
out_features=hidden_size,
|
306 |
+
bias=True,
|
307 |
+
)
|
308 |
+
),
|
309 |
)
|
310 |
|
311 |
+
self.txt_mod = Modulation(
|
312 |
+
hidden_size, double=True, quantized_modulation=quantized_modulation
|
313 |
+
)
|
314 |
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
315 |
self.txt_attn = SelfAttention(
|
316 |
+
dim=hidden_size,
|
317 |
+
num_heads=num_heads,
|
318 |
+
qkv_bias=qkv_bias,
|
319 |
+
prequantized=prequantized,
|
320 |
)
|
321 |
|
322 |
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
323 |
self.txt_mlp = nn.Sequential(
|
324 |
+
(
|
325 |
+
nn.Linear(hidden_size, mlp_hidden_dim, bias=True)
|
326 |
+
if not prequantized
|
327 |
+
else F8Linear(
|
328 |
+
in_features=hidden_size,
|
329 |
+
out_features=mlp_hidden_dim,
|
330 |
+
bias=True,
|
331 |
+
)
|
332 |
+
),
|
333 |
nn.GELU(approximate="tanh"),
|
334 |
+
(
|
335 |
+
nn.Linear(mlp_hidden_dim, hidden_size, bias=True)
|
336 |
+
if not prequantized
|
337 |
+
else F8Linear(
|
338 |
+
in_features=mlp_hidden_dim,
|
339 |
+
out_features=hidden_size,
|
340 |
+
bias=True,
|
341 |
+
)
|
342 |
+
),
|
343 |
)
|
344 |
self.K = 3
|
345 |
self.H = self.num_heads
|
|
|
408 |
mlp_ratio: float = 4.0,
|
409 |
qk_scale: float | None = None,
|
410 |
dtype: torch.dtype = torch.float16,
|
411 |
+
quantized_modulation: bool = False,
|
412 |
+
prequantized: bool = False,
|
413 |
):
|
414 |
super().__init__()
|
415 |
+
from float8_quantize import F8Linear
|
416 |
+
|
417 |
self.dtype = dtype
|
418 |
self.hidden_dim = hidden_size
|
419 |
self.num_heads = num_heads
|
|
|
422 |
|
423 |
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
424 |
# qkv and mlp_in
|
425 |
+
self.linear1 = (
|
426 |
+
nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
|
427 |
+
if not prequantized
|
428 |
+
else F8Linear(
|
429 |
+
in_features=hidden_size,
|
430 |
+
out_features=hidden_size * 3 + self.mlp_hidden_dim,
|
431 |
+
bias=True,
|
432 |
+
)
|
433 |
+
)
|
434 |
# proj and mlp_out
|
435 |
+
self.linear2 = (
|
436 |
+
nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
|
437 |
+
if not prequantized
|
438 |
+
else F8Linear(
|
439 |
+
in_features=hidden_size + self.mlp_hidden_dim,
|
440 |
+
out_features=hidden_size,
|
441 |
+
bias=True,
|
442 |
+
)
|
443 |
+
)
|
444 |
|
445 |
self.norm = QKNorm(head_dim)
|
446 |
|
|
|
448 |
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
449 |
|
450 |
self.mlp_act = nn.GELU(approximate="tanh")
|
451 |
+
self.modulation = Modulation(
|
452 |
+
hidden_size,
|
453 |
+
double=False,
|
454 |
+
quantized_modulation=quantized_modulation and prequantized,
|
455 |
+
)
|
456 |
|
457 |
self.K = 3
|
458 |
self.H = self.num_heads
|
|
|
481 |
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
|
482 |
super().__init__()
|
483 |
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
484 |
+
self.linear = nn.Linear(
|
485 |
hidden_size, patch_size * patch_size * out_channels, bias=True
|
486 |
)
|
487 |
self.adaLN_modulation = nn.Sequential(
|
488 |
+
nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)
|
489 |
)
|
490 |
|
491 |
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
|
|
500 |
Transformer model for flow matching on sequences.
|
501 |
"""
|
502 |
|
503 |
+
def __init__(self, config: "ModelSpec", dtype: torch.dtype = torch.float16):
|
504 |
super().__init__()
|
505 |
|
506 |
self.dtype = dtype
|
507 |
+
self.params = config.params
|
508 |
+
self.in_channels = config.params.in_channels
|
509 |
self.out_channels = self.in_channels
|
510 |
+
prequantized_flow = config.prequantized_flow
|
511 |
+
quantized_embedders = config.quantize_flow_embedder_layers and prequantized_flow
|
512 |
+
quantized_modulation = config.quantize_modulation and prequantized_flow
|
513 |
+
from float8_quantize import F8Linear
|
514 |
+
|
515 |
+
if config.params.hidden_size % config.params.num_heads != 0:
|
516 |
raise ValueError(
|
517 |
+
f"Hidden size {config.params.hidden_size} must be divisible by num_heads {config.params.num_heads}"
|
518 |
)
|
519 |
+
pe_dim = config.params.hidden_size // config.params.num_heads
|
520 |
+
if sum(config.params.axes_dim) != pe_dim:
|
521 |
raise ValueError(
|
522 |
+
f"Got {config.params.axes_dim} but expected positional dim {pe_dim}"
|
523 |
)
|
524 |
+
self.hidden_size = config.params.hidden_size
|
525 |
+
self.num_heads = config.params.num_heads
|
526 |
self.pe_embedder = EmbedND(
|
527 |
dim=pe_dim,
|
528 |
+
theta=config.params.theta,
|
529 |
+
axes_dim=config.params.axes_dim,
|
530 |
dtype=self.dtype,
|
531 |
)
|
532 |
+
self.img_in = (
|
533 |
+
nn.Linear(self.in_channels, self.hidden_size, bias=True)
|
534 |
+
if not prequantized_flow
|
535 |
+
else (
|
536 |
+
F8Linear(
|
537 |
+
in_features=self.in_channels,
|
538 |
+
out_features=self.hidden_size,
|
539 |
+
bias=True,
|
540 |
+
)
|
541 |
+
if quantized_embedders
|
542 |
+
else nn.Linear(self.in_channels, self.hidden_size, bias=True)
|
543 |
+
)
|
544 |
+
)
|
545 |
+
self.time_in = MLPEmbedder(
|
546 |
+
in_dim=256,
|
547 |
+
hidden_dim=self.hidden_size,
|
548 |
+
prequantized=prequantized_flow,
|
549 |
+
quantized=quantized_embedders,
|
550 |
+
)
|
551 |
+
self.vector_in = MLPEmbedder(
|
552 |
+
config.params.vec_in_dim,
|
553 |
+
self.hidden_size,
|
554 |
+
prequantized=prequantized_flow,
|
555 |
+
quantized=quantized_embedders,
|
556 |
+
)
|
557 |
self.guidance_in = (
|
558 |
+
MLPEmbedder(
|
559 |
+
in_dim=256,
|
560 |
+
hidden_dim=self.hidden_size,
|
561 |
+
prequantized=prequantized_flow,
|
562 |
+
quantized=quantized_embedders,
|
563 |
+
)
|
564 |
+
if config.params.guidance_embed
|
565 |
else nn.Identity()
|
566 |
)
|
567 |
+
self.txt_in = (
|
568 |
+
nn.Linear(config.params.context_in_dim, self.hidden_size)
|
569 |
+
if not quantized_embedders
|
570 |
+
else (
|
571 |
+
F8Linear(
|
572 |
+
in_features=config.params.context_in_dim,
|
573 |
+
out_features=self.hidden_size,
|
574 |
+
bias=True,
|
575 |
+
)
|
576 |
+
if quantized_embedders
|
577 |
+
else nn.Linear(config.params.context_in_dim, self.hidden_size)
|
578 |
+
)
|
579 |
+
)
|
580 |
|
581 |
self.double_blocks = nn.ModuleList(
|
582 |
[
|
583 |
DoubleStreamBlock(
|
584 |
self.hidden_size,
|
585 |
self.num_heads,
|
586 |
+
mlp_ratio=config.params.mlp_ratio,
|
587 |
+
qkv_bias=config.params.qkv_bias,
|
588 |
dtype=self.dtype,
|
589 |
+
quantized_modulation=quantized_modulation,
|
590 |
+
prequantized=prequantized_flow,
|
591 |
)
|
592 |
+
for _ in range(config.params.depth)
|
593 |
]
|
594 |
)
|
595 |
|
|
|
598 |
SingleStreamBlock(
|
599 |
self.hidden_size,
|
600 |
self.num_heads,
|
601 |
+
mlp_ratio=config.params.mlp_ratio,
|
602 |
dtype=self.dtype,
|
603 |
+
quantized_modulation=quantized_modulation,
|
604 |
+
prequantized=prequantized_flow,
|
605 |
)
|
606 |
+
for _ in range(config.params.depth_single_blocks)
|
607 |
]
|
608 |
)
|
609 |
|
|
|
656 |
return img
|
657 |
|
658 |
@classmethod
|
659 |
+
def from_pretrained(
|
660 |
+
cls: "Flux", path: str, dtype: torch.dtype = torch.float16
|
661 |
+
) -> "Flux":
|
662 |
from util import load_config_from_path
|
663 |
from safetensors.torch import load_file
|
664 |
|
665 |
config = load_config_from_path(path)
|
666 |
with torch.device("meta"):
|
667 |
+
klass = cls(config=config, dtype=dtype)
|
668 |
+
if not config.prequantized_flow:
|
669 |
+
klass.type(dtype)
|
670 |
|
671 |
ckpt = load_file(config.ckpt_path, device="cpu")
|
672 |
klass.load_state_dict(ckpt, assign=True)
|
modules/flux_model_f8.py
DELETED
@@ -1,491 +0,0 @@
|
|
1 |
-
from collections import namedtuple
|
2 |
-
import os
|
3 |
-
import torch
|
4 |
-
|
5 |
-
DISABLE_COMPILE = os.getenv("DISABLE_COMPILE", "0") == "1"
|
6 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
7 |
-
torch.backends.cudnn.allow_tf32 = True
|
8 |
-
torch.backends.cudnn.benchmark = True
|
9 |
-
torch.backends.cudnn.benchmark_limit = 20
|
10 |
-
torch.set_float32_matmul_precision("high")
|
11 |
-
import math
|
12 |
-
|
13 |
-
from torch import Tensor, nn
|
14 |
-
from pydantic import BaseModel
|
15 |
-
from torch.nn import functional as F
|
16 |
-
from float8_quantize import F8Linear
|
17 |
-
|
18 |
-
try:
|
19 |
-
from cublas_ops import CublasLinear
|
20 |
-
except ImportError:
|
21 |
-
CublasLinear = nn.Linear
|
22 |
-
|
23 |
-
|
24 |
-
class FluxParams(BaseModel):
|
25 |
-
in_channels: int
|
26 |
-
vec_in_dim: int
|
27 |
-
context_in_dim: int
|
28 |
-
hidden_size: int
|
29 |
-
mlp_ratio: float
|
30 |
-
num_heads: int
|
31 |
-
depth: int
|
32 |
-
depth_single_blocks: int
|
33 |
-
axes_dim: list[int]
|
34 |
-
theta: int
|
35 |
-
qkv_bias: bool
|
36 |
-
guidance_embed: bool
|
37 |
-
|
38 |
-
|
39 |
-
# attention is always same shape each time it's called per H*W, so compile with fullgraph
|
40 |
-
# @torch.compile(mode="reduce-overhead", fullgraph=True, disable=DISABLE_COMPILE)
|
41 |
-
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor:
|
42 |
-
q, k = apply_rope(q, k, pe)
|
43 |
-
x = F.scaled_dot_product_attention(q, k, v).transpose(1, 2)
|
44 |
-
x = x.reshape(*x.shape[:-2], -1)
|
45 |
-
return x
|
46 |
-
|
47 |
-
|
48 |
-
# @torch.compile(mode="reduce-overhead", disable=DISABLE_COMPILE)
|
49 |
-
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
|
50 |
-
scale = torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device) / dim
|
51 |
-
omega = 1.0 / (theta**scale)
|
52 |
-
out = torch.einsum("...n,d->...nd", pos, omega)
|
53 |
-
out = torch.stack(
|
54 |
-
[torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1
|
55 |
-
)
|
56 |
-
out = out.reshape(*out.shape[:-1], 2, 2)
|
57 |
-
return out
|
58 |
-
|
59 |
-
|
60 |
-
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
|
61 |
-
xq_ = xq.reshape(*xq.shape[:-1], -1, 1, 2)
|
62 |
-
xk_ = xk.reshape(*xk.shape[:-1], -1, 1, 2)
|
63 |
-
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
64 |
-
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
65 |
-
return xq_out.reshape(*xq.shape), xk_out.reshape(*xk.shape)
|
66 |
-
|
67 |
-
|
68 |
-
class EmbedND(nn.Module):
|
69 |
-
def __init__(
|
70 |
-
self,
|
71 |
-
dim: int,
|
72 |
-
theta: int,
|
73 |
-
axes_dim: list[int],
|
74 |
-
dtype: torch.dtype = torch.bfloat16,
|
75 |
-
):
|
76 |
-
super().__init__()
|
77 |
-
self.dim = dim
|
78 |
-
self.theta = theta
|
79 |
-
self.axes_dim = axes_dim
|
80 |
-
self.dtype = dtype
|
81 |
-
|
82 |
-
def forward(self, ids: Tensor) -> Tensor:
|
83 |
-
n_axes = ids.shape[-1]
|
84 |
-
emb = torch.cat(
|
85 |
-
[
|
86 |
-
rope(ids[..., i], self.axes_dim[i], self.theta).type(self.dtype)
|
87 |
-
for i in range(n_axes)
|
88 |
-
],
|
89 |
-
dim=-3,
|
90 |
-
)
|
91 |
-
|
92 |
-
return emb.unsqueeze(1)
|
93 |
-
|
94 |
-
|
95 |
-
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
|
96 |
-
"""
|
97 |
-
Create sinusoidal timestep embeddings.
|
98 |
-
:param t: a 1-D Tensor of N indices, one per batch element.
|
99 |
-
These may be fractional.
|
100 |
-
:param dim: the dimension of the output.
|
101 |
-
:param max_period: controls the minimum frequency of the embeddings.
|
102 |
-
:return: an (N, D) Tensor of positional embeddings.
|
103 |
-
"""
|
104 |
-
t = time_factor * t
|
105 |
-
half = dim // 2
|
106 |
-
freqs = torch.exp(
|
107 |
-
-math.log(max_period)
|
108 |
-
* torch.arange(start=0, end=half, dtype=torch.float32, device=t.device)
|
109 |
-
/ half
|
110 |
-
)
|
111 |
-
|
112 |
-
args = t[:, None].float() * freqs[None]
|
113 |
-
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
114 |
-
if dim % 2:
|
115 |
-
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
116 |
-
return embedding
|
117 |
-
|
118 |
-
|
119 |
-
class MLPEmbedder(nn.Module):
|
120 |
-
def __init__(self, in_dim: int, hidden_dim: int):
|
121 |
-
super().__init__()
|
122 |
-
self.in_layer = F8Linear(in_dim, hidden_dim, bias=True)
|
123 |
-
self.silu = nn.SiLU()
|
124 |
-
self.out_layer = F8Linear(hidden_dim, hidden_dim, bias=True)
|
125 |
-
|
126 |
-
def forward(self, x: Tensor) -> Tensor:
|
127 |
-
return self.out_layer(self.silu(self.in_layer(x)))
|
128 |
-
|
129 |
-
|
130 |
-
class RMSNorm(torch.nn.Module):
|
131 |
-
def __init__(self, dim: int):
|
132 |
-
super().__init__()
|
133 |
-
self.scale = nn.Parameter(torch.ones(dim))
|
134 |
-
|
135 |
-
def forward(self, x: Tensor):
|
136 |
-
return F.rms_norm(x, self.scale.shape, self.scale, eps=1e-6)
|
137 |
-
|
138 |
-
|
139 |
-
class QKNorm(torch.nn.Module):
|
140 |
-
def __init__(self, dim: int):
|
141 |
-
super().__init__()
|
142 |
-
self.query_norm = RMSNorm(dim)
|
143 |
-
self.key_norm = RMSNorm(dim)
|
144 |
-
|
145 |
-
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
|
146 |
-
q = self.query_norm(q)
|
147 |
-
k = self.key_norm(k)
|
148 |
-
return q, k
|
149 |
-
|
150 |
-
|
151 |
-
class SelfAttention(nn.Module):
|
152 |
-
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
|
153 |
-
super().__init__()
|
154 |
-
self.num_heads = num_heads
|
155 |
-
head_dim = dim // num_heads
|
156 |
-
|
157 |
-
self.qkv = F8Linear(dim, dim * 3, bias=qkv_bias)
|
158 |
-
self.norm = QKNorm(head_dim)
|
159 |
-
self.proj = F8Linear(dim, dim)
|
160 |
-
self.K = 3
|
161 |
-
self.H = self.num_heads
|
162 |
-
self.KH = self.K * self.H
|
163 |
-
|
164 |
-
def rearrange_for_norm(self, x: Tensor) -> tuple[Tensor, Tensor, Tensor]:
|
165 |
-
B, L, D = x.shape
|
166 |
-
q, k, v = x.reshape(B, L, self.K, self.H, D // self.KH).permute(2, 0, 3, 1, 4)
|
167 |
-
return q, k, v
|
168 |
-
|
169 |
-
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
|
170 |
-
qkv = self.qkv(x)
|
171 |
-
q, k, v = self.rearrange_for_norm(qkv)
|
172 |
-
q, k = self.norm(q, k, v)
|
173 |
-
x = attention(q, k, v, pe=pe)
|
174 |
-
x = self.proj(x)
|
175 |
-
return x
|
176 |
-
|
177 |
-
|
178 |
-
ModulationOut = namedtuple("ModulationOut", ["shift", "scale", "gate"])
|
179 |
-
|
180 |
-
|
181 |
-
class Modulation(nn.Module):
|
182 |
-
def __init__(self, dim: int, double: bool):
|
183 |
-
super().__init__()
|
184 |
-
self.is_double = double
|
185 |
-
self.multiplier = 6 if double else 3
|
186 |
-
self.lin = F8Linear(dim, self.multiplier * dim, bias=True)
|
187 |
-
self.act = nn.SiLU()
|
188 |
-
|
189 |
-
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
|
190 |
-
out = self.lin(self.act(vec))[:, None, :].chunk(self.multiplier, dim=-1)
|
191 |
-
|
192 |
-
return (
|
193 |
-
ModulationOut(*out[:3]),
|
194 |
-
ModulationOut(*out[3:]) if self.is_double else None,
|
195 |
-
)
|
196 |
-
|
197 |
-
|
198 |
-
class DoubleStreamBlock(nn.Module):
|
199 |
-
def __init__(
|
200 |
-
self,
|
201 |
-
hidden_size: int,
|
202 |
-
num_heads: int,
|
203 |
-
mlp_ratio: float,
|
204 |
-
qkv_bias: bool = False,
|
205 |
-
dtype: torch.dtype = torch.float16,
|
206 |
-
):
|
207 |
-
super().__init__()
|
208 |
-
self.dtype = dtype
|
209 |
-
|
210 |
-
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
211 |
-
self.num_heads = num_heads
|
212 |
-
self.hidden_size = hidden_size
|
213 |
-
self.img_mod = Modulation(hidden_size, double=True)
|
214 |
-
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
215 |
-
self.img_attn = SelfAttention(
|
216 |
-
dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias
|
217 |
-
)
|
218 |
-
|
219 |
-
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
220 |
-
self.img_mlp = nn.Sequential(
|
221 |
-
F8Linear(hidden_size, mlp_hidden_dim, bias=True),
|
222 |
-
nn.GELU(approximate="tanh"),
|
223 |
-
F8Linear(mlp_hidden_dim, hidden_size, bias=True),
|
224 |
-
)
|
225 |
-
|
226 |
-
self.txt_mod = Modulation(hidden_size, double=True)
|
227 |
-
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
228 |
-
self.txt_attn = SelfAttention(
|
229 |
-
dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias
|
230 |
-
)
|
231 |
-
|
232 |
-
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
233 |
-
self.txt_mlp = nn.Sequential(
|
234 |
-
F8Linear(hidden_size, mlp_hidden_dim, bias=True),
|
235 |
-
nn.GELU(approximate="tanh"),
|
236 |
-
F8Linear(mlp_hidden_dim, hidden_size, bias=True),
|
237 |
-
)
|
238 |
-
self.K = 3
|
239 |
-
self.H = self.num_heads
|
240 |
-
self.KH = self.K * self.H
|
241 |
-
|
242 |
-
def rearrange_for_norm(self, x: Tensor) -> tuple[Tensor, Tensor, Tensor]:
|
243 |
-
B, L, D = x.shape
|
244 |
-
q, k, v = x.reshape(B, L, self.K, self.H, D // self.KH).permute(2, 0, 3, 1, 4)
|
245 |
-
return q, k, v
|
246 |
-
|
247 |
-
def forward(
|
248 |
-
self,
|
249 |
-
img: Tensor,
|
250 |
-
txt: Tensor,
|
251 |
-
vec: Tensor,
|
252 |
-
pe: Tensor,
|
253 |
-
) -> tuple[Tensor, Tensor]:
|
254 |
-
img_mod1, img_mod2 = self.img_mod(vec)
|
255 |
-
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
256 |
-
|
257 |
-
# prepare image for attention
|
258 |
-
img_modulated = self.img_norm1(img)
|
259 |
-
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
260 |
-
img_qkv = self.img_attn.qkv(img_modulated)
|
261 |
-
img_q, img_k, img_v = self.rearrange_for_norm(img_qkv)
|
262 |
-
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
263 |
-
|
264 |
-
# prepare txt for attention
|
265 |
-
txt_modulated = self.txt_norm1(txt)
|
266 |
-
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
267 |
-
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
268 |
-
txt_q, txt_k, txt_v = self.rearrange_for_norm(txt_qkv)
|
269 |
-
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
270 |
-
|
271 |
-
q = torch.cat((txt_q, img_q), dim=2)
|
272 |
-
k = torch.cat((txt_k, img_k), dim=2)
|
273 |
-
v = torch.cat((txt_v, img_v), dim=2)
|
274 |
-
|
275 |
-
attn = attention(q, k, v, pe=pe)
|
276 |
-
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
|
277 |
-
# calculate the img bloks
|
278 |
-
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
279 |
-
img = img + img_mod2.gate * self.img_mlp(
|
280 |
-
(1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift
|
281 |
-
).clamp(min=-384 * 2, max=384 * 2)
|
282 |
-
|
283 |
-
# calculate the txt bloks
|
284 |
-
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
|
285 |
-
txt = txt + txt_mod2.gate * self.txt_mlp(
|
286 |
-
(1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift
|
287 |
-
).clamp(min=-384 * 2, max=384 * 2)
|
288 |
-
|
289 |
-
return img, txt
|
290 |
-
|
291 |
-
|
292 |
-
class SingleStreamBlock(nn.Module):
|
293 |
-
"""
|
294 |
-
A DiT block with parallel linear layers as described in
|
295 |
-
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
296 |
-
"""
|
297 |
-
|
298 |
-
def __init__(
|
299 |
-
self,
|
300 |
-
hidden_size: int,
|
301 |
-
num_heads: int,
|
302 |
-
mlp_ratio: float = 4.0,
|
303 |
-
qk_scale: float | None = None,
|
304 |
-
dtype: torch.dtype = torch.float16,
|
305 |
-
):
|
306 |
-
super().__init__()
|
307 |
-
self.dtype = dtype
|
308 |
-
self.hidden_dim = hidden_size
|
309 |
-
self.num_heads = num_heads
|
310 |
-
head_dim = hidden_size // num_heads
|
311 |
-
self.scale = qk_scale or head_dim**-0.5
|
312 |
-
|
313 |
-
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
314 |
-
# qkv and mlp_in
|
315 |
-
self.linear1 = F8Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
|
316 |
-
# proj and mlp_out
|
317 |
-
self.linear2 = F8Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
|
318 |
-
|
319 |
-
self.norm = QKNorm(head_dim)
|
320 |
-
|
321 |
-
self.hidden_size = hidden_size
|
322 |
-
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
323 |
-
|
324 |
-
self.mlp_act = nn.GELU(approximate="tanh")
|
325 |
-
self.modulation = Modulation(hidden_size, double=False)
|
326 |
-
|
327 |
-
self.K = 3
|
328 |
-
self.H = self.num_heads
|
329 |
-
self.KH = self.K * self.H
|
330 |
-
|
331 |
-
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
|
332 |
-
mod = self.modulation(vec)[0]
|
333 |
-
pre_norm = self.pre_norm(x)
|
334 |
-
x_mod = (1 + mod.scale) * pre_norm + mod.shift
|
335 |
-
qkv, mlp = torch.split(
|
336 |
-
self.linear1(x_mod),
|
337 |
-
[3 * self.hidden_size, self.mlp_hidden_dim],
|
338 |
-
dim=-1,
|
339 |
-
)
|
340 |
-
B, L, D = qkv.shape
|
341 |
-
q, k, v = qkv.reshape(B, L, self.K, self.H, D // self.KH).permute(2, 0, 3, 1, 4)
|
342 |
-
q, k = self.norm(q, k, v)
|
343 |
-
attn = attention(q, k, v, pe=pe)
|
344 |
-
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)).clamp(
|
345 |
-
min=-384 * 4, max=384 * 4
|
346 |
-
)
|
347 |
-
return x + mod.gate * output
|
348 |
-
|
349 |
-
|
350 |
-
class LastLayer(nn.Module):
|
351 |
-
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
|
352 |
-
super().__init__()
|
353 |
-
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
354 |
-
self.linear = CublasLinear(
|
355 |
-
hidden_size, patch_size * patch_size * out_channels, bias=True
|
356 |
-
)
|
357 |
-
self.adaLN_modulation = nn.Sequential(
|
358 |
-
nn.SiLU(), CublasLinear(hidden_size, 2 * hidden_size, bias=True)
|
359 |
-
)
|
360 |
-
|
361 |
-
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
362 |
-
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
|
363 |
-
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
|
364 |
-
x = self.linear(x)
|
365 |
-
return x
|
366 |
-
|
367 |
-
|
368 |
-
class Flux(nn.Module):
|
369 |
-
"""
|
370 |
-
Transformer model for flow matching on sequences.
|
371 |
-
"""
|
372 |
-
|
373 |
-
def __init__(self, params: FluxParams, dtype: torch.dtype = torch.float16):
|
374 |
-
super().__init__()
|
375 |
-
|
376 |
-
self.dtype = dtype
|
377 |
-
self.params = params
|
378 |
-
self.in_channels = params.in_channels
|
379 |
-
self.out_channels = self.in_channels
|
380 |
-
if params.hidden_size % params.num_heads != 0:
|
381 |
-
raise ValueError(
|
382 |
-
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
|
383 |
-
)
|
384 |
-
pe_dim = params.hidden_size // params.num_heads
|
385 |
-
if sum(params.axes_dim) != pe_dim:
|
386 |
-
raise ValueError(
|
387 |
-
f"Got {params.axes_dim} but expected positional dim {pe_dim}"
|
388 |
-
)
|
389 |
-
self.hidden_size = params.hidden_size
|
390 |
-
self.num_heads = params.num_heads
|
391 |
-
self.pe_embedder = EmbedND(
|
392 |
-
dim=pe_dim,
|
393 |
-
theta=params.theta,
|
394 |
-
axes_dim=params.axes_dim,
|
395 |
-
dtype=self.dtype,
|
396 |
-
)
|
397 |
-
self.img_in = F8Linear(self.in_channels, self.hidden_size, bias=True)
|
398 |
-
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
|
399 |
-
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
|
400 |
-
self.guidance_in = (
|
401 |
-
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
|
402 |
-
if params.guidance_embed
|
403 |
-
else nn.Identity()
|
404 |
-
)
|
405 |
-
self.txt_in = F8Linear(params.context_in_dim, self.hidden_size)
|
406 |
-
|
407 |
-
self.double_blocks = nn.ModuleList(
|
408 |
-
[
|
409 |
-
DoubleStreamBlock(
|
410 |
-
self.hidden_size,
|
411 |
-
self.num_heads,
|
412 |
-
mlp_ratio=params.mlp_ratio,
|
413 |
-
qkv_bias=params.qkv_bias,
|
414 |
-
dtype=self.dtype,
|
415 |
-
)
|
416 |
-
for _ in range(params.depth)
|
417 |
-
]
|
418 |
-
)
|
419 |
-
|
420 |
-
self.single_blocks = nn.ModuleList(
|
421 |
-
[
|
422 |
-
SingleStreamBlock(
|
423 |
-
self.hidden_size,
|
424 |
-
self.num_heads,
|
425 |
-
mlp_ratio=params.mlp_ratio,
|
426 |
-
dtype=self.dtype,
|
427 |
-
)
|
428 |
-
for _ in range(params.depth_single_blocks)
|
429 |
-
]
|
430 |
-
)
|
431 |
-
|
432 |
-
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
|
433 |
-
|
434 |
-
def forward(
|
435 |
-
self,
|
436 |
-
img: Tensor,
|
437 |
-
img_ids: Tensor,
|
438 |
-
txt: Tensor,
|
439 |
-
txt_ids: Tensor,
|
440 |
-
timesteps: Tensor,
|
441 |
-
y: Tensor,
|
442 |
-
guidance: Tensor | None = None,
|
443 |
-
) -> Tensor:
|
444 |
-
if img.ndim != 3 or txt.ndim != 3:
|
445 |
-
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
446 |
-
|
447 |
-
# running on sequences img
|
448 |
-
img = self.img_in(img)
|
449 |
-
vec = self.time_in(timestep_embedding(timesteps, 256).type(self.dtype))
|
450 |
-
|
451 |
-
if self.params.guidance_embed:
|
452 |
-
if guidance is None:
|
453 |
-
raise ValueError(
|
454 |
-
"Didn't get guidance strength for guidance distilled model."
|
455 |
-
)
|
456 |
-
vec = vec + self.guidance_in(
|
457 |
-
timestep_embedding(guidance, 256).type(self.dtype)
|
458 |
-
)
|
459 |
-
vec = vec + self.vector_in(y)
|
460 |
-
|
461 |
-
txt = self.txt_in(txt)
|
462 |
-
|
463 |
-
ids = torch.cat((txt_ids, img_ids), dim=1)
|
464 |
-
pe = self.pe_embedder(ids)
|
465 |
-
|
466 |
-
# double stream blocks
|
467 |
-
for block in self.double_blocks:
|
468 |
-
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
|
469 |
-
|
470 |
-
img = torch.cat((txt, img), 1)
|
471 |
-
|
472 |
-
# single stream blocks
|
473 |
-
for block in self.single_blocks:
|
474 |
-
img = block(img, vec=vec, pe=pe)
|
475 |
-
|
476 |
-
img = img[:, txt.shape[1] :, ...]
|
477 |
-
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
478 |
-
return img
|
479 |
-
|
480 |
-
@classmethod
|
481 |
-
def from_pretrained(cls, path: str, dtype: torch.dtype = torch.bfloat16) -> "Flux":
|
482 |
-
from util import load_config_from_path
|
483 |
-
from safetensors.torch import load_file
|
484 |
-
|
485 |
-
config = load_config_from_path(path)
|
486 |
-
with torch.device("meta"):
|
487 |
-
klass = cls(params=config.params, dtype=dtype).type(dtype)
|
488 |
-
|
489 |
-
ckpt = load_file(config.ckpt_path, device="cpu")
|
490 |
-
klass.load_state_dict(ckpt, assign=True)
|
491 |
-
return klass.to("cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
util.py
CHANGED
@@ -6,14 +6,17 @@ import torch
|
|
6 |
from modules.autoencoder import AutoEncoder, AutoEncoderParams
|
7 |
from modules.conditioner import HFEmbedder
|
8 |
from modules.flux_model import Flux, FluxParams
|
9 |
-
from modules.flux_model_f8 import Flux as FluxF8
|
10 |
from safetensors.torch import load_file as load_sft
|
|
|
11 |
try:
|
12 |
from enum import StrEnum
|
13 |
except:
|
14 |
from enum import Enum
|
|
|
15 |
class StrEnum(str, Enum):
|
16 |
pass
|
|
|
|
|
17 |
from pydantic import BaseModel, ConfigDict
|
18 |
from loguru import logger
|
19 |
|
@@ -61,6 +64,11 @@ class ModelSpec(BaseModel):
|
|
61 |
offload_flow: bool = False
|
62 |
prequantized_flow: bool = False
|
63 |
|
|
|
|
|
|
|
|
|
|
|
64 |
model_config: ConfigDict = {
|
65 |
"arbitrary_types_allowed": True,
|
66 |
"use_enum_values": True,
|
@@ -84,6 +92,8 @@ def parse_device(device: str | torch.device | None) -> torch.device:
|
|
84 |
|
85 |
|
86 |
def into_dtype(dtype: str) -> torch.dtype:
|
|
|
|
|
87 |
if dtype == "float16":
|
88 |
return torch.float16
|
89 |
elif dtype == "bfloat16":
|
@@ -125,6 +135,8 @@ def load_config(
|
|
125 |
quant_text_enc: Optional[Literal["float8", "qint2", "qint4", "qint8"]] = None,
|
126 |
quant_ae: bool = False,
|
127 |
prequantized_flow: bool = False,
|
|
|
|
|
128 |
) -> ModelSpec:
|
129 |
"""
|
130 |
Load a model configuration using the passed arguments.
|
@@ -192,6 +204,8 @@ def load_config(
|
|
192 |
}.get(quant_text_enc, None),
|
193 |
ae_quantization_dtype=QuantizationDtype.qfloat8 if quant_ae else None,
|
194 |
prequantized_flow=prequantized_flow,
|
|
|
|
|
195 |
)
|
196 |
|
197 |
|
@@ -219,16 +233,14 @@ def print_load_warning(missing: list[str], unexpected: list[str]) -> None:
|
|
219 |
)
|
220 |
|
221 |
|
222 |
-
def load_flow_model(config: ModelSpec) -> Flux
|
223 |
ckpt_path = config.ckpt_path
|
224 |
FluxClass = Flux
|
225 |
-
if config.prequantized_flow:
|
226 |
-
FluxClass = FluxF8
|
227 |
|
228 |
with torch.device("meta"):
|
229 |
-
model = FluxClass(config
|
230 |
-
|
231 |
-
|
232 |
|
233 |
if ckpt_path is not None:
|
234 |
# load_sft doesn't support torch.device
|
@@ -279,7 +291,7 @@ def load_autoencoder(config: ModelSpec) -> AutoEncoder:
|
|
279 |
|
280 |
|
281 |
class LoadedModels(BaseModel):
|
282 |
-
flow: Flux
|
283 |
ae: AutoEncoder
|
284 |
clip: HFEmbedder
|
285 |
t5: HFEmbedder
|
|
|
6 |
from modules.autoencoder import AutoEncoder, AutoEncoderParams
|
7 |
from modules.conditioner import HFEmbedder
|
8 |
from modules.flux_model import Flux, FluxParams
|
|
|
9 |
from safetensors.torch import load_file as load_sft
|
10 |
+
|
11 |
try:
|
12 |
from enum import StrEnum
|
13 |
except:
|
14 |
from enum import Enum
|
15 |
+
|
16 |
class StrEnum(str, Enum):
|
17 |
pass
|
18 |
+
|
19 |
+
|
20 |
from pydantic import BaseModel, ConfigDict
|
21 |
from loguru import logger
|
22 |
|
|
|
64 |
offload_flow: bool = False
|
65 |
prequantized_flow: bool = False
|
66 |
|
67 |
+
# Improved precision via not quanitzing the modulation linear layers
|
68 |
+
quantize_modulation: bool = True
|
69 |
+
# Improved precision via not quanitzing the flow embedder layers
|
70 |
+
quantize_flow_embedder_layers: bool = False
|
71 |
+
|
72 |
model_config: ConfigDict = {
|
73 |
"arbitrary_types_allowed": True,
|
74 |
"use_enum_values": True,
|
|
|
92 |
|
93 |
|
94 |
def into_dtype(dtype: str) -> torch.dtype:
|
95 |
+
if isinstance(dtype, torch.dtype):
|
96 |
+
return dtype
|
97 |
if dtype == "float16":
|
98 |
return torch.float16
|
99 |
elif dtype == "bfloat16":
|
|
|
135 |
quant_text_enc: Optional[Literal["float8", "qint2", "qint4", "qint8"]] = None,
|
136 |
quant_ae: bool = False,
|
137 |
prequantized_flow: bool = False,
|
138 |
+
quantize_modulation: bool = True,
|
139 |
+
quantize_flow_embedder_layers: bool = False,
|
140 |
) -> ModelSpec:
|
141 |
"""
|
142 |
Load a model configuration using the passed arguments.
|
|
|
204 |
}.get(quant_text_enc, None),
|
205 |
ae_quantization_dtype=QuantizationDtype.qfloat8 if quant_ae else None,
|
206 |
prequantized_flow=prequantized_flow,
|
207 |
+
quantize_modulation=quantize_modulation,
|
208 |
+
quantize_flow_embedder_layers=quantize_flow_embedder_layers,
|
209 |
)
|
210 |
|
211 |
|
|
|
233 |
)
|
234 |
|
235 |
|
236 |
+
def load_flow_model(config: ModelSpec) -> Flux:
|
237 |
ckpt_path = config.ckpt_path
|
238 |
FluxClass = Flux
|
|
|
|
|
239 |
|
240 |
with torch.device("meta"):
|
241 |
+
model = FluxClass(config, dtype=into_dtype(config.flow_dtype))
|
242 |
+
if not config.prequantized_flow:
|
243 |
+
model.type(into_dtype(config.flow_dtype))
|
244 |
|
245 |
if ckpt_path is not None:
|
246 |
# load_sft doesn't support torch.device
|
|
|
291 |
|
292 |
|
293 |
class LoadedModels(BaseModel):
|
294 |
+
flow: Flux
|
295 |
ae: AutoEncoder
|
296 |
clip: HFEmbedder
|
297 |
t5: HFEmbedder
|