firdho26 commited on
Commit
2da62b8
1 Parent(s): 71d843f

Model save

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: jonatasgrosman/wav2vec2-large-xlsr-53-english
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - ravdess
8
+ metrics:
9
+ - accuracy
10
+ - precision
11
+ - recall
12
+ - f1
13
+ model-index:
14
+ - name: wav2vec2-large-xlsr-53-english-finetuned-ravdess
15
+ results:
16
+ - task:
17
+ name: Audio Classification
18
+ type: audio-classification
19
+ dataset:
20
+ name: ravdess
21
+ type: ravdess
22
+ config: all
23
+ split: train
24
+ args: all
25
+ metrics:
26
+ - name: Accuracy
27
+ type: accuracy
28
+ value: 0.7152777777777778
29
+ - name: Precision
30
+ type: precision
31
+ value: 0.7360657858765911
32
+ - name: Recall
33
+ type: recall
34
+ value: 0.7152777777777778
35
+ - name: F1
36
+ type: f1
37
+ value: 0.6891900402765098
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # wav2vec2-large-xlsr-53-english-finetuned-ravdess
44
+
45
+ This model is a fine-tuned version of [jonatasgrosman/wav2vec2-large-xlsr-53-english](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english) on the ravdess dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 1.0013
48
+ - Accuracy: 0.7153
49
+ - Precision: 0.7361
50
+ - Recall: 0.7153
51
+ - F1: 0.6892
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 5e-05
71
+ - train_batch_size: 2
72
+ - eval_batch_size: 2
73
+ - seed: 42
74
+ - gradient_accumulation_steps: 2
75
+ - total_train_batch_size: 4
76
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
77
+ - lr_scheduler_type: linear
78
+ - lr_scheduler_warmup_ratio: 0.1
79
+ - num_epochs: 3
80
+ - mixed_precision_training: Native AMP
81
+
82
+ ### Training results
83
+
84
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
85
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
86
+ | 1.9323 | 1.0 | 288 | 1.9023 | 0.2917 | 0.4800 | 0.2917 | 0.2042 |
87
+ | 1.4114 | 2.0 | 576 | 1.2845 | 0.6111 | 0.7423 | 0.6111 | 0.5283 |
88
+ | 0.938 | 3.0 | 864 | 1.0013 | 0.7153 | 0.7361 | 0.7153 | 0.6892 |
89
+
90
+
91
+ ### Framework versions
92
+
93
+ - Transformers 4.35.2
94
+ - Pytorch 2.1.0+cu121
95
+ - Datasets 2.16.1
96
+ - Tokenizers 0.15.1