Update handler.py
Browse files- handler.py +101 -13
handler.py
CHANGED
|
@@ -1,13 +1,16 @@
|
|
| 1 |
# handler.py (repo root)
|
|
|
|
| 2 |
import io, base64, torch
|
| 3 |
from PIL import Image
|
| 4 |
import open_clip
|
|
|
|
|
|
|
| 5 |
|
| 6 |
class EndpointHandler:
|
| 7 |
"""
|
| 8 |
Zero‑shot classifier for MobileCLIP‑B (OpenCLIP).
|
| 9 |
|
| 10 |
-
|
| 11 |
{
|
| 12 |
"inputs": {
|
| 13 |
"image": "<base64 PNG/JPEG>",
|
|
@@ -16,43 +19,128 @@ class EndpointHandler:
|
|
| 16 |
}
|
| 17 |
"""
|
| 18 |
|
|
|
|
|
|
|
|
|
|
| 19 |
def __init__(self, path: str = ""):
|
| 20 |
weights = f"{path}/mobileclip_b.pt"
|
|
|
|
|
|
|
| 21 |
self.model, _, self.preprocess = open_clip.create_model_and_transforms(
|
| 22 |
"MobileCLIP-B", pretrained=weights
|
| 23 |
)
|
| 24 |
-
self.model.eval()
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
self.tokenizer = open_clip.get_tokenizer("MobileCLIP-B")
|
|
|
|
|
|
|
| 27 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 28 |
self.model.to(self.device)
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
def __call__(self, data):
|
| 31 |
-
#
|
| 32 |
payload = data.get("inputs", data)
|
| 33 |
|
| 34 |
-
img_b64
|
| 35 |
-
labels
|
| 36 |
if not labels:
|
| 37 |
return {"error": "candidate_labels list is empty"}
|
| 38 |
|
| 39 |
-
# Decode & preprocess image
|
| 40 |
image = Image.open(io.BytesIO(base64.b64decode(img_b64))).convert("RGB")
|
| 41 |
img_tensor = self.preprocess(image).unsqueeze(0).to(self.device)
|
| 42 |
|
| 43 |
-
#
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
-
# Forward pass
|
| 47 |
with torch.no_grad(), torch.cuda.amp.autocast():
|
| 48 |
img_feat = self.model.encode_image(img_tensor)
|
| 49 |
-
txt_feat = self.model.encode_text(text_tokens)
|
| 50 |
img_feat = img_feat / img_feat.norm(dim=-1, keepdim=True)
|
| 51 |
-
txt_feat = txt_feat / txt_feat.norm(dim=-1, keepdim=True)
|
| 52 |
-
probs = (100 * img_feat @ txt_feat.T).softmax(dim=-1)[0].tolist()
|
| 53 |
|
| 54 |
-
#
|
|
|
|
|
|
|
|
|
|
| 55 |
return [
|
| 56 |
{"label": l, "score": float(p)}
|
| 57 |
for l, p in sorted(zip(labels, probs), key=lambda x: x[1], reverse=True)
|
| 58 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# handler.py (repo root)
|
| 2 |
+
|
| 3 |
import io, base64, torch
|
| 4 |
from PIL import Image
|
| 5 |
import open_clip
|
| 6 |
+
from open_clip import fuse_conv_bn_sequential
|
| 7 |
+
|
| 8 |
|
| 9 |
class EndpointHandler:
|
| 10 |
"""
|
| 11 |
Zero‑shot classifier for MobileCLIP‑B (OpenCLIP).
|
| 12 |
|
| 13 |
+
Client JSON format:
|
| 14 |
{
|
| 15 |
"inputs": {
|
| 16 |
"image": "<base64 PNG/JPEG>",
|
|
|
|
| 19 |
}
|
| 20 |
"""
|
| 21 |
|
| 22 |
+
# ----------------------------------------------------- #
|
| 23 |
+
# INITIALISATION (once) #
|
| 24 |
+
# ----------------------------------------------------- #
|
| 25 |
def __init__(self, path: str = ""):
|
| 26 |
weights = f"{path}/mobileclip_b.pt"
|
| 27 |
+
|
| 28 |
+
# Load model + transforms
|
| 29 |
self.model, _, self.preprocess = open_clip.create_model_and_transforms(
|
| 30 |
"MobileCLIP-B", pretrained=weights
|
| 31 |
)
|
|
|
|
| 32 |
|
| 33 |
+
# Fuse Conv+BN for faster inference
|
| 34 |
+
self.model = fuse_conv_bn_sequential(self.model).eval()
|
| 35 |
+
|
| 36 |
+
# Tokeniser
|
| 37 |
self.tokenizer = open_clip.get_tokenizer("MobileCLIP-B")
|
| 38 |
+
|
| 39 |
+
# Device
|
| 40 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 41 |
self.model.to(self.device)
|
| 42 |
|
| 43 |
+
# -------- text‑embedding cache --------
|
| 44 |
+
# key: prompt string • value: torch.Tensor [512] on correct device
|
| 45 |
+
self.label_cache: dict[str, torch.Tensor] = {}
|
| 46 |
+
|
| 47 |
+
# ----------------------------------------------------- #
|
| 48 |
+
# INFERENCE (per request) #
|
| 49 |
+
# ----------------------------------------------------- #
|
| 50 |
def __call__(self, data):
|
| 51 |
+
# 1. Unwrap the HF "inputs" envelope
|
| 52 |
payload = data.get("inputs", data)
|
| 53 |
|
| 54 |
+
img_b64 = payload["image"]
|
| 55 |
+
labels = payload.get("candidate_labels", [])
|
| 56 |
if not labels:
|
| 57 |
return {"error": "candidate_labels list is empty"}
|
| 58 |
|
| 59 |
+
# 2. Decode & preprocess image
|
| 60 |
image = Image.open(io.BytesIO(base64.b64decode(img_b64))).convert("RGB")
|
| 61 |
img_tensor = self.preprocess(image).unsqueeze(0).to(self.device)
|
| 62 |
|
| 63 |
+
# 3. Text embeddings with cache
|
| 64 |
+
missing = [l for l in labels if l not in self.label_cache]
|
| 65 |
+
if missing:
|
| 66 |
+
tokens = self.tokenizer(missing).to(self.device)
|
| 67 |
+
with torch.no_grad():
|
| 68 |
+
emb = self.model.encode_text(tokens)
|
| 69 |
+
emb = emb / emb.norm(dim=-1, keepdim=True)
|
| 70 |
+
for lbl, vec in zip(missing, emb):
|
| 71 |
+
self.label_cache[lbl] = vec # store on device
|
| 72 |
+
|
| 73 |
+
txt_feat = torch.stack([self.label_cache[l] for l in labels])
|
| 74 |
|
| 75 |
+
# 4. Forward pass for image
|
| 76 |
with torch.no_grad(), torch.cuda.amp.autocast():
|
| 77 |
img_feat = self.model.encode_image(img_tensor)
|
|
|
|
| 78 |
img_feat = img_feat / img_feat.norm(dim=-1, keepdim=True)
|
|
|
|
|
|
|
| 79 |
|
| 80 |
+
# 5. Similarity & softmax
|
| 81 |
+
probs = (100 * img_feat @ txt_feat.T).softmax(dim=-1)[0].tolist()
|
| 82 |
+
|
| 83 |
+
# 6. Return sorted list
|
| 84 |
return [
|
| 85 |
{"label": l, "score": float(p)}
|
| 86 |
for l, p in sorted(zip(labels, probs), key=lambda x: x[1], reverse=True)
|
| 87 |
]
|
| 88 |
+
|
| 89 |
+
# # handler.py (repo root)
|
| 90 |
+
# import io, base64, torch
|
| 91 |
+
# from PIL import Image
|
| 92 |
+
# import open_clip
|
| 93 |
+
|
| 94 |
+
# class EndpointHandler:
|
| 95 |
+
# """
|
| 96 |
+
# Zero‑shot classifier for MobileCLIP‑B (OpenCLIP).
|
| 97 |
+
|
| 98 |
+
# Expected client JSON *to the endpoint*:
|
| 99 |
+
# {
|
| 100 |
+
# "inputs": {
|
| 101 |
+
# "image": "<base64 PNG/JPEG>",
|
| 102 |
+
# "candidate_labels": ["cat", "dog", ...]
|
| 103 |
+
# }
|
| 104 |
+
# }
|
| 105 |
+
# """
|
| 106 |
+
|
| 107 |
+
# def __init__(self, path: str = ""):
|
| 108 |
+
# weights = f"{path}/mobileclip_b.pt"
|
| 109 |
+
# self.model, _, self.preprocess = open_clip.create_model_and_transforms(
|
| 110 |
+
# "MobileCLIP-B", pretrained=weights
|
| 111 |
+
# )
|
| 112 |
+
# self.model.eval()
|
| 113 |
+
|
| 114 |
+
# self.tokenizer = open_clip.get_tokenizer("MobileCLIP-B")
|
| 115 |
+
# self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 116 |
+
# self.model.to(self.device)
|
| 117 |
+
|
| 118 |
+
# def __call__(self, data):
|
| 119 |
+
# # ── unwrap Hugging Face's `inputs` envelope ───────────
|
| 120 |
+
# payload = data.get("inputs", data)
|
| 121 |
+
|
| 122 |
+
# img_b64 = payload["image"]
|
| 123 |
+
# labels = payload.get("candidate_labels", [])
|
| 124 |
+
# if not labels:
|
| 125 |
+
# return {"error": "candidate_labels list is empty"}
|
| 126 |
+
|
| 127 |
+
# # Decode & preprocess image
|
| 128 |
+
# image = Image.open(io.BytesIO(base64.b64decode(img_b64))).convert("RGB")
|
| 129 |
+
# img_tensor = self.preprocess(image).unsqueeze(0).to(self.device)
|
| 130 |
+
|
| 131 |
+
# # Tokenise labels
|
| 132 |
+
# text_tokens = self.tokenizer(labels).to(self.device)
|
| 133 |
+
|
| 134 |
+
# # Forward pass
|
| 135 |
+
# with torch.no_grad(), torch.cuda.amp.autocast():
|
| 136 |
+
# img_feat = self.model.encode_image(img_tensor)
|
| 137 |
+
# txt_feat = self.model.encode_text(text_tokens)
|
| 138 |
+
# img_feat = img_feat / img_feat.norm(dim=-1, keepdim=True)
|
| 139 |
+
# txt_feat = txt_feat / txt_feat.norm(dim=-1, keepdim=True)
|
| 140 |
+
# probs = (100 * img_feat @ txt_feat.T).softmax(dim=-1)[0].tolist()
|
| 141 |
+
|
| 142 |
+
# # Sorted output
|
| 143 |
+
# return [
|
| 144 |
+
# {"label": l, "score": float(p)}
|
| 145 |
+
# for l, p in sorted(zip(labels, probs), key=lambda x: x[1], reverse=True)
|
| 146 |
+
# ]
|