Create handler.py
Browse files- handler.py +21 -0
handler.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import io, base64, torch
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from transformers import CLIPProcessor, CLIPModel
|
| 4 |
+
|
| 5 |
+
class EndpointHandler:
|
| 6 |
+
def __init__(self, path=""):
|
| 7 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
+
self.model = CLIPModel.from_pretrained(path).to(device)
|
| 9 |
+
self.processor = CLIPProcessor.from_pretrained(path)
|
| 10 |
+
self.device = device
|
| 11 |
+
|
| 12 |
+
def __call__(self, data):
|
| 13 |
+
# Expect JSON {"image": "<base64 PNG/JPEG>", "candidate_labels": ["cat","dog"]}
|
| 14 |
+
img_b64 = data["image"]
|
| 15 |
+
labels = data.get("candidate_labels", [])
|
| 16 |
+
image = Image.open(io.BytesIO(base64.b64decode(img_b64))).convert("RGB")
|
| 17 |
+
|
| 18 |
+
inputs = self.processor(text=labels, images=image,
|
| 19 |
+
return_tensors="pt", padding=True).to(self.device)
|
| 20 |
+
probs = self.model(**inputs).logits_per_image.softmax(dim=-1)[0].tolist()
|
| 21 |
+
return [{"label": l, "score": float(p)} for l, p in zip(labels, probs)]
|