Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import sys
|
5 |
+
from vinorm import TTSnorm
|
6 |
+
from utils_audio import convert_to_wav
|
7 |
+
|
8 |
+
sys.path.append("vits")
|
9 |
+
import commons
|
10 |
+
import utils
|
11 |
+
from models import SynthesizerTrn
|
12 |
+
from text.symbols import symbols
|
13 |
+
from text import text_to_sequence
|
14 |
+
from scipy.io.wavfile import write
|
15 |
+
import logging
|
16 |
+
|
17 |
+
numba_logger = logging.getLogger("numba")
|
18 |
+
numba_logger.setLevel(logging.WARNING)
|
19 |
+
|
20 |
+
|
21 |
+
from resemblyzer import preprocess_wav, VoiceEncoder
|
22 |
+
|
23 |
+
|
24 |
+
device = "cpu"
|
25 |
+
|
26 |
+
|
27 |
+
def get_text(texts, hps):
|
28 |
+
text_norm_list = []
|
29 |
+
for text in texts.split(","):
|
30 |
+
chunk_strings = []
|
31 |
+
chunk_len = 30
|
32 |
+
for i in range(0, len(text.split()), chunk_len):
|
33 |
+
chunk = " ".join(text.split()[i : i + chunk_len])
|
34 |
+
chunk_strings.append(chunk)
|
35 |
+
for chunk_string in chunk_strings:
|
36 |
+
text_norm = text_to_sequence(chunk_string, hps.data.text_cleaners)
|
37 |
+
if hps.data.add_blank:
|
38 |
+
text_norm = commons.intersperse(text_norm, 0)
|
39 |
+
text_norm_list.append(torch.LongTensor(text_norm))
|
40 |
+
return text_norm_list
|
41 |
+
|
42 |
+
|
43 |
+
def get_speaker_embedding(path):
|
44 |
+
encoder = VoiceEncoder(device="cpu")
|
45 |
+
path = convert_to_wav(path)
|
46 |
+
wav = preprocess_wav(path)
|
47 |
+
embed = encoder.embed_utterance(wav)
|
48 |
+
return embed
|
49 |
+
|
50 |
+
|
51 |
+
class VoiceClone:
|
52 |
+
def __init__(self, checkpoint_path):
|
53 |
+
hps = utils.get_hparams_from_file("./vits/configs/vivos.json")
|
54 |
+
self.net_g = SynthesizerTrn(
|
55 |
+
len(symbols),
|
56 |
+
hps.data.filter_length // 2 + 1,
|
57 |
+
hps.train.segment_size // hps.data.hop_length,
|
58 |
+
n_speakers=hps.data.n_speakers,
|
59 |
+
**hps.model
|
60 |
+
).to(device)
|
61 |
+
_ = self.net_g.eval()
|
62 |
+
|
63 |
+
_ = utils.load_checkpoint(checkpoint_path, self.net_g, None)
|
64 |
+
|
65 |
+
self.hps = hps
|
66 |
+
|
67 |
+
def infer(self, text, ref_audio):
|
68 |
+
text_norm = TTSnorm(text)
|
69 |
+
stn_tst_list = get_text(text_norm, self.hps)
|
70 |
+
with torch.no_grad():
|
71 |
+
audios = []
|
72 |
+
for stn_tst in stn_tst_list:
|
73 |
+
x_tst = stn_tst.to(device).unsqueeze(0)
|
74 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(device)
|
75 |
+
|
76 |
+
speaker_embedding = get_speaker_embedding(ref_audio)
|
77 |
+
speaker_embedding = (
|
78 |
+
torch.FloatTensor(torch.from_numpy(speaker_embedding))
|
79 |
+
.unsqueeze(0)
|
80 |
+
.to(device)
|
81 |
+
)
|
82 |
+
|
83 |
+
audio = self.net_g.infer(
|
84 |
+
x_tst,
|
85 |
+
x_tst_lengths,
|
86 |
+
speaker_embedding=speaker_embedding,
|
87 |
+
noise_scale=0.667,
|
88 |
+
noise_scale_w=0.8,
|
89 |
+
length_scale=1,
|
90 |
+
)
|
91 |
+
|
92 |
+
audio = audio[0][0, 0].data.cpu().float().numpy()
|
93 |
+
audios.append(audio)
|
94 |
+
print(audio.shape)
|
95 |
+
|
96 |
+
audios = np.concatenate(audios, axis=0)
|
97 |
+
write(ref_audio.replace(".wav", "_clone.wav"), 22050, audios)
|
98 |
+
return ref_audio.replace(".wav", "_clone.wav"), text_norm
|
99 |
+
|
100 |
+
|
101 |
+
# object = VoiceClone("vits/logs/vivos/G_7700000.pth")
|
102 |
+
object = VoiceClone("vits/logs/vivos/G_150000.pth")
|
103 |
+
|
104 |
+
|
105 |
+
def clonevoice(text: str, speaker_wav, file_upload, language: str):
|
106 |
+
speaker_source = ""
|
107 |
+
if speaker_wav is not None:
|
108 |
+
speaker_source = speaker_wav
|
109 |
+
elif file_upload is not None:
|
110 |
+
speaker_source = file_upload
|
111 |
+
else:
|
112 |
+
speaker_source = "vits/audio/sontung.wav"
|
113 |
+
|
114 |
+
print(speaker_source)
|
115 |
+
|
116 |
+
outfile, text_norm = object.infer(text, speaker_source)
|
117 |
+
|
118 |
+
return [outfile, text_norm]
|
119 |
+
|
120 |
+
|
121 |
+
inputs = [
|
122 |
+
gr.Textbox(
|
123 |
+
label="Input",
|
124 |
+
value="muốn ngồi ở một vị trí không ai ngồi được thì phải chịu cảm giác không ai chịu được",
|
125 |
+
max_lines=3,
|
126 |
+
),
|
127 |
+
gr.Audio(label="Speaker Wav", source="microphone", type="filepath"),
|
128 |
+
gr.Audio(label="Speaker Wav", source="upload", type="filepath"),
|
129 |
+
gr.Radio(label="Language", choices=["Vietnamese"], value="en"),
|
130 |
+
]
|
131 |
+
outputs = [gr.Audio(label="Output"), gr.TextArea()]
|
132 |
+
|
133 |
+
demo = gr.Interface(fn=clonevoice, inputs=inputs, outputs=outputs)
|
134 |
+
|
135 |
+
demo.launch(debug=True)
|