Initial commit
Browse files- .gitattributes +1 -0
- README.md +36 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -29,3 +29,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
29 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 1813.75 +/- 122.94
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:948c5586b27998667710d851f8352b943381e12c8eaedd5f3819a1a388356381
|
3 |
+
size 129193
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9e0d8cee60>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9e0d8ceef0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9e0d8cef80>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9e0d8d5050>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9e0d8d50e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9e0d8d5170>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9e0d8d5200>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9e0d8d5290>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9e0d8d5320>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9e0d8d53b0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9e0d8d5440>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f9e0d91c8d0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1661445440.8762796,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAX9kFPy0iBr8kkeU+89E7P2m72T64kfk+UExYvzxHG78pldO9shmiPtlLCT+v1yk/5Jgdvxgjj7/eIxI/Lqidv2KkhD3AbQy/RKorv8+roT/t9cG+PMKSP5nxxb7vTF3A0oyMvyaPCD9YZAI/ReGDvwAItj4gAnC/+IgkPqLqLj+J6ie/GhZRv7ZBdj1Rryi/Zfc3vzbs5j82B6c/VWzUPtEAl79/goA+QMgXPzYvOL9lLAe9mSGdPnWyRD4S/Ig/r/hjvnHdDEDrAYu/ZMx1wNKMjL9f9O+/WGQCP0Xhg79KbhM/k2KavyGIBr5yzYQ/wTWnPwxBKj9sIjM9Rt7Wvnv1OD+na4M+vviJv0ovdbxnF9k80dvLPxxrtr3IOcM+0ibAPRhD6T+fGui9FX/KvmmVMb/m1eg8vShbPwbIuT3SjIy/Jo8IP1hkAj9F4YO/CEBSPwpfqL5JAQc/WbXTP4X2jr6YZ9c/m6ZCvzLLRb8BK4U9SsdWQADCXz9rtjM/FXmWvwAaXzvQQyA/6BYIvimtJ79I6C6/qE2Ivrlj8D96Wsy+QfBwP7HRh7+TnZ0+HiRpP1/0779YZAI/ReGDv5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAABPGhbUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDNd6w9AAAAAM2/3L8AAAAA5eGgPQAAAABsjPg/AAAAADyQQj0AAAAAc8n5PwAAAABPda89AAAAAGtQAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAX1rG0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAekbePAAAAAAQCe+/AAAAAP3RtD0AAAAAJGz4PwAAAAAhBxW8AAAAAC2t8z8AAAAA5f2KPQAAAACHVOm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjSHgtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgP00Bz4AAAAAIRDZvwAAAAAF5Rq9AAAAAKCC6T8AAAAAJCCHPQAAAADYz/A/AAAAABnk0rwAAAAAwYvgvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFuQjbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBQeg++AAAAAFHO6b8AAAAAole8vQAAAACKHOY/AAAAAI461L0AAAAArsL3PwAAAACGRgE+AAAAAMaQ6b8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJtITR3NcGGMAWyUTegDjAF0lEdAqT0E5XEIgXV9lChoBkdAly1/hMrVfGgHTegDaAhHQKk+26Mir1d1fZQoaAZHQJcgyEYfnwJoB03oA2gIR0CpQrbM5fdAdX2UKGgGR0CVBqkAxSHeaAdN6ANoCEdAqUWkQbuMM3V9lChoBkdAmnKSSeRPoGgHTegDaAhHQKlKU6BiCrd1fZQoaAZHQJgyziT+vQpoB03oA2gIR0CpTDskpqh2dX2UKGgGR0CVPWs2eg+RaAdN6ANoCEdAqVANzhgmZ3V9lChoBkdAn73nLV4HHGgHTegDaAhHQKlS+IYWLxZ1fZQoaAZHQJpfIfq5byJoB03oA2gIR0CpV4t6w+t9dX2UKGgGR0CdAETRplBhaAdN6ANoCEdAqVlfiDM/yHV9lChoBkdAng1uAZsKs2gHTegDaAhHQKldNFmWdEt1fZQoaAZHQJkzYtHxz7xoB03oA2gIR0CpYCbXHzYmdX2UKGgGR0CbL106HTJAaAdN6ANoCEdAqWSx2t+1B3V9lChoBkdAk/5wIUrTY2gHTegDaAhHQKlmjNnoPkJ1fZQoaAZHQJmfqAc1fmdoB03oA2gIR0CpamM0gr6MdX2UKGgGR0CaOxxrSE13aAdN6ANoCEdAqW1KkIomX3V9lChoBkdAmMvmlANXo2gHTegDaAhHQKlx39Wp6yB1fZQoaAZHQJzrh5cC5mRoB03oA2gIR0Cpc7GzSkTIdX2UKGgGR0CSfDiAlOXWaAdN6ANoCEdAqXevmYBvJnV9lChoBkdAmdgpjH4oJGgHTegDaAhHQKl74xA0Kqp1fZQoaAZHQJbQdwdbPhRoB03oA2gIR0CpgKhAWznidX2UKGgGR0CSbKWgezUraAdN6ANoCEdAqYKH7WNFSnV9lChoBkdAiTorVvuPWGgHTegDaAhHQKmGZg5zYEp1fZQoaAZHQI7t71mJ3xFoB03oA2gIR0CpiWn0K7ZndX2UKGgGR0Bjp5k9U0emaAdN6ANoCEdAqY4aCz1K5HV9lChoBkdActbf1Hvtt2gHTegDaAhHQKmP+IP9UCJ1fZQoaAZHQIv8tMXaakRoB03oA2gIR0Cpk9aa9bosdX2UKGgGR0CPWIyQgcLjaAdN6ANoCEdAqZbND6WPcXV9lChoBkdAkPQliBoVVWgHTegDaAhHQKmba74BV+91fZQoaAZHQJF6d/+bVjJoB03oA2gIR0CpnUt/4IrwdX2UKGgGR0CMmGzguRLcaAdN6ANoCEdAqaE05fdAPnV9lChoBkdAfmm2WIGhVWgHTegDaAhHQKmkK2w3YL91fZQoaAZHQJUv6gsbvPVoB03oA2gIR0CpqMNKAavSdX2UKGgGR0CMz6kyk9EDaAdN6ANoCEdAqaqfB3zMA3V9lChoBkdAjQEhePaL42gHTegDaAhHQKmufx//ech1fZQoaAZHQJZVXhtLteFoB03oA2gIR0CpsXsS9M9KdX2UKGgGR0CTWb47ihnKaAdN6ANoCEdAqbYhAIIF/3V9lChoBkdAhkQ1HOKO1mgHTegDaAhHQKm3/U5MlC11fZQoaAZHQJhwaJl8PWhoB03oA2gIR0Cpu9KvmozfdX2UKGgGR0CQTArleWv9aAdN6ANoCEdAqb6+qo60Y3V9lChoBkdAl8vOCwr1/WgHTegDaAhHQKnDa46wMYx1fZQoaAZHQIa8UtmL9/BoB03oA2gIR0CpxUaKk2xZdX2UKGgGR0CYmysCDEm6aAdN6ANoCEdAqckcKb8WK3V9lChoBkdAmdMcfFJg9mgHTegDaAhHQKnMDHIZIhB1fZQoaAZHQJ3vAjzI3itoB03oA2gIR0Cp0JwAMlTndX2UKGgGR0CaSDoOQQtjaAdN6ANoCEdAqdJyd4FA3XV9lChoBkdAmhyOTibUgGgHTegDaAhHQKnWT/wy6+Z1fZQoaAZHQJnfKN83MpxoB03oA2gIR0Cp2ToRAbADdX2UKGgGR0CY2+4WUKRdaAdN6ANoCEdAqd3Mn5SFXnV9lChoBkdAmxij67/XG2gHTegDaAhHQKnfof4h2W91fZQoaAZHQJnXiwu/UONoB03oA2gIR0Cp43NxMnJDdX2UKGgGR0CaRCYAKfFraAdN6ANoCEdAqeZdKf4AS3V9lChoBkdAmxSdZV4oqmgHTegDaAhHQKnrBPtUn5V1fZQoaAZHQJuXzfuTibVoB03oA2gIR0Cp7N/gzguRdX2UKGgGR0CZwK99c8klaAdN6ANoCEdAqfDFo+Ofd3V9lChoBkdAl/nyeumrKmgHTegDaAhHQKnzwCLdepp1fZQoaAZHQJi+nfxc3VFoB03oA2gIR0Cp+GUvGp++dX2UKGgGR0Cb/U9+PRzBaAdN6ANoCEdAqfo5aPjn3nV9lChoBkdAmgXYaDPGAGgHTegDaAhHQKn+DzqbBoF1fZQoaAZHQJ28bECNjsloB03oA2gIR0CqAQOsDGLldX2UKGgGR0CbSgDJ2dNGaAdN6ANoCEdAqgWczsQd0nV9lChoBkdAnvO62a2F4GgHTegDaAhHQKoHdH1e0HB1fZQoaAZHQJtPS0Xxe9loB03oA2gIR0CqC1AoG6f8dX2UKGgGR0Ca+xzgdfb9aAdN6ANoCEdAqg5D1VYISnV9lChoBkdAlBKZCKJl8WgHTegDaAhHQKoS5JT2nKp1fZQoaAZHQJqtdsrNGExoB03oA2gIR0CqFLlNtZV5dX2UKGgGR0CYiXRIz3yqaAdN6ANoCEdAqhiVMIu5BnV9lChoBkdAmhMhvrGBF2gHTegDaAhHQKobgumrKeV1fZQoaAZHQJurDOhTOxBoB03oA2gIR0CqIB1kUbkwdX2UKGgGR0Cba8ZkCmuUaAdN6ANoCEdAqiHzN6gM+nV9lChoBkdAmccc9B8hLWgHTegDaAhHQKolxXdTHbR1fZQoaAZHQJYIgMgEEDBoB03oA2gIR0CqKLBkRSP2dX2UKGgGR0CadZnb7CSBaAdN6ANoCEdAqi1N7SiM53V9lChoBkdAm7h6G+K0lmgHTegDaAhHQKovJpFCswN1fZQoaAZHQJnEABCD28JoB03oA2gIR0CqMvN5MURGdX2UKGgGR0CgQuCCBf8eaAdN6ANoCEdAqjXjALy+YnV9lChoBkdAnKO8gQpWm2gHTegDaAhHQKo6doxHoX91fZQoaAZHQJey20WuX/poB03oA2gIR0CqPEtz0Yj0dX2UKGgGR0CXtR2xptaZaAdN6ANoCEdAqkAn8l5WzXV9lChoBkdAm2gR/d69kGgHTegDaAhHQKpDEdYnv2J1fZQoaAZHQJacMYKpkwxoB03oA2gIR0CqR7FqrR0EdX2UKGgGR0Ca+vMDwH7haAdN6ANoCEdAqkmL7j1f3XV9lChoBkdAlsxdu+AVf2gHTegDaAhHQKpNdVhkRSR1fZQoaAZHQJSsAiC8OCpoB03oA2gIR0CqUGPO6d1/dX2UKGgGR0CVEWrDIikgaAdN6ANoCEdAqlUK814xDnV9lChoBkdAmVBJW7voeWgHTegDaAhHQKpW4zWPLgZ1fZQoaAZHQJfVUSzw+dNoB03oA2gIR0CqWrFpXZGsdX2UKGgGR0CXdEzKcNH6aAdN6ANoCEdAql2rPKMefnV9lChoBkdAmCAh1DBuXWgHTegDaAhHQKpiTnX/YJ51fZQoaAZHQJe0yaOPvKFoB03oA2gIR0CqZCJc5bQkdX2UKGgGR0CYOPsV+I/JaAdN6ANoCEdAqmfwNXo1UHV9lChoBkdAkw048dPtUmgHTegDaAhHQKpq6TwlSjx1fZQoaAZHQJnlPAEdNnJoB03oA2gIR0Cqb4Gh/RVqdX2UKGgGR0CccWNQj2SMaAdN6ANoCEdAqnFcJx//enV9lChoBkdAmZ9KFEiMYWgHTegDaAhHQKp1MRQJokB1fZQoaAZHQJlACyrxRVJoB03oA2gIR0CqeB7MX7+DdX2UKGgGR0CaFa5O8CgcaAdN6ANoCEdAqnyqgqVhTnV9lChoBkdAnTFaHXVbzWgHTegDaAhHQKp+hJf6XSl1fZQoaAZHQJqAtb9qDbtoB03oA2gIR0CqgljnvDxcdX2UKGgGR0Car/WCVbA2aAdN6ANoCEdAqoVB/y5I6XVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e9d78d1a14c4d5cc0c29cbfa768d00aabdeef8615435cdd2ce98f566aee1cd0
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8c0f5dfcabd1754ff0e5466c75db0912fb6f8e34e0ca58bda8962ba4cd6d6da
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9e0d8cee60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9e0d8ceef0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9e0d8cef80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9e0d8d5050>", "_build": "<function ActorCriticPolicy._build at 0x7f9e0d8d50e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9e0d8d5170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9e0d8d5200>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9e0d8d5290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9e0d8d5320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9e0d8d53b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9e0d8d5440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9e0d91c8d0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1661445440.8762796, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAX9kFPy0iBr8kkeU+89E7P2m72T64kfk+UExYvzxHG78pldO9shmiPtlLCT+v1yk/5Jgdvxgjj7/eIxI/Lqidv2KkhD3AbQy/RKorv8+roT/t9cG+PMKSP5nxxb7vTF3A0oyMvyaPCD9YZAI/ReGDvwAItj4gAnC/+IgkPqLqLj+J6ie/GhZRv7ZBdj1Rryi/Zfc3vzbs5j82B6c/VWzUPtEAl79/goA+QMgXPzYvOL9lLAe9mSGdPnWyRD4S/Ig/r/hjvnHdDEDrAYu/ZMx1wNKMjL9f9O+/WGQCP0Xhg79KbhM/k2KavyGIBr5yzYQ/wTWnPwxBKj9sIjM9Rt7Wvnv1OD+na4M+vviJv0ovdbxnF9k80dvLPxxrtr3IOcM+0ibAPRhD6T+fGui9FX/KvmmVMb/m1eg8vShbPwbIuT3SjIy/Jo8IP1hkAj9F4YO/CEBSPwpfqL5JAQc/WbXTP4X2jr6YZ9c/m6ZCvzLLRb8BK4U9SsdWQADCXz9rtjM/FXmWvwAaXzvQQyA/6BYIvimtJ79I6C6/qE2Ivrlj8D96Wsy+QfBwP7HRh7+TnZ0+HiRpP1/0779YZAI/ReGDv5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAABPGhbUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDNd6w9AAAAAM2/3L8AAAAA5eGgPQAAAABsjPg/AAAAADyQQj0AAAAAc8n5PwAAAABPda89AAAAAGtQAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAX1rG0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAekbePAAAAAAQCe+/AAAAAP3RtD0AAAAAJGz4PwAAAAAhBxW8AAAAAC2t8z8AAAAA5f2KPQAAAACHVOm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjSHgtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgP00Bz4AAAAAIRDZvwAAAAAF5Rq9AAAAAKCC6T8AAAAAJCCHPQAAAADYz/A/AAAAABnk0rwAAAAAwYvgvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFuQjbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBQeg++AAAAAFHO6b8AAAAAole8vQAAAACKHOY/AAAAAI461L0AAAAArsL3PwAAAACGRgE+AAAAAMaQ6b8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJtITR3NcGGMAWyUTegDjAF0lEdAqT0E5XEIgXV9lChoBkdAly1/hMrVfGgHTegDaAhHQKk+26Mir1d1fZQoaAZHQJcgyEYfnwJoB03oA2gIR0CpQrbM5fdAdX2UKGgGR0CVBqkAxSHeaAdN6ANoCEdAqUWkQbuMM3V9lChoBkdAmnKSSeRPoGgHTegDaAhHQKlKU6BiCrd1fZQoaAZHQJgyziT+vQpoB03oA2gIR0CpTDskpqh2dX2UKGgGR0CVPWs2eg+RaAdN6ANoCEdAqVANzhgmZ3V9lChoBkdAn73nLV4HHGgHTegDaAhHQKlS+IYWLxZ1fZQoaAZHQJpfIfq5byJoB03oA2gIR0CpV4t6w+t9dX2UKGgGR0CdAETRplBhaAdN6ANoCEdAqVlfiDM/yHV9lChoBkdAng1uAZsKs2gHTegDaAhHQKldNFmWdEt1fZQoaAZHQJkzYtHxz7xoB03oA2gIR0CpYCbXHzYmdX2UKGgGR0CbL106HTJAaAdN6ANoCEdAqWSx2t+1B3V9lChoBkdAk/5wIUrTY2gHTegDaAhHQKlmjNnoPkJ1fZQoaAZHQJmfqAc1fmdoB03oA2gIR0CpamM0gr6MdX2UKGgGR0CaOxxrSE13aAdN6ANoCEdAqW1KkIomX3V9lChoBkdAmMvmlANXo2gHTegDaAhHQKlx39Wp6yB1fZQoaAZHQJzrh5cC5mRoB03oA2gIR0Cpc7GzSkTIdX2UKGgGR0CSfDiAlOXWaAdN6ANoCEdAqXevmYBvJnV9lChoBkdAmdgpjH4oJGgHTegDaAhHQKl74xA0Kqp1fZQoaAZHQJbQdwdbPhRoB03oA2gIR0CpgKhAWznidX2UKGgGR0CSbKWgezUraAdN6ANoCEdAqYKH7WNFSnV9lChoBkdAiTorVvuPWGgHTegDaAhHQKmGZg5zYEp1fZQoaAZHQI7t71mJ3xFoB03oA2gIR0CpiWn0K7ZndX2UKGgGR0Bjp5k9U0emaAdN6ANoCEdAqY4aCz1K5HV9lChoBkdActbf1Hvtt2gHTegDaAhHQKmP+IP9UCJ1fZQoaAZHQIv8tMXaakRoB03oA2gIR0Cpk9aa9bosdX2UKGgGR0CPWIyQgcLjaAdN6ANoCEdAqZbND6WPcXV9lChoBkdAkPQliBoVVWgHTegDaAhHQKmba74BV+91fZQoaAZHQJF6d/+bVjJoB03oA2gIR0CpnUt/4IrwdX2UKGgGR0CMmGzguRLcaAdN6ANoCEdAqaE05fdAPnV9lChoBkdAfmm2WIGhVWgHTegDaAhHQKmkK2w3YL91fZQoaAZHQJUv6gsbvPVoB03oA2gIR0CpqMNKAavSdX2UKGgGR0CMz6kyk9EDaAdN6ANoCEdAqaqfB3zMA3V9lChoBkdAjQEhePaL42gHTegDaAhHQKmufx//ech1fZQoaAZHQJZVXhtLteFoB03oA2gIR0CpsXsS9M9KdX2UKGgGR0CTWb47ihnKaAdN6ANoCEdAqbYhAIIF/3V9lChoBkdAhkQ1HOKO1mgHTegDaAhHQKm3/U5MlC11fZQoaAZHQJhwaJl8PWhoB03oA2gIR0Cpu9KvmozfdX2UKGgGR0CQTArleWv9aAdN6ANoCEdAqb6+qo60Y3V9lChoBkdAl8vOCwr1/WgHTegDaAhHQKnDa46wMYx1fZQoaAZHQIa8UtmL9/BoB03oA2gIR0CpxUaKk2xZdX2UKGgGR0CYmysCDEm6aAdN6ANoCEdAqckcKb8WK3V9lChoBkdAmdMcfFJg9mgHTegDaAhHQKnMDHIZIhB1fZQoaAZHQJ3vAjzI3itoB03oA2gIR0Cp0JwAMlTndX2UKGgGR0CaSDoOQQtjaAdN6ANoCEdAqdJyd4FA3XV9lChoBkdAmhyOTibUgGgHTegDaAhHQKnWT/wy6+Z1fZQoaAZHQJnfKN83MpxoB03oA2gIR0Cp2ToRAbADdX2UKGgGR0CY2+4WUKRdaAdN6ANoCEdAqd3Mn5SFXnV9lChoBkdAmxij67/XG2gHTegDaAhHQKnfof4h2W91fZQoaAZHQJnXiwu/UONoB03oA2gIR0Cp43NxMnJDdX2UKGgGR0CaRCYAKfFraAdN6ANoCEdAqeZdKf4AS3V9lChoBkdAmxSdZV4oqmgHTegDaAhHQKnrBPtUn5V1fZQoaAZHQJuXzfuTibVoB03oA2gIR0Cp7N/gzguRdX2UKGgGR0CZwK99c8klaAdN6ANoCEdAqfDFo+Ofd3V9lChoBkdAl/nyeumrKmgHTegDaAhHQKnzwCLdepp1fZQoaAZHQJi+nfxc3VFoB03oA2gIR0Cp+GUvGp++dX2UKGgGR0Cb/U9+PRzBaAdN6ANoCEdAqfo5aPjn3nV9lChoBkdAmgXYaDPGAGgHTegDaAhHQKn+DzqbBoF1fZQoaAZHQJ28bECNjsloB03oA2gIR0CqAQOsDGLldX2UKGgGR0CbSgDJ2dNGaAdN6ANoCEdAqgWczsQd0nV9lChoBkdAnvO62a2F4GgHTegDaAhHQKoHdH1e0HB1fZQoaAZHQJtPS0Xxe9loB03oA2gIR0CqC1AoG6f8dX2UKGgGR0Ca+xzgdfb9aAdN6ANoCEdAqg5D1VYISnV9lChoBkdAlBKZCKJl8WgHTegDaAhHQKoS5JT2nKp1fZQoaAZHQJqtdsrNGExoB03oA2gIR0CqFLlNtZV5dX2UKGgGR0CYiXRIz3yqaAdN6ANoCEdAqhiVMIu5BnV9lChoBkdAmhMhvrGBF2gHTegDaAhHQKobgumrKeV1fZQoaAZHQJurDOhTOxBoB03oA2gIR0CqIB1kUbkwdX2UKGgGR0Cba8ZkCmuUaAdN6ANoCEdAqiHzN6gM+nV9lChoBkdAmccc9B8hLWgHTegDaAhHQKolxXdTHbR1fZQoaAZHQJYIgMgEEDBoB03oA2gIR0CqKLBkRSP2dX2UKGgGR0CadZnb7CSBaAdN6ANoCEdAqi1N7SiM53V9lChoBkdAm7h6G+K0lmgHTegDaAhHQKovJpFCswN1fZQoaAZHQJnEABCD28JoB03oA2gIR0CqMvN5MURGdX2UKGgGR0CgQuCCBf8eaAdN6ANoCEdAqjXjALy+YnV9lChoBkdAnKO8gQpWm2gHTegDaAhHQKo6doxHoX91fZQoaAZHQJey20WuX/poB03oA2gIR0CqPEtz0Yj0dX2UKGgGR0CXtR2xptaZaAdN6ANoCEdAqkAn8l5WzXV9lChoBkdAm2gR/d69kGgHTegDaAhHQKpDEdYnv2J1fZQoaAZHQJacMYKpkwxoB03oA2gIR0CqR7FqrR0EdX2UKGgGR0Ca+vMDwH7haAdN6ANoCEdAqkmL7j1f3XV9lChoBkdAlsxdu+AVf2gHTegDaAhHQKpNdVhkRSR1fZQoaAZHQJSsAiC8OCpoB03oA2gIR0CqUGPO6d1/dX2UKGgGR0CVEWrDIikgaAdN6ANoCEdAqlUK814xDnV9lChoBkdAmVBJW7voeWgHTegDaAhHQKpW4zWPLgZ1fZQoaAZHQJfVUSzw+dNoB03oA2gIR0CqWrFpXZGsdX2UKGgGR0CXdEzKcNH6aAdN6ANoCEdAql2rPKMefnV9lChoBkdAmCAh1DBuXWgHTegDaAhHQKpiTnX/YJ51fZQoaAZHQJe0yaOPvKFoB03oA2gIR0CqZCJc5bQkdX2UKGgGR0CYOPsV+I/JaAdN6ANoCEdAqmfwNXo1UHV9lChoBkdAkw048dPtUmgHTegDaAhHQKpq6TwlSjx1fZQoaAZHQJnlPAEdNnJoB03oA2gIR0Cqb4Gh/RVqdX2UKGgGR0CccWNQj2SMaAdN6ANoCEdAqnFcJx//enV9lChoBkdAmZ9KFEiMYWgHTegDaAhHQKp1MRQJokB1fZQoaAZHQJlACyrxRVJoB03oA2gIR0CqeB7MX7+DdX2UKGgGR0CaFa5O8CgcaAdN6ANoCEdAqnyqgqVhTnV9lChoBkdAnTFaHXVbzWgHTegDaAhHQKp+hJf6XSl1fZQoaAZHQJqAtb9qDbtoB03oA2gIR0CqgljnvDxcdX2UKGgGR0Car/WCVbA2aAdN6ANoCEdAqoVB/y5I6XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd5797351a97d56a91a07df67f22147a55d6c26b93cf3e8c03364765d06d360e
|
3 |
+
size 1128183
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1813.7537096582469, "std_reward": 122.93920635625665, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-25T17:51:56.891206"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90bf1b3b6403102b33e809af7bd69c5ce29caef92821824d2010da9cc9af6c39
|
3 |
+
size 2763
|