update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: albert_model
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# albert_model
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.8674
|
20 |
+
- Accuracy: 0.9010
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 1e-05
|
40 |
+
- train_batch_size: 8
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 15
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
50 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
51 |
+
| No log | 1.0 | 334 | 0.3206 | 0.8666 |
|
52 |
+
| 0.4327 | 2.0 | 668 | 0.4502 | 0.8906 |
|
53 |
+
| 0.3178 | 3.0 | 1002 | 0.4517 | 0.8951 |
|
54 |
+
| 0.3178 | 4.0 | 1336 | 0.5688 | 0.9025 |
|
55 |
+
| 0.1649 | 5.0 | 1670 | 0.6359 | 0.8996 |
|
56 |
+
| 0.0707 | 6.0 | 2004 | 0.7573 | 0.8906 |
|
57 |
+
| 0.0707 | 7.0 | 2338 | 0.8200 | 0.8906 |
|
58 |
+
| 0.0216 | 8.0 | 2672 | 0.7581 | 0.9010 |
|
59 |
+
| 0.0168 | 9.0 | 3006 | 0.7530 | 0.9130 |
|
60 |
+
| 0.0168 | 10.0 | 3340 | 0.8194 | 0.9055 |
|
61 |
+
| 0.0075 | 11.0 | 3674 | 0.8633 | 0.9010 |
|
62 |
+
| 0.0037 | 12.0 | 4008 | 0.8079 | 0.9145 |
|
63 |
+
| 0.0037 | 13.0 | 4342 | 0.8283 | 0.9115 |
|
64 |
+
| 0.0018 | 14.0 | 4676 | 0.8508 | 0.9055 |
|
65 |
+
| 0.0003 | 15.0 | 5010 | 0.8674 | 0.9010 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.29.2
|
71 |
+
- Pytorch 2.0.1+cu118
|
72 |
+
- Datasets 2.12.0
|
73 |
+
- Tokenizers 0.13.3
|