update model card README.md
Browse files
README.md
CHANGED
@@ -4,6 +4,8 @@ tags:
|
|
4 |
- generated_from_trainer
|
5 |
metrics:
|
6 |
- accuracy
|
|
|
|
|
7 |
model-index:
|
8 |
- name: albert_model
|
9 |
results: []
|
@@ -16,8 +18,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 0.
|
20 |
-
- Accuracy: 0.
|
|
|
|
|
21 |
|
22 |
## Model description
|
23 |
|
@@ -37,8 +41,8 @@ More information needed
|
|
37 |
|
38 |
The following hyperparameters were used during training:
|
39 |
- learning_rate: 1e-05
|
40 |
-
- train_batch_size:
|
41 |
-
- eval_batch_size:
|
42 |
- seed: 42
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
@@ -46,23 +50,23 @@ The following hyperparameters were used during training:
|
|
46 |
|
47 |
### Training results
|
48 |
|
49 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
50 |
-
|
51 |
-
| No log | 1.0 |
|
52 |
-
|
|
53 |
-
| 0.
|
54 |
-
| 0.
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
|
67 |
|
68 |
### Framework versions
|
|
|
4 |
- generated_from_trainer
|
5 |
metrics:
|
6 |
- accuracy
|
7 |
+
- f1
|
8 |
+
- recall
|
9 |
model-index:
|
10 |
- name: albert_model
|
11 |
results: []
|
|
|
18 |
|
19 |
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the None dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.6560
|
22 |
+
- Accuracy: 0.9070
|
23 |
+
- F1: 0.8852
|
24 |
+
- Recall: 0.9122
|
25 |
|
26 |
## Model description
|
27 |
|
|
|
41 |
|
42 |
The following hyperparameters were used during training:
|
43 |
- learning_rate: 1e-05
|
44 |
+
- train_batch_size: 16
|
45 |
+
- eval_batch_size: 16
|
46 |
- seed: 42
|
47 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
- lr_scheduler_type: linear
|
|
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|
|
55 |
+
| No log | 1.0 | 167 | 0.3571 | 0.8351 | 0.8142 | 0.9198 |
|
56 |
+
| No log | 2.0 | 334 | 0.2670 | 0.8891 | 0.8683 | 0.9313 |
|
57 |
+
| 0.3358 | 3.0 | 501 | 0.2643 | 0.9115 | 0.8885 | 0.8969 |
|
58 |
+
| 0.3358 | 4.0 | 668 | 0.3804 | 0.9130 | 0.8910 | 0.9046 |
|
59 |
+
| 0.3358 | 5.0 | 835 | 0.4376 | 0.9070 | 0.8848 | 0.9084 |
|
60 |
+
| 0.1007 | 6.0 | 1002 | 0.4957 | 0.9100 | 0.8859 | 0.8893 |
|
61 |
+
| 0.1007 | 7.0 | 1169 | 0.6375 | 0.8801 | 0.8601 | 0.9389 |
|
62 |
+
| 0.1007 | 8.0 | 1336 | 0.5978 | 0.8996 | 0.8780 | 0.9198 |
|
63 |
+
| 0.012 | 9.0 | 1503 | 0.6101 | 0.9025 | 0.8816 | 0.9237 |
|
64 |
+
| 0.012 | 10.0 | 1670 | 0.6209 | 0.9085 | 0.8847 | 0.8931 |
|
65 |
+
| 0.012 | 11.0 | 1837 | 0.6485 | 0.9010 | 0.8787 | 0.9122 |
|
66 |
+
| 0.0007 | 12.0 | 2004 | 0.6480 | 0.9070 | 0.8852 | 0.9122 |
|
67 |
+
| 0.0007 | 13.0 | 2171 | 0.6527 | 0.9055 | 0.8835 | 0.9122 |
|
68 |
+
| 0.0007 | 14.0 | 2338 | 0.6557 | 0.9055 | 0.8835 | 0.9122 |
|
69 |
+
| 0.0002 | 15.0 | 2505 | 0.6560 | 0.9070 | 0.8852 | 0.9122 |
|
70 |
|
71 |
|
72 |
### Framework versions
|