fffffchopin
commited on
Upload folder using huggingface_hub
Browse files- T2I_train.py +1153 -0
- train_instruct_pix2pix.py +1042 -0
T2I_train.py
ADDED
@@ -0,0 +1,1153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import logging
|
19 |
+
import math
|
20 |
+
import os
|
21 |
+
import random
|
22 |
+
import shutil
|
23 |
+
from contextlib import nullcontext
|
24 |
+
from pathlib import Path
|
25 |
+
|
26 |
+
import accelerate
|
27 |
+
import datasets
|
28 |
+
import numpy as np
|
29 |
+
import torch
|
30 |
+
import torch.nn.functional as F
|
31 |
+
import torch.utils.checkpoint
|
32 |
+
import transformers
|
33 |
+
from accelerate import Accelerator
|
34 |
+
from accelerate.logging import get_logger
|
35 |
+
from accelerate.state import AcceleratorState
|
36 |
+
from accelerate.utils import ProjectConfiguration, set_seed
|
37 |
+
from datasets import load_dataset
|
38 |
+
from huggingface_hub import create_repo, upload_folder
|
39 |
+
from packaging import version
|
40 |
+
from torchvision import transforms
|
41 |
+
from tqdm.auto import tqdm
|
42 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
43 |
+
from transformers.utils import ContextManagers
|
44 |
+
|
45 |
+
import diffusers
|
46 |
+
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel
|
47 |
+
from diffusers.optimization import get_scheduler
|
48 |
+
from diffusers.training_utils import EMAModel, compute_dream_and_update_latents, compute_snr
|
49 |
+
from diffusers.utils import check_min_version, deprecate, is_wandb_available, make_image_grid
|
50 |
+
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
|
51 |
+
from diffusers.utils.import_utils import is_xformers_available
|
52 |
+
from diffusers.utils.torch_utils import is_compiled_module
|
53 |
+
|
54 |
+
|
55 |
+
if is_wandb_available():
|
56 |
+
import wandb
|
57 |
+
|
58 |
+
|
59 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
60 |
+
check_min_version("0.31.0.dev0")
|
61 |
+
|
62 |
+
logger = get_logger(__name__, log_level="INFO")
|
63 |
+
|
64 |
+
DATASET_NAME_MAPPING = {
|
65 |
+
"lambdalabs/naruto-blip-captions": ("image", "text"),
|
66 |
+
}
|
67 |
+
|
68 |
+
|
69 |
+
def save_model_card(
|
70 |
+
args,
|
71 |
+
repo_id: str,
|
72 |
+
images: list = None,
|
73 |
+
repo_folder: str = None,
|
74 |
+
):
|
75 |
+
img_str = ""
|
76 |
+
if len(images) > 0:
|
77 |
+
image_grid = make_image_grid(images, 1, len(args.validation_prompts))
|
78 |
+
image_grid.save(os.path.join(repo_folder, "val_imgs_grid.png"))
|
79 |
+
img_str += "![val_imgs_grid](./val_imgs_grid.png)\n"
|
80 |
+
|
81 |
+
model_description = f"""
|
82 |
+
# Text-to-image finetuning - {repo_id}
|
83 |
+
|
84 |
+
This pipeline was finetuned from **{args.pretrained_model_name_or_path}** on the **{args.dataset_name}** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: {args.validation_prompts}: \n
|
85 |
+
{img_str}
|
86 |
+
|
87 |
+
## Pipeline usage
|
88 |
+
|
89 |
+
You can use the pipeline like so:
|
90 |
+
|
91 |
+
```python
|
92 |
+
from diffusers import DiffusionPipeline
|
93 |
+
import torch
|
94 |
+
|
95 |
+
pipeline = DiffusionPipeline.from_pretrained("{repo_id}", torch_dtype=torch.float16)
|
96 |
+
prompt = "{args.validation_prompts[0]}"
|
97 |
+
image = pipeline(prompt).images[0]
|
98 |
+
image.save("my_image.png")
|
99 |
+
```
|
100 |
+
|
101 |
+
## Training info
|
102 |
+
|
103 |
+
These are the key hyperparameters used during training:
|
104 |
+
|
105 |
+
* Epochs: {args.num_train_epochs}
|
106 |
+
* Learning rate: {args.learning_rate}
|
107 |
+
* Batch size: {args.train_batch_size}
|
108 |
+
* Gradient accumulation steps: {args.gradient_accumulation_steps}
|
109 |
+
* Image resolution: {args.resolution}
|
110 |
+
* Mixed-precision: {args.mixed_precision}
|
111 |
+
|
112 |
+
"""
|
113 |
+
wandb_info = ""
|
114 |
+
if is_wandb_available():
|
115 |
+
wandb_run_url = None
|
116 |
+
if wandb.run is not None:
|
117 |
+
wandb_run_url = wandb.run.url
|
118 |
+
|
119 |
+
if wandb_run_url is not None:
|
120 |
+
wandb_info = f"""
|
121 |
+
More information on all the CLI arguments and the environment are available on your [`wandb` run page]({wandb_run_url}).
|
122 |
+
"""
|
123 |
+
|
124 |
+
model_description += wandb_info
|
125 |
+
|
126 |
+
model_card = load_or_create_model_card(
|
127 |
+
repo_id_or_path=repo_id,
|
128 |
+
from_training=True,
|
129 |
+
license="creativeml-openrail-m",
|
130 |
+
base_model=args.pretrained_model_name_or_path,
|
131 |
+
model_description=model_description,
|
132 |
+
inference=True,
|
133 |
+
)
|
134 |
+
|
135 |
+
tags = ["stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "diffusers", "diffusers-training"]
|
136 |
+
model_card = populate_model_card(model_card, tags=tags)
|
137 |
+
|
138 |
+
model_card.save(os.path.join(repo_folder, "README.md"))
|
139 |
+
|
140 |
+
|
141 |
+
def log_validation(vae, text_encoder, tokenizer, unet, args, accelerator, weight_dtype, epoch):
|
142 |
+
logger.info("Running validation... ")
|
143 |
+
|
144 |
+
pipeline = StableDiffusionPipeline.from_pretrained(
|
145 |
+
args.pretrained_model_name_or_path,
|
146 |
+
vae=accelerator.unwrap_model(vae),
|
147 |
+
text_encoder=accelerator.unwrap_model(text_encoder),
|
148 |
+
tokenizer=tokenizer,
|
149 |
+
unet=accelerator.unwrap_model(unet),
|
150 |
+
safety_checker=None,
|
151 |
+
revision=args.revision,
|
152 |
+
variant=args.variant,
|
153 |
+
torch_dtype=weight_dtype,
|
154 |
+
)
|
155 |
+
pipeline = pipeline.to(accelerator.device)
|
156 |
+
pipeline.set_progress_bar_config(disable=True)
|
157 |
+
|
158 |
+
if args.enable_xformers_memory_efficient_attention:
|
159 |
+
pipeline.enable_xformers_memory_efficient_attention()
|
160 |
+
|
161 |
+
if args.seed is None:
|
162 |
+
generator = None
|
163 |
+
else:
|
164 |
+
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
|
165 |
+
|
166 |
+
images = []
|
167 |
+
for i in range(len(args.validation_prompts)):
|
168 |
+
if torch.backends.mps.is_available():
|
169 |
+
autocast_ctx = nullcontext()
|
170 |
+
else:
|
171 |
+
autocast_ctx = torch.autocast(accelerator.device.type)
|
172 |
+
|
173 |
+
with autocast_ctx:
|
174 |
+
image = pipeline(args.validation_prompts[i], num_inference_steps=20, generator=generator).images[0]
|
175 |
+
|
176 |
+
images.append(image)
|
177 |
+
|
178 |
+
for tracker in accelerator.trackers:
|
179 |
+
if tracker.name == "tensorboard":
|
180 |
+
np_images = np.stack([np.asarray(img) for img in images])
|
181 |
+
tracker.writer.add_images("validation", np_images, epoch, dataformats="NHWC")
|
182 |
+
elif tracker.name == "wandb":
|
183 |
+
tracker.log(
|
184 |
+
{
|
185 |
+
"validation": [
|
186 |
+
wandb.Image(image, caption=f"{i}: {args.validation_prompts[i]}")
|
187 |
+
for i, image in enumerate(images)
|
188 |
+
]
|
189 |
+
}
|
190 |
+
)
|
191 |
+
else:
|
192 |
+
logger.warning(f"image logging not implemented for {tracker.name}")
|
193 |
+
|
194 |
+
del pipeline
|
195 |
+
torch.cuda.empty_cache()
|
196 |
+
|
197 |
+
return images
|
198 |
+
|
199 |
+
|
200 |
+
def parse_args():
|
201 |
+
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
202 |
+
parser.add_argument(
|
203 |
+
"--input_perturbation", type=float, default=0, help="The scale of input perturbation. Recommended 0.1."
|
204 |
+
)
|
205 |
+
parser.add_argument(
|
206 |
+
"--pretrained_model_name_or_path",
|
207 |
+
type=str,
|
208 |
+
default=None,
|
209 |
+
required=True,
|
210 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
211 |
+
)
|
212 |
+
parser.add_argument(
|
213 |
+
"--revision",
|
214 |
+
type=str,
|
215 |
+
default=None,
|
216 |
+
required=False,
|
217 |
+
help="Revision of pretrained model identifier from huggingface.co/models.",
|
218 |
+
)
|
219 |
+
parser.add_argument(
|
220 |
+
"--variant",
|
221 |
+
type=str,
|
222 |
+
default=None,
|
223 |
+
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
|
224 |
+
)
|
225 |
+
parser.add_argument(
|
226 |
+
"--dataset_name",
|
227 |
+
type=str,
|
228 |
+
default=None,
|
229 |
+
help=(
|
230 |
+
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
|
231 |
+
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
|
232 |
+
" or to a folder containing files that 🤗 Datasets can understand."
|
233 |
+
),
|
234 |
+
)
|
235 |
+
parser.add_argument(
|
236 |
+
"--dataset_config_name",
|
237 |
+
type=str,
|
238 |
+
default=None,
|
239 |
+
help="The config of the Dataset, leave as None if there's only one config.",
|
240 |
+
)
|
241 |
+
parser.add_argument(
|
242 |
+
"--train_data_dir",
|
243 |
+
type=str,
|
244 |
+
default=None,
|
245 |
+
help=(
|
246 |
+
"A folder containing the training data. Folder contents must follow the structure described in"
|
247 |
+
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
|
248 |
+
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
|
249 |
+
),
|
250 |
+
)
|
251 |
+
parser.add_argument(
|
252 |
+
"--image_column", type=str, default="image", help="The column of the dataset containing an image."
|
253 |
+
)
|
254 |
+
parser.add_argument(
|
255 |
+
"--caption_column",
|
256 |
+
type=str,
|
257 |
+
default="text",
|
258 |
+
help="The column of the dataset containing a caption or a list of captions.",
|
259 |
+
)
|
260 |
+
parser.add_argument(
|
261 |
+
"--max_train_samples",
|
262 |
+
type=int,
|
263 |
+
default=None,
|
264 |
+
help=(
|
265 |
+
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
266 |
+
"value if set."
|
267 |
+
),
|
268 |
+
)
|
269 |
+
parser.add_argument(
|
270 |
+
"--validation_prompts",
|
271 |
+
type=str,
|
272 |
+
default=None,
|
273 |
+
nargs="+",
|
274 |
+
help=("A set of prompts evaluated every `--validation_epochs` and logged to `--report_to`."),
|
275 |
+
)
|
276 |
+
parser.add_argument(
|
277 |
+
"--output_dir",
|
278 |
+
type=str,
|
279 |
+
default="sd-model-finetuned",
|
280 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
281 |
+
)
|
282 |
+
parser.add_argument(
|
283 |
+
"--cache_dir",
|
284 |
+
type=str,
|
285 |
+
default=None,
|
286 |
+
help="The directory where the downloaded models and datasets will be stored.",
|
287 |
+
)
|
288 |
+
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
289 |
+
parser.add_argument(
|
290 |
+
"--resolution",
|
291 |
+
type=int,
|
292 |
+
default=512,
|
293 |
+
help=(
|
294 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
295 |
+
" resolution"
|
296 |
+
),
|
297 |
+
)
|
298 |
+
parser.add_argument(
|
299 |
+
"--center_crop",
|
300 |
+
default=False,
|
301 |
+
action="store_true",
|
302 |
+
help=(
|
303 |
+
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
|
304 |
+
" cropped. The images will be resized to the resolution first before cropping."
|
305 |
+
),
|
306 |
+
)
|
307 |
+
parser.add_argument(
|
308 |
+
"--random_flip",
|
309 |
+
action="store_true",
|
310 |
+
help="whether to randomly flip images horizontally",
|
311 |
+
)
|
312 |
+
parser.add_argument(
|
313 |
+
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
|
314 |
+
)
|
315 |
+
parser.add_argument("--num_train_epochs", type=int, default=100)
|
316 |
+
parser.add_argument(
|
317 |
+
"--max_train_steps",
|
318 |
+
type=int,
|
319 |
+
default=None,
|
320 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
321 |
+
)
|
322 |
+
parser.add_argument(
|
323 |
+
"--gradient_accumulation_steps",
|
324 |
+
type=int,
|
325 |
+
default=1,
|
326 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
327 |
+
)
|
328 |
+
parser.add_argument(
|
329 |
+
"--gradient_checkpointing",
|
330 |
+
action="store_true",
|
331 |
+
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
332 |
+
)
|
333 |
+
parser.add_argument(
|
334 |
+
"--learning_rate",
|
335 |
+
type=float,
|
336 |
+
default=1e-4,
|
337 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
338 |
+
)
|
339 |
+
parser.add_argument(
|
340 |
+
"--scale_lr",
|
341 |
+
action="store_true",
|
342 |
+
default=False,
|
343 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
344 |
+
)
|
345 |
+
parser.add_argument(
|
346 |
+
"--lr_scheduler",
|
347 |
+
type=str,
|
348 |
+
default="constant",
|
349 |
+
help=(
|
350 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
351 |
+
' "constant", "constant_with_warmup"]'
|
352 |
+
),
|
353 |
+
)
|
354 |
+
parser.add_argument(
|
355 |
+
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
356 |
+
)
|
357 |
+
parser.add_argument(
|
358 |
+
"--snr_gamma",
|
359 |
+
type=float,
|
360 |
+
default=None,
|
361 |
+
help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
|
362 |
+
"More details here: https://arxiv.org/abs/2303.09556.",
|
363 |
+
)
|
364 |
+
parser.add_argument(
|
365 |
+
"--dream_training",
|
366 |
+
action="store_true",
|
367 |
+
help=(
|
368 |
+
"Use the DREAM training method, which makes training more efficient and accurate at the ",
|
369 |
+
"expense of doing an extra forward pass. See: https://arxiv.org/abs/2312.00210",
|
370 |
+
),
|
371 |
+
)
|
372 |
+
parser.add_argument(
|
373 |
+
"--dream_detail_preservation",
|
374 |
+
type=float,
|
375 |
+
default=1.0,
|
376 |
+
help="Dream detail preservation factor p (should be greater than 0; default=1.0, as suggested in the paper)",
|
377 |
+
)
|
378 |
+
parser.add_argument(
|
379 |
+
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
|
380 |
+
)
|
381 |
+
parser.add_argument(
|
382 |
+
"--allow_tf32",
|
383 |
+
action="store_true",
|
384 |
+
help=(
|
385 |
+
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
386 |
+
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
387 |
+
),
|
388 |
+
)
|
389 |
+
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.")
|
390 |
+
parser.add_argument("--offload_ema", action="store_true", help="Offload EMA model to CPU during training step.")
|
391 |
+
parser.add_argument("--foreach_ema", action="store_true", help="Use faster foreach implementation of EMAModel.")
|
392 |
+
parser.add_argument(
|
393 |
+
"--non_ema_revision",
|
394 |
+
type=str,
|
395 |
+
default=None,
|
396 |
+
required=False,
|
397 |
+
help=(
|
398 |
+
"Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or"
|
399 |
+
" remote repository specified with --pretrained_model_name_or_path."
|
400 |
+
),
|
401 |
+
)
|
402 |
+
parser.add_argument(
|
403 |
+
"--dataloader_num_workers",
|
404 |
+
type=int,
|
405 |
+
default=0,
|
406 |
+
help=(
|
407 |
+
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
|
408 |
+
),
|
409 |
+
)
|
410 |
+
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
411 |
+
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
412 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
413 |
+
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
414 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
415 |
+
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
416 |
+
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
417 |
+
parser.add_argument(
|
418 |
+
"--prediction_type",
|
419 |
+
type=str,
|
420 |
+
default=None,
|
421 |
+
help="The prediction_type that shall be used for training. Choose between 'epsilon' or 'v_prediction' or leave `None`. If left to `None` the default prediction type of the scheduler: `noise_scheduler.config.prediction_type` is chosen.",
|
422 |
+
)
|
423 |
+
parser.add_argument(
|
424 |
+
"--hub_model_id",
|
425 |
+
type=str,
|
426 |
+
default=None,
|
427 |
+
help="The name of the repository to keep in sync with the local `output_dir`.",
|
428 |
+
)
|
429 |
+
parser.add_argument(
|
430 |
+
"--logging_dir",
|
431 |
+
type=str,
|
432 |
+
default="logs",
|
433 |
+
help=(
|
434 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
435 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
436 |
+
),
|
437 |
+
)
|
438 |
+
parser.add_argument(
|
439 |
+
"--mixed_precision",
|
440 |
+
type=str,
|
441 |
+
default=None,
|
442 |
+
choices=["no", "fp16", "bf16"],
|
443 |
+
help=(
|
444 |
+
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
445 |
+
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
446 |
+
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
447 |
+
),
|
448 |
+
)
|
449 |
+
parser.add_argument(
|
450 |
+
"--report_to",
|
451 |
+
type=str,
|
452 |
+
default="tensorboard",
|
453 |
+
help=(
|
454 |
+
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
455 |
+
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
456 |
+
),
|
457 |
+
)
|
458 |
+
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
459 |
+
parser.add_argument(
|
460 |
+
"--checkpointing_steps",
|
461 |
+
type=int,
|
462 |
+
default=500,
|
463 |
+
help=(
|
464 |
+
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
|
465 |
+
" training using `--resume_from_checkpoint`."
|
466 |
+
),
|
467 |
+
)
|
468 |
+
parser.add_argument(
|
469 |
+
"--checkpoints_total_limit",
|
470 |
+
type=int,
|
471 |
+
default=None,
|
472 |
+
help=("Max number of checkpoints to store."),
|
473 |
+
)
|
474 |
+
parser.add_argument(
|
475 |
+
"--resume_from_checkpoint",
|
476 |
+
type=str,
|
477 |
+
default=None,
|
478 |
+
help=(
|
479 |
+
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
480 |
+
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
481 |
+
),
|
482 |
+
)
|
483 |
+
parser.add_argument(
|
484 |
+
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
|
485 |
+
)
|
486 |
+
parser.add_argument("--noise_offset", type=float, default=0, help="The scale of noise offset.")
|
487 |
+
parser.add_argument(
|
488 |
+
"--validation_epochs",
|
489 |
+
type=int,
|
490 |
+
default=5,
|
491 |
+
help="Run validation every X epochs.",
|
492 |
+
)
|
493 |
+
parser.add_argument(
|
494 |
+
"--tracker_project_name",
|
495 |
+
type=str,
|
496 |
+
default="text2image-fine-tune",
|
497 |
+
help=(
|
498 |
+
"The `project_name` argument passed to Accelerator.init_trackers for"
|
499 |
+
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
|
500 |
+
),
|
501 |
+
)
|
502 |
+
|
503 |
+
args = parser.parse_args()
|
504 |
+
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
505 |
+
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
506 |
+
args.local_rank = env_local_rank
|
507 |
+
|
508 |
+
# Sanity checks
|
509 |
+
if args.dataset_name is None and args.train_data_dir is None:
|
510 |
+
raise ValueError("Need either a dataset name or a training folder.")
|
511 |
+
|
512 |
+
# default to using the same revision for the non-ema model if not specified
|
513 |
+
if args.non_ema_revision is None:
|
514 |
+
args.non_ema_revision = args.revision
|
515 |
+
|
516 |
+
return args
|
517 |
+
|
518 |
+
|
519 |
+
def main():
|
520 |
+
args = parse_args()
|
521 |
+
|
522 |
+
if args.report_to == "wandb" and args.hub_token is not None:
|
523 |
+
raise ValueError(
|
524 |
+
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
|
525 |
+
" Please use `huggingface-cli login` to authenticate with the Hub."
|
526 |
+
)
|
527 |
+
|
528 |
+
if args.non_ema_revision is not None:
|
529 |
+
deprecate(
|
530 |
+
"non_ema_revision!=None",
|
531 |
+
"0.15.0",
|
532 |
+
message=(
|
533 |
+
"Downloading 'non_ema' weights from revision branches of the Hub is deprecated. Please make sure to"
|
534 |
+
" use `--variant=non_ema` instead."
|
535 |
+
),
|
536 |
+
)
|
537 |
+
logging_dir = os.path.join(args.output_dir, args.logging_dir)
|
538 |
+
|
539 |
+
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
|
540 |
+
|
541 |
+
accelerator = Accelerator(
|
542 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
543 |
+
mixed_precision=args.mixed_precision,
|
544 |
+
log_with=args.report_to,
|
545 |
+
project_config=accelerator_project_config,
|
546 |
+
)
|
547 |
+
|
548 |
+
# Disable AMP for MPS.
|
549 |
+
if torch.backends.mps.is_available():
|
550 |
+
accelerator.native_amp = False
|
551 |
+
|
552 |
+
# Make one log on every process with the configuration for debugging.
|
553 |
+
logging.basicConfig(
|
554 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
555 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
556 |
+
level=logging.INFO,
|
557 |
+
)
|
558 |
+
logger.info(accelerator.state, main_process_only=False)
|
559 |
+
if accelerator.is_local_main_process:
|
560 |
+
datasets.utils.logging.set_verbosity_warning()
|
561 |
+
transformers.utils.logging.set_verbosity_warning()
|
562 |
+
diffusers.utils.logging.set_verbosity_info()
|
563 |
+
else:
|
564 |
+
datasets.utils.logging.set_verbosity_error()
|
565 |
+
transformers.utils.logging.set_verbosity_error()
|
566 |
+
diffusers.utils.logging.set_verbosity_error()
|
567 |
+
|
568 |
+
# If passed along, set the training seed now.
|
569 |
+
if args.seed is not None:
|
570 |
+
set_seed(args.seed)
|
571 |
+
|
572 |
+
# Handle the repository creation
|
573 |
+
if accelerator.is_main_process:
|
574 |
+
if args.output_dir is not None:
|
575 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
576 |
+
|
577 |
+
if args.push_to_hub:
|
578 |
+
repo_id = create_repo(
|
579 |
+
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
|
580 |
+
).repo_id
|
581 |
+
|
582 |
+
# Load scheduler, tokenizer and models.
|
583 |
+
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
|
584 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
585 |
+
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
|
586 |
+
)
|
587 |
+
|
588 |
+
def deepspeed_zero_init_disabled_context_manager():
|
589 |
+
"""
|
590 |
+
returns either a context list that includes one that will disable zero.Init or an empty context list
|
591 |
+
"""
|
592 |
+
deepspeed_plugin = AcceleratorState().deepspeed_plugin if accelerate.state.is_initialized() else None
|
593 |
+
if deepspeed_plugin is None:
|
594 |
+
return []
|
595 |
+
|
596 |
+
return [deepspeed_plugin.zero3_init_context_manager(enable=False)]
|
597 |
+
|
598 |
+
# Currently Accelerate doesn't know how to handle multiple models under Deepspeed ZeRO stage 3.
|
599 |
+
# For this to work properly all models must be run through `accelerate.prepare`. But accelerate
|
600 |
+
# will try to assign the same optimizer with the same weights to all models during
|
601 |
+
# `deepspeed.initialize`, which of course doesn't work.
|
602 |
+
#
|
603 |
+
# For now the following workaround will partially support Deepspeed ZeRO-3, by excluding the 2
|
604 |
+
# frozen models from being partitioned during `zero.Init` which gets called during
|
605 |
+
# `from_pretrained` So CLIPTextModel and AutoencoderKL will not enjoy the parameter sharding
|
606 |
+
# across multiple gpus and only UNet2DConditionModel will get ZeRO sharded.
|
607 |
+
with ContextManagers(deepspeed_zero_init_disabled_context_manager()):
|
608 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
609 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
|
610 |
+
)
|
611 |
+
vae = AutoencoderKL.from_pretrained(
|
612 |
+
args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant
|
613 |
+
)
|
614 |
+
|
615 |
+
unet = UNet2DConditionModel.from_pretrained(
|
616 |
+
args.pretrained_model_name_or_path, subfolder="unet", revision=args.non_ema_revision
|
617 |
+
)
|
618 |
+
|
619 |
+
# Freeze vae and text_encoder and set unet to trainable
|
620 |
+
vae.requires_grad_(False)
|
621 |
+
text_encoder.requires_grad_(False)
|
622 |
+
unet.train()
|
623 |
+
|
624 |
+
# Create EMA for the unet.
|
625 |
+
if args.use_ema:
|
626 |
+
ema_unet = UNet2DConditionModel.from_pretrained(
|
627 |
+
args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant
|
628 |
+
)
|
629 |
+
ema_unet = EMAModel(
|
630 |
+
ema_unet.parameters(),
|
631 |
+
model_cls=UNet2DConditionModel,
|
632 |
+
model_config=ema_unet.config,
|
633 |
+
foreach=args.foreach_ema,
|
634 |
+
)
|
635 |
+
|
636 |
+
if args.enable_xformers_memory_efficient_attention:
|
637 |
+
if is_xformers_available():
|
638 |
+
import xformers
|
639 |
+
|
640 |
+
xformers_version = version.parse(xformers.__version__)
|
641 |
+
if xformers_version == version.parse("0.0.16"):
|
642 |
+
logger.warning(
|
643 |
+
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
|
644 |
+
)
|
645 |
+
unet.enable_xformers_memory_efficient_attention()
|
646 |
+
else:
|
647 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
648 |
+
|
649 |
+
# `accelerate` 0.16.0 will have better support for customized saving
|
650 |
+
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
|
651 |
+
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
|
652 |
+
def save_model_hook(models, weights, output_dir):
|
653 |
+
if accelerator.is_main_process:
|
654 |
+
if args.use_ema:
|
655 |
+
ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema"))
|
656 |
+
|
657 |
+
for i, model in enumerate(models):
|
658 |
+
model.save_pretrained(os.path.join(output_dir, "unet"))
|
659 |
+
|
660 |
+
# make sure to pop weight so that corresponding model is not saved again
|
661 |
+
weights.pop()
|
662 |
+
|
663 |
+
def load_model_hook(models, input_dir):
|
664 |
+
if args.use_ema:
|
665 |
+
load_model = EMAModel.from_pretrained(
|
666 |
+
os.path.join(input_dir, "unet_ema"), UNet2DConditionModel, foreach=args.foreach_ema
|
667 |
+
)
|
668 |
+
ema_unet.load_state_dict(load_model.state_dict())
|
669 |
+
if args.offload_ema:
|
670 |
+
ema_unet.pin_memory()
|
671 |
+
else:
|
672 |
+
ema_unet.to(accelerator.device)
|
673 |
+
del load_model
|
674 |
+
|
675 |
+
for _ in range(len(models)):
|
676 |
+
# pop models so that they are not loaded again
|
677 |
+
model = models.pop()
|
678 |
+
|
679 |
+
# load diffusers style into model
|
680 |
+
load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet")
|
681 |
+
model.register_to_config(**load_model.config)
|
682 |
+
|
683 |
+
model.load_state_dict(load_model.state_dict())
|
684 |
+
del load_model
|
685 |
+
|
686 |
+
accelerator.register_save_state_pre_hook(save_model_hook)
|
687 |
+
accelerator.register_load_state_pre_hook(load_model_hook)
|
688 |
+
|
689 |
+
if args.gradient_checkpointing:
|
690 |
+
unet.enable_gradient_checkpointing()
|
691 |
+
|
692 |
+
# Enable TF32 for faster training on Ampere GPUs,
|
693 |
+
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
|
694 |
+
if args.allow_tf32:
|
695 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
696 |
+
|
697 |
+
if args.scale_lr:
|
698 |
+
args.learning_rate = (
|
699 |
+
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
700 |
+
)
|
701 |
+
|
702 |
+
# Initialize the optimizer
|
703 |
+
if args.use_8bit_adam:
|
704 |
+
try:
|
705 |
+
import bitsandbytes as bnb
|
706 |
+
except ImportError:
|
707 |
+
raise ImportError(
|
708 |
+
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
|
709 |
+
)
|
710 |
+
|
711 |
+
optimizer_cls = bnb.optim.AdamW8bit
|
712 |
+
else:
|
713 |
+
optimizer_cls = torch.optim.AdamW
|
714 |
+
|
715 |
+
optimizer = optimizer_cls(
|
716 |
+
unet.parameters(),
|
717 |
+
lr=args.learning_rate,
|
718 |
+
betas=(args.adam_beta1, args.adam_beta2),
|
719 |
+
weight_decay=args.adam_weight_decay,
|
720 |
+
eps=args.adam_epsilon,
|
721 |
+
)
|
722 |
+
|
723 |
+
# Get the datasets: you can either provide your own training and evaluation files (see below)
|
724 |
+
# or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
|
725 |
+
|
726 |
+
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
|
727 |
+
# download the dataset.
|
728 |
+
if args.dataset_name is not None:
|
729 |
+
# Downloading and loading a dataset from the hub.
|
730 |
+
dataset = load_dataset(
|
731 |
+
args.dataset_name,
|
732 |
+
args.dataset_config_name,
|
733 |
+
cache_dir=args.cache_dir,
|
734 |
+
data_dir=args.train_data_dir,
|
735 |
+
)
|
736 |
+
else:
|
737 |
+
data_files = {}
|
738 |
+
if args.train_data_dir is not None:
|
739 |
+
data_files["train"] = os.path.join(args.train_data_dir, "**")
|
740 |
+
dataset = load_dataset(
|
741 |
+
"imagefolder",
|
742 |
+
data_files=data_files,
|
743 |
+
cache_dir=args.cache_dir,
|
744 |
+
)
|
745 |
+
# See more about loading custom images at
|
746 |
+
# https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder
|
747 |
+
|
748 |
+
# Preprocessing the datasets.
|
749 |
+
# We need to tokenize inputs and targets.
|
750 |
+
column_names = dataset["train"].column_names
|
751 |
+
|
752 |
+
# 6. Get the column names for input/target.
|
753 |
+
dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None)
|
754 |
+
if args.image_column is None:
|
755 |
+
image_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
|
756 |
+
else:
|
757 |
+
image_column = args.image_column
|
758 |
+
if image_column not in column_names:
|
759 |
+
raise ValueError(
|
760 |
+
f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}"
|
761 |
+
)
|
762 |
+
if args.caption_column is None:
|
763 |
+
caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
|
764 |
+
else:
|
765 |
+
caption_column = args.caption_column
|
766 |
+
if caption_column not in column_names:
|
767 |
+
raise ValueError(
|
768 |
+
f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}"
|
769 |
+
)
|
770 |
+
|
771 |
+
# Preprocessing the datasets.
|
772 |
+
# We need to tokenize input captions and transform the images.
|
773 |
+
def tokenize_captions(examples, is_train=True):
|
774 |
+
captions = []
|
775 |
+
for caption in examples[caption_column]:
|
776 |
+
if isinstance(caption, str):
|
777 |
+
captions.append(caption)
|
778 |
+
elif isinstance(caption, (list, np.ndarray)):
|
779 |
+
# take a random caption if there are multiple
|
780 |
+
captions.append(random.choice(caption) if is_train else caption[0])
|
781 |
+
else:
|
782 |
+
raise ValueError(
|
783 |
+
f"Caption column `{caption_column}` should contain either strings or lists of strings."
|
784 |
+
)
|
785 |
+
inputs = tokenizer(
|
786 |
+
captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
|
787 |
+
)
|
788 |
+
return inputs.input_ids
|
789 |
+
|
790 |
+
# Preprocessing the datasets.
|
791 |
+
train_transforms = transforms.Compose(
|
792 |
+
[
|
793 |
+
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
|
794 |
+
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
|
795 |
+
transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
|
796 |
+
transforms.ToTensor(),
|
797 |
+
transforms.Normalize([0.5], [0.5]),
|
798 |
+
]
|
799 |
+
)
|
800 |
+
|
801 |
+
def preprocess_train(examples):
|
802 |
+
images = [image.convert("RGB") for image in examples[image_column]]
|
803 |
+
examples["pixel_values"] = [train_transforms(image) for image in images]
|
804 |
+
examples["input_ids"] = tokenize_captions(examples)
|
805 |
+
return examples
|
806 |
+
|
807 |
+
with accelerator.main_process_first():
|
808 |
+
if args.max_train_samples is not None:
|
809 |
+
dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
|
810 |
+
# Set the training transforms
|
811 |
+
train_dataset = dataset["train"].with_transform(preprocess_train)
|
812 |
+
|
813 |
+
def collate_fn(examples):
|
814 |
+
pixel_values = torch.stack([example["pixel_values"] for example in examples])
|
815 |
+
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
|
816 |
+
input_ids = torch.stack([example["input_ids"] for example in examples])
|
817 |
+
return {"pixel_values": pixel_values, "input_ids": input_ids}
|
818 |
+
|
819 |
+
# DataLoaders creation:
|
820 |
+
train_dataloader = torch.utils.data.DataLoader(
|
821 |
+
train_dataset,
|
822 |
+
shuffle=True,
|
823 |
+
collate_fn=collate_fn,
|
824 |
+
batch_size=args.train_batch_size,
|
825 |
+
num_workers=args.dataloader_num_workers,
|
826 |
+
)
|
827 |
+
|
828 |
+
# Scheduler and math around the number of training steps.
|
829 |
+
# Check the PR https://github.com/huggingface/diffusers/pull/8312 for detailed explanation.
|
830 |
+
num_warmup_steps_for_scheduler = args.lr_warmup_steps * accelerator.num_processes
|
831 |
+
if args.max_train_steps is None:
|
832 |
+
len_train_dataloader_after_sharding = math.ceil(len(train_dataloader) / accelerator.num_processes)
|
833 |
+
num_update_steps_per_epoch = math.ceil(len_train_dataloader_after_sharding / args.gradient_accumulation_steps)
|
834 |
+
num_training_steps_for_scheduler = (
|
835 |
+
args.num_train_epochs * num_update_steps_per_epoch * accelerator.num_processes
|
836 |
+
)
|
837 |
+
else:
|
838 |
+
num_training_steps_for_scheduler = args.max_train_steps * accelerator.num_processes
|
839 |
+
|
840 |
+
lr_scheduler = get_scheduler(
|
841 |
+
args.lr_scheduler,
|
842 |
+
optimizer=optimizer,
|
843 |
+
num_warmup_steps=num_warmup_steps_for_scheduler,
|
844 |
+
num_training_steps=num_training_steps_for_scheduler,
|
845 |
+
)
|
846 |
+
|
847 |
+
# Prepare everything with our `accelerator`.
|
848 |
+
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
849 |
+
unet, optimizer, train_dataloader, lr_scheduler
|
850 |
+
)
|
851 |
+
|
852 |
+
if args.use_ema:
|
853 |
+
if args.offload_ema:
|
854 |
+
ema_unet.pin_memory()
|
855 |
+
else:
|
856 |
+
ema_unet.to(accelerator.device)
|
857 |
+
|
858 |
+
# For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision
|
859 |
+
# as these weights are only used for inference, keeping weights in full precision is not required.
|
860 |
+
weight_dtype = torch.float32
|
861 |
+
if accelerator.mixed_precision == "fp16":
|
862 |
+
weight_dtype = torch.float16
|
863 |
+
args.mixed_precision = accelerator.mixed_precision
|
864 |
+
elif accelerator.mixed_precision == "bf16":
|
865 |
+
weight_dtype = torch.bfloat16
|
866 |
+
args.mixed_precision = accelerator.mixed_precision
|
867 |
+
|
868 |
+
# Move text_encode and vae to gpu and cast to weight_dtype
|
869 |
+
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
870 |
+
vae.to(accelerator.device, dtype=weight_dtype)
|
871 |
+
|
872 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
873 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
874 |
+
if args.max_train_steps is None:
|
875 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
876 |
+
if num_training_steps_for_scheduler != args.max_train_steps * accelerator.num_processes:
|
877 |
+
logger.warning(
|
878 |
+
f"The length of the 'train_dataloader' after 'accelerator.prepare' ({len(train_dataloader)}) does not match "
|
879 |
+
f"the expected length ({len_train_dataloader_after_sharding}) when the learning rate scheduler was created. "
|
880 |
+
f"This inconsistency may result in the learning rate scheduler not functioning properly."
|
881 |
+
)
|
882 |
+
# Afterwards we recalculate our number of training epochs
|
883 |
+
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
884 |
+
|
885 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
886 |
+
# The trackers initializes automatically on the main process.
|
887 |
+
if accelerator.is_main_process:
|
888 |
+
tracker_config = dict(vars(args))
|
889 |
+
tracker_config.pop("validation_prompts")
|
890 |
+
accelerator.init_trackers(args.tracker_project_name, tracker_config)
|
891 |
+
|
892 |
+
# Function for unwrapping if model was compiled with `torch.compile`.
|
893 |
+
def unwrap_model(model):
|
894 |
+
model = accelerator.unwrap_model(model)
|
895 |
+
model = model._orig_mod if is_compiled_module(model) else model
|
896 |
+
return model
|
897 |
+
|
898 |
+
# Train!
|
899 |
+
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
900 |
+
|
901 |
+
logger.info("***** Running training *****")
|
902 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
903 |
+
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
904 |
+
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
905 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
906 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
907 |
+
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
908 |
+
global_step = 0
|
909 |
+
first_epoch = 0
|
910 |
+
|
911 |
+
# Potentially load in the weights and states from a previous save
|
912 |
+
if args.resume_from_checkpoint:
|
913 |
+
if args.resume_from_checkpoint != "latest":
|
914 |
+
path = os.path.basename(args.resume_from_checkpoint)
|
915 |
+
else:
|
916 |
+
# Get the most recent checkpoint
|
917 |
+
dirs = os.listdir(args.output_dir)
|
918 |
+
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
919 |
+
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
920 |
+
path = dirs[-1] if len(dirs) > 0 else None
|
921 |
+
|
922 |
+
if path is None:
|
923 |
+
accelerator.print(
|
924 |
+
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
925 |
+
)
|
926 |
+
args.resume_from_checkpoint = None
|
927 |
+
initial_global_step = 0
|
928 |
+
else:
|
929 |
+
accelerator.print(f"Resuming from checkpoint {path}")
|
930 |
+
accelerator.load_state(os.path.join(args.output_dir, path))
|
931 |
+
global_step = int(path.split("-")[1])
|
932 |
+
|
933 |
+
initial_global_step = global_step
|
934 |
+
first_epoch = global_step // num_update_steps_per_epoch
|
935 |
+
|
936 |
+
else:
|
937 |
+
initial_global_step = 0
|
938 |
+
|
939 |
+
progress_bar = tqdm(
|
940 |
+
range(0, args.max_train_steps),
|
941 |
+
initial=initial_global_step,
|
942 |
+
desc="Steps",
|
943 |
+
# Only show the progress bar once on each machine.
|
944 |
+
disable=not accelerator.is_local_main_process,
|
945 |
+
)
|
946 |
+
|
947 |
+
for epoch in range(first_epoch, args.num_train_epochs):
|
948 |
+
train_loss = 0.0
|
949 |
+
for step, batch in enumerate(train_dataloader):
|
950 |
+
with accelerator.accumulate(unet):
|
951 |
+
# Convert images to latent space
|
952 |
+
latents = vae.encode(batch["pixel_values"].to(weight_dtype)).latent_dist.sample()
|
953 |
+
latents = latents * vae.config.scaling_factor
|
954 |
+
|
955 |
+
# Sample noise that we'll add to the latents
|
956 |
+
noise = torch.randn_like(latents)
|
957 |
+
if args.noise_offset:
|
958 |
+
# https://www.crosslabs.org//blog/diffusion-with-offset-noise
|
959 |
+
noise += args.noise_offset * torch.randn(
|
960 |
+
(latents.shape[0], latents.shape[1], 1, 1), device=latents.device
|
961 |
+
)
|
962 |
+
if args.input_perturbation:
|
963 |
+
new_noise = noise + args.input_perturbation * torch.randn_like(noise)
|
964 |
+
bsz = latents.shape[0]
|
965 |
+
# Sample a random timestep for each image
|
966 |
+
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
|
967 |
+
timesteps = timesteps.long()
|
968 |
+
|
969 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
970 |
+
# (this is the forward diffusion process)
|
971 |
+
if args.input_perturbation:
|
972 |
+
noisy_latents = noise_scheduler.add_noise(latents, new_noise, timesteps)
|
973 |
+
else:
|
974 |
+
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
975 |
+
|
976 |
+
# Get the text embedding for conditioning
|
977 |
+
encoder_hidden_states = text_encoder(batch["input_ids"], return_dict=False)[0]
|
978 |
+
|
979 |
+
# Get the target for loss depending on the prediction type
|
980 |
+
if args.prediction_type is not None:
|
981 |
+
# set prediction_type of scheduler if defined
|
982 |
+
noise_scheduler.register_to_config(prediction_type=args.prediction_type)
|
983 |
+
|
984 |
+
if noise_scheduler.config.prediction_type == "epsilon":
|
985 |
+
target = noise
|
986 |
+
elif noise_scheduler.config.prediction_type == "v_prediction":
|
987 |
+
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
988 |
+
else:
|
989 |
+
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
|
990 |
+
|
991 |
+
if args.dream_training:
|
992 |
+
noisy_latents, target = compute_dream_and_update_latents(
|
993 |
+
unet,
|
994 |
+
noise_scheduler,
|
995 |
+
timesteps,
|
996 |
+
noise,
|
997 |
+
noisy_latents,
|
998 |
+
target,
|
999 |
+
encoder_hidden_states,
|
1000 |
+
args.dream_detail_preservation,
|
1001 |
+
)
|
1002 |
+
|
1003 |
+
# Predict the noise residual and compute loss
|
1004 |
+
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states, return_dict=False)[0]
|
1005 |
+
|
1006 |
+
if args.snr_gamma is None:
|
1007 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
1008 |
+
else:
|
1009 |
+
# Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
|
1010 |
+
# Since we predict the noise instead of x_0, the original formulation is slightly changed.
|
1011 |
+
# This is discussed in Section 4.2 of the same paper.
|
1012 |
+
snr = compute_snr(noise_scheduler, timesteps)
|
1013 |
+
mse_loss_weights = torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(
|
1014 |
+
dim=1
|
1015 |
+
)[0]
|
1016 |
+
if noise_scheduler.config.prediction_type == "epsilon":
|
1017 |
+
mse_loss_weights = mse_loss_weights / snr
|
1018 |
+
elif noise_scheduler.config.prediction_type == "v_prediction":
|
1019 |
+
mse_loss_weights = mse_loss_weights / (snr + 1)
|
1020 |
+
|
1021 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
|
1022 |
+
loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
|
1023 |
+
loss = loss.mean()
|
1024 |
+
|
1025 |
+
# Gather the losses across all processes for logging (if we use distributed training).
|
1026 |
+
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
|
1027 |
+
train_loss += avg_loss.item() / args.gradient_accumulation_steps
|
1028 |
+
|
1029 |
+
# Backpropagate
|
1030 |
+
accelerator.backward(loss)
|
1031 |
+
if accelerator.sync_gradients:
|
1032 |
+
accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm)
|
1033 |
+
optimizer.step()
|
1034 |
+
lr_scheduler.step()
|
1035 |
+
optimizer.zero_grad()
|
1036 |
+
|
1037 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
1038 |
+
if accelerator.sync_gradients:
|
1039 |
+
if args.use_ema:
|
1040 |
+
if args.offload_ema:
|
1041 |
+
ema_unet.to(device="cuda", non_blocking=True)
|
1042 |
+
ema_unet.step(unet.parameters())
|
1043 |
+
if args.offload_ema:
|
1044 |
+
ema_unet.to(device="cpu", non_blocking=True)
|
1045 |
+
progress_bar.update(1)
|
1046 |
+
global_step += 1
|
1047 |
+
accelerator.log({"train_loss": train_loss}, step=global_step)
|
1048 |
+
train_loss = 0.0
|
1049 |
+
|
1050 |
+
if global_step % args.checkpointing_steps == 0:
|
1051 |
+
if accelerator.is_main_process:
|
1052 |
+
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
|
1053 |
+
if args.checkpoints_total_limit is not None:
|
1054 |
+
checkpoints = os.listdir(args.output_dir)
|
1055 |
+
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
|
1056 |
+
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
|
1057 |
+
|
1058 |
+
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
|
1059 |
+
if len(checkpoints) >= args.checkpoints_total_limit:
|
1060 |
+
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
|
1061 |
+
removing_checkpoints = checkpoints[0:num_to_remove]
|
1062 |
+
|
1063 |
+
logger.info(
|
1064 |
+
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
|
1065 |
+
)
|
1066 |
+
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
|
1067 |
+
|
1068 |
+
for removing_checkpoint in removing_checkpoints:
|
1069 |
+
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
|
1070 |
+
shutil.rmtree(removing_checkpoint)
|
1071 |
+
|
1072 |
+
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
|
1073 |
+
accelerator.save_state(save_path)
|
1074 |
+
logger.info(f"Saved state to {save_path}")
|
1075 |
+
|
1076 |
+
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
1077 |
+
progress_bar.set_postfix(**logs)
|
1078 |
+
|
1079 |
+
if global_step >= args.max_train_steps:
|
1080 |
+
break
|
1081 |
+
|
1082 |
+
if accelerator.is_main_process:
|
1083 |
+
if args.validation_prompts is not None and epoch % args.validation_epochs == 0:
|
1084 |
+
if args.use_ema:
|
1085 |
+
# Store the UNet parameters temporarily and load the EMA parameters to perform inference.
|
1086 |
+
ema_unet.store(unet.parameters())
|
1087 |
+
ema_unet.copy_to(unet.parameters())
|
1088 |
+
log_validation(
|
1089 |
+
vae,
|
1090 |
+
text_encoder,
|
1091 |
+
tokenizer,
|
1092 |
+
unet,
|
1093 |
+
args,
|
1094 |
+
accelerator,
|
1095 |
+
weight_dtype,
|
1096 |
+
global_step,
|
1097 |
+
)
|
1098 |
+
if args.use_ema:
|
1099 |
+
# Switch back to the original UNet parameters.
|
1100 |
+
ema_unet.restore(unet.parameters())
|
1101 |
+
|
1102 |
+
# Create the pipeline using the trained modules and save it.
|
1103 |
+
accelerator.wait_for_everyone()
|
1104 |
+
if accelerator.is_main_process:
|
1105 |
+
unet = unwrap_model(unet)
|
1106 |
+
if args.use_ema:
|
1107 |
+
ema_unet.copy_to(unet.parameters())
|
1108 |
+
|
1109 |
+
pipeline = StableDiffusionPipeline.from_pretrained(
|
1110 |
+
args.pretrained_model_name_or_path,
|
1111 |
+
text_encoder=text_encoder,
|
1112 |
+
vae=vae,
|
1113 |
+
unet=unet,
|
1114 |
+
revision=args.revision,
|
1115 |
+
variant=args.variant,
|
1116 |
+
)
|
1117 |
+
pipeline.save_pretrained(args.output_dir)
|
1118 |
+
|
1119 |
+
# Run a final round of inference.
|
1120 |
+
images = []
|
1121 |
+
if args.validation_prompts is not None:
|
1122 |
+
logger.info("Running inference for collecting generated images...")
|
1123 |
+
pipeline = pipeline.to(accelerator.device)
|
1124 |
+
pipeline.torch_dtype = weight_dtype
|
1125 |
+
pipeline.set_progress_bar_config(disable=True)
|
1126 |
+
|
1127 |
+
if args.enable_xformers_memory_efficient_attention:
|
1128 |
+
pipeline.enable_xformers_memory_efficient_attention()
|
1129 |
+
|
1130 |
+
if args.seed is None:
|
1131 |
+
generator = None
|
1132 |
+
else:
|
1133 |
+
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
|
1134 |
+
|
1135 |
+
for i in range(len(args.validation_prompts)):
|
1136 |
+
with torch.autocast("cuda"):
|
1137 |
+
image = pipeline(args.validation_prompts[i], num_inference_steps=20, generator=generator).images[0]
|
1138 |
+
images.append(image)
|
1139 |
+
|
1140 |
+
if args.push_to_hub:
|
1141 |
+
save_model_card(args, repo_id, images, repo_folder=args.output_dir)
|
1142 |
+
upload_folder(
|
1143 |
+
repo_id=repo_id,
|
1144 |
+
folder_path=args.output_dir,
|
1145 |
+
commit_message="End of training",
|
1146 |
+
ignore_patterns=["step_*", "epoch_*"],
|
1147 |
+
)
|
1148 |
+
|
1149 |
+
accelerator.end_training()
|
1150 |
+
|
1151 |
+
|
1152 |
+
if __name__ == "__main__":
|
1153 |
+
main()
|
train_instruct_pix2pix.py
ADDED
@@ -0,0 +1,1042 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
"""Script to fine-tune Stable Diffusion for InstructPix2Pix."""
|
18 |
+
|
19 |
+
import argparse
|
20 |
+
import logging
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import shutil
|
24 |
+
from contextlib import nullcontext
|
25 |
+
from pathlib import Path
|
26 |
+
|
27 |
+
import accelerate
|
28 |
+
import datasets
|
29 |
+
import numpy as np
|
30 |
+
import PIL
|
31 |
+
import requests
|
32 |
+
import torch
|
33 |
+
import torch.nn as nn
|
34 |
+
import torch.nn.functional as F
|
35 |
+
import torch.utils.checkpoint
|
36 |
+
import transformers
|
37 |
+
from accelerate import Accelerator
|
38 |
+
from accelerate.logging import get_logger
|
39 |
+
from accelerate.utils import ProjectConfiguration, set_seed
|
40 |
+
from datasets import load_dataset
|
41 |
+
from huggingface_hub import create_repo, upload_folder
|
42 |
+
from packaging import version
|
43 |
+
from torchvision import transforms
|
44 |
+
from tqdm.auto import tqdm
|
45 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
46 |
+
|
47 |
+
import diffusers
|
48 |
+
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionInstructPix2PixPipeline, UNet2DConditionModel
|
49 |
+
from diffusers.optimization import get_scheduler
|
50 |
+
from diffusers.training_utils import EMAModel
|
51 |
+
from diffusers.utils import check_min_version, deprecate, is_wandb_available
|
52 |
+
from diffusers.utils.import_utils import is_xformers_available
|
53 |
+
from diffusers.utils.torch_utils import is_compiled_module
|
54 |
+
|
55 |
+
|
56 |
+
if is_wandb_available():
|
57 |
+
import wandb
|
58 |
+
|
59 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
60 |
+
check_min_version("0.31.0.dev0")
|
61 |
+
|
62 |
+
logger = get_logger(__name__, log_level="INFO")
|
63 |
+
|
64 |
+
DATASET_NAME_MAPPING = {
|
65 |
+
"fusing/instructpix2pix-1000-samples": ("input_image", "edit_prompt", "edited_image"),
|
66 |
+
}
|
67 |
+
WANDB_TABLE_COL_NAMES = ["original_image", "edited_image", "edit_prompt"]
|
68 |
+
|
69 |
+
|
70 |
+
def log_validation(
|
71 |
+
pipeline,
|
72 |
+
args,
|
73 |
+
accelerator,
|
74 |
+
generator,
|
75 |
+
):
|
76 |
+
logger.info(
|
77 |
+
f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
|
78 |
+
f" {args.validation_prompt}."
|
79 |
+
)
|
80 |
+
pipeline = pipeline.to(accelerator.device)
|
81 |
+
pipeline.set_progress_bar_config(disable=True)
|
82 |
+
|
83 |
+
# run inference
|
84 |
+
original_image = download_image(args.val_image_url)
|
85 |
+
edited_images = []
|
86 |
+
if torch.backends.mps.is_available():
|
87 |
+
autocast_ctx = nullcontext()
|
88 |
+
else:
|
89 |
+
autocast_ctx = torch.autocast(accelerator.device.type)
|
90 |
+
|
91 |
+
with autocast_ctx:
|
92 |
+
for _ in range(args.num_validation_images):
|
93 |
+
edited_images.append(
|
94 |
+
pipeline(
|
95 |
+
args.validation_prompt,
|
96 |
+
image=original_image,
|
97 |
+
num_inference_steps=20,
|
98 |
+
image_guidance_scale=1.5,
|
99 |
+
guidance_scale=7,
|
100 |
+
generator=generator,
|
101 |
+
).images[0]
|
102 |
+
)
|
103 |
+
|
104 |
+
for tracker in accelerator.trackers:
|
105 |
+
if tracker.name == "wandb":
|
106 |
+
wandb_table = wandb.Table(columns=WANDB_TABLE_COL_NAMES)
|
107 |
+
for edited_image in edited_images:
|
108 |
+
wandb_table.add_data(wandb.Image(original_image), wandb.Image(edited_image), args.validation_prompt)
|
109 |
+
tracker.log({"validation": wandb_table})
|
110 |
+
|
111 |
+
|
112 |
+
def parse_args():
|
113 |
+
parser = argparse.ArgumentParser(description="Simple example of a training script for InstructPix2Pix.")
|
114 |
+
parser.add_argument(
|
115 |
+
"--pretrained_model_name_or_path",
|
116 |
+
type=str,
|
117 |
+
default="timbrooks/instruct-pix2pix",
|
118 |
+
required=False,
|
119 |
+
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
120 |
+
)
|
121 |
+
parser.add_argument(
|
122 |
+
"--revision",
|
123 |
+
type=str,
|
124 |
+
default=None,
|
125 |
+
required=False,
|
126 |
+
help="Revision of pretrained model identifier from huggingface.co/models.",
|
127 |
+
)
|
128 |
+
parser.add_argument(
|
129 |
+
"--variant",
|
130 |
+
type=str,
|
131 |
+
default=None,
|
132 |
+
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
|
133 |
+
)
|
134 |
+
parser.add_argument(
|
135 |
+
"--dataset_name",
|
136 |
+
type=str,
|
137 |
+
default='fusing/instructpix2pix-1000-samples',
|
138 |
+
help=(
|
139 |
+
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
|
140 |
+
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
|
141 |
+
" or to a folder containing files that 🤗 Datasets can understand."
|
142 |
+
),
|
143 |
+
)
|
144 |
+
parser.add_argument(
|
145 |
+
"--dataset_config_name",
|
146 |
+
type=str,
|
147 |
+
default=None,
|
148 |
+
help="The config of the Dataset, leave as None if there's only one config.",
|
149 |
+
)
|
150 |
+
parser.add_argument(
|
151 |
+
"--train_data_dir",
|
152 |
+
type=str,
|
153 |
+
default=None,
|
154 |
+
help=(
|
155 |
+
"A folder containing the training data. Folder contents must follow the structure described in"
|
156 |
+
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
|
157 |
+
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
|
158 |
+
),
|
159 |
+
)
|
160 |
+
parser.add_argument(
|
161 |
+
"--original_image_column",
|
162 |
+
type=str,
|
163 |
+
default="input_image",
|
164 |
+
help="The column of the dataset containing the original image on which edits where made.",
|
165 |
+
)
|
166 |
+
parser.add_argument(
|
167 |
+
"--edited_image_column",
|
168 |
+
type=str,
|
169 |
+
default="edited_image",
|
170 |
+
help="The column of the dataset containing the edited image.",
|
171 |
+
)
|
172 |
+
parser.add_argument(
|
173 |
+
"--edit_prompt_column",
|
174 |
+
type=str,
|
175 |
+
default="edit_prompt",
|
176 |
+
help="The column of the dataset containing the edit instruction.",
|
177 |
+
)
|
178 |
+
parser.add_argument(
|
179 |
+
"--val_image_url",
|
180 |
+
type=str,
|
181 |
+
default=None,
|
182 |
+
help="URL to the original image that you would like to edit (used during inference for debugging purposes).",
|
183 |
+
)
|
184 |
+
parser.add_argument(
|
185 |
+
"--validation_prompt", type=str, default=None, help="A prompt that is sampled during training for inference."
|
186 |
+
)
|
187 |
+
parser.add_argument(
|
188 |
+
"--num_validation_images",
|
189 |
+
type=int,
|
190 |
+
default=4,
|
191 |
+
help="Number of images that should be generated during validation with `validation_prompt`.",
|
192 |
+
)
|
193 |
+
parser.add_argument(
|
194 |
+
"--validation_epochs",
|
195 |
+
type=int,
|
196 |
+
default=1,
|
197 |
+
help=(
|
198 |
+
"Run fine-tuning validation every X epochs. The validation process consists of running the prompt"
|
199 |
+
" `args.validation_prompt` multiple times: `args.num_validation_images`."
|
200 |
+
),
|
201 |
+
)
|
202 |
+
parser.add_argument(
|
203 |
+
"--max_train_samples",
|
204 |
+
type=int,
|
205 |
+
default=None,
|
206 |
+
help=(
|
207 |
+
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
208 |
+
"value if set."
|
209 |
+
),
|
210 |
+
)
|
211 |
+
parser.add_argument(
|
212 |
+
"--output_dir",
|
213 |
+
type=str,
|
214 |
+
default="instruct-pix2pix-model",
|
215 |
+
help="The output directory where the model predictions and checkpoints will be written.",
|
216 |
+
)
|
217 |
+
parser.add_argument(
|
218 |
+
"--cache_dir",
|
219 |
+
type=str,
|
220 |
+
default=None,
|
221 |
+
help="The directory where the downloaded models and datasets will be stored.",
|
222 |
+
)
|
223 |
+
parser.add_argument("--seed", type=int, default=1, help="A seed for reproducible training.")
|
224 |
+
parser.add_argument(
|
225 |
+
"--resolution",
|
226 |
+
type=int,
|
227 |
+
default=256,
|
228 |
+
help=(
|
229 |
+
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
230 |
+
" resolution"
|
231 |
+
),
|
232 |
+
)
|
233 |
+
parser.add_argument(
|
234 |
+
"--center_crop",
|
235 |
+
default=False,
|
236 |
+
action="store_true",
|
237 |
+
help=(
|
238 |
+
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
|
239 |
+
" cropped. The images will be resized to the resolution first before cropping."
|
240 |
+
),
|
241 |
+
)
|
242 |
+
parser.add_argument(
|
243 |
+
"--random_flip",
|
244 |
+
action="store_true",
|
245 |
+
help="whether to randomly flip images horizontally",
|
246 |
+
)
|
247 |
+
parser.add_argument(
|
248 |
+
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
|
249 |
+
)
|
250 |
+
parser.add_argument("--num_train_epochs", type=int, default=100)
|
251 |
+
parser.add_argument(
|
252 |
+
"--max_train_steps",
|
253 |
+
type=int,
|
254 |
+
default=None,
|
255 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
256 |
+
)
|
257 |
+
parser.add_argument(
|
258 |
+
"--gradient_accumulation_steps",
|
259 |
+
type=int,
|
260 |
+
default=1,
|
261 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
262 |
+
)
|
263 |
+
parser.add_argument(
|
264 |
+
"--gradient_checkpointing",
|
265 |
+
action="store_true",
|
266 |
+
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
267 |
+
)
|
268 |
+
parser.add_argument(
|
269 |
+
"--learning_rate",
|
270 |
+
type=float,
|
271 |
+
default=1e-4,
|
272 |
+
help="Initial learning rate (after the potential warmup period) to use.",
|
273 |
+
)
|
274 |
+
parser.add_argument(
|
275 |
+
"--scale_lr",
|
276 |
+
action="store_true",
|
277 |
+
default=False,
|
278 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
279 |
+
)
|
280 |
+
parser.add_argument(
|
281 |
+
"--lr_scheduler",
|
282 |
+
type=str,
|
283 |
+
default="constant",
|
284 |
+
help=(
|
285 |
+
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
286 |
+
' "constant", "constant_with_warmup"]'
|
287 |
+
),
|
288 |
+
)
|
289 |
+
parser.add_argument(
|
290 |
+
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
291 |
+
)
|
292 |
+
parser.add_argument(
|
293 |
+
"--conditioning_dropout_prob",
|
294 |
+
type=float,
|
295 |
+
default=None,
|
296 |
+
help="Conditioning dropout probability. Drops out the conditionings (image and edit prompt) used in training InstructPix2Pix. See section 3.2.1 in the paper: https://arxiv.org/abs/2211.09800.",
|
297 |
+
)
|
298 |
+
parser.add_argument(
|
299 |
+
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
|
300 |
+
)
|
301 |
+
parser.add_argument(
|
302 |
+
"--allow_tf32",
|
303 |
+
action="store_true",
|
304 |
+
help=(
|
305 |
+
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
306 |
+
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
307 |
+
),
|
308 |
+
)
|
309 |
+
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.")
|
310 |
+
parser.add_argument(
|
311 |
+
"--non_ema_revision",
|
312 |
+
type=str,
|
313 |
+
default=None,
|
314 |
+
required=False,
|
315 |
+
help=(
|
316 |
+
"Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or"
|
317 |
+
" remote repository specified with --pretrained_model_name_or_path."
|
318 |
+
),
|
319 |
+
)
|
320 |
+
parser.add_argument(
|
321 |
+
"--dataloader_num_workers",
|
322 |
+
type=int,
|
323 |
+
default=0,
|
324 |
+
help=(
|
325 |
+
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
|
326 |
+
),
|
327 |
+
)
|
328 |
+
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
329 |
+
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
330 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
331 |
+
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
332 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
333 |
+
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
334 |
+
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
335 |
+
parser.add_argument(
|
336 |
+
"--hub_model_id",
|
337 |
+
type=str,
|
338 |
+
default=None,
|
339 |
+
help="The name of the repository to keep in sync with the local `output_dir`.",
|
340 |
+
)
|
341 |
+
parser.add_argument(
|
342 |
+
"--logging_dir",
|
343 |
+
type=str,
|
344 |
+
default="logs",
|
345 |
+
help=(
|
346 |
+
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
347 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
348 |
+
),
|
349 |
+
)
|
350 |
+
parser.add_argument(
|
351 |
+
"--mixed_precision",
|
352 |
+
type=str,
|
353 |
+
default=None,
|
354 |
+
choices=["no", "fp16", "bf16"],
|
355 |
+
help=(
|
356 |
+
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
357 |
+
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
358 |
+
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
359 |
+
),
|
360 |
+
)
|
361 |
+
parser.add_argument(
|
362 |
+
"--report_to",
|
363 |
+
type=str,
|
364 |
+
default="tensorboard",
|
365 |
+
help=(
|
366 |
+
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
367 |
+
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
368 |
+
),
|
369 |
+
)
|
370 |
+
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
371 |
+
parser.add_argument(
|
372 |
+
"--checkpointing_steps",
|
373 |
+
type=int,
|
374 |
+
default=500,
|
375 |
+
help=(
|
376 |
+
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
|
377 |
+
" training using `--resume_from_checkpoint`."
|
378 |
+
),
|
379 |
+
)
|
380 |
+
parser.add_argument(
|
381 |
+
"--checkpoints_total_limit",
|
382 |
+
type=int,
|
383 |
+
default=None,
|
384 |
+
help=("Max number of checkpoints to store."),
|
385 |
+
)
|
386 |
+
parser.add_argument(
|
387 |
+
"--resume_from_checkpoint",
|
388 |
+
type=str,
|
389 |
+
default=None,
|
390 |
+
help=(
|
391 |
+
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
392 |
+
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
393 |
+
),
|
394 |
+
)
|
395 |
+
parser.add_argument(
|
396 |
+
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
|
397 |
+
)
|
398 |
+
|
399 |
+
args = parser.parse_args()
|
400 |
+
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
401 |
+
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
402 |
+
args.local_rank = env_local_rank
|
403 |
+
|
404 |
+
# Sanity checks
|
405 |
+
if args.dataset_name is None and args.train_data_dir is None:
|
406 |
+
raise ValueError("Need either a dataset name or a training folder.")
|
407 |
+
|
408 |
+
# default to using the same revision for the non-ema model if not specified
|
409 |
+
if args.non_ema_revision is None:
|
410 |
+
args.non_ema_revision = args.revision
|
411 |
+
|
412 |
+
return args
|
413 |
+
|
414 |
+
|
415 |
+
def convert_to_np(image, resolution):
|
416 |
+
image = image.convert("RGB").resize((resolution, resolution))
|
417 |
+
return np.array(image).transpose(2, 0, 1)
|
418 |
+
|
419 |
+
|
420 |
+
def download_image(url):
|
421 |
+
image = PIL.Image.open(requests.get(url, stream=True).raw)
|
422 |
+
image = PIL.ImageOps.exif_transpose(image)
|
423 |
+
image = image.convert("RGB")
|
424 |
+
return image
|
425 |
+
|
426 |
+
|
427 |
+
def main():
|
428 |
+
args = parse_args()
|
429 |
+
if args.report_to == "wandb" and args.hub_token is not None:
|
430 |
+
raise ValueError(
|
431 |
+
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
|
432 |
+
" Please use `huggingface-cli login` to authenticate with the Hub."
|
433 |
+
)
|
434 |
+
|
435 |
+
if args.non_ema_revision is not None:
|
436 |
+
deprecate(
|
437 |
+
"non_ema_revision!=None",
|
438 |
+
"0.15.0",
|
439 |
+
message=(
|
440 |
+
"Downloading 'non_ema' weights from revision branches of the Hub is deprecated. Please make sure to"
|
441 |
+
" use `--variant=non_ema` instead."
|
442 |
+
),
|
443 |
+
)
|
444 |
+
logging_dir = os.path.join(args.output_dir, args.logging_dir)
|
445 |
+
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
|
446 |
+
accelerator = Accelerator(
|
447 |
+
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
448 |
+
mixed_precision=args.mixed_precision,
|
449 |
+
log_with=args.report_to,
|
450 |
+
project_config=accelerator_project_config,
|
451 |
+
)
|
452 |
+
|
453 |
+
# Disable AMP for MPS.
|
454 |
+
if torch.backends.mps.is_available():
|
455 |
+
accelerator.native_amp = False
|
456 |
+
|
457 |
+
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
|
458 |
+
|
459 |
+
# Make one log on every process with the configuration for debugging.
|
460 |
+
logging.basicConfig(
|
461 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
462 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
463 |
+
level=logging.INFO,
|
464 |
+
)
|
465 |
+
logger.info(accelerator.state, main_process_only=False)
|
466 |
+
if accelerator.is_local_main_process:
|
467 |
+
datasets.utils.logging.set_verbosity_warning()
|
468 |
+
transformers.utils.logging.set_verbosity_warning()
|
469 |
+
diffusers.utils.logging.set_verbosity_info()
|
470 |
+
else:
|
471 |
+
datasets.utils.logging.set_verbosity_error()
|
472 |
+
transformers.utils.logging.set_verbosity_error()
|
473 |
+
diffusers.utils.logging.set_verbosity_error()
|
474 |
+
|
475 |
+
# If passed along, set the training seed now.
|
476 |
+
if args.seed is not None:
|
477 |
+
set_seed(args.seed)
|
478 |
+
|
479 |
+
# Handle the repository creation
|
480 |
+
if accelerator.is_main_process:
|
481 |
+
if args.output_dir is not None:
|
482 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
483 |
+
|
484 |
+
if args.push_to_hub:
|
485 |
+
repo_id = create_repo(
|
486 |
+
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
|
487 |
+
).repo_id
|
488 |
+
|
489 |
+
# Load scheduler, tokenizer and models.
|
490 |
+
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
|
491 |
+
tokenizer = CLIPTokenizer.from_pretrained(
|
492 |
+
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
|
493 |
+
)
|
494 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
495 |
+
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
|
496 |
+
)
|
497 |
+
vae = AutoencoderKL.from_pretrained(
|
498 |
+
args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant
|
499 |
+
)
|
500 |
+
unet = UNet2DConditionModel.from_pretrained(
|
501 |
+
args.pretrained_model_name_or_path, subfolder="unet", revision=args.non_ema_revision
|
502 |
+
)
|
503 |
+
|
504 |
+
# InstructPix2Pix uses an additional image for conditioning. To accommodate that,
|
505 |
+
# it uses 8 channels (instead of 4) in the first (conv) layer of the UNet. This UNet is
|
506 |
+
# then fine-tuned on the custom InstructPix2Pix dataset. This modified UNet is initialized
|
507 |
+
# from the pre-trained checkpoints. For the extra channels added to the first layer, they are
|
508 |
+
# initialized to zero.
|
509 |
+
logger.info("Initializing the InstructPix2Pix UNet from the pretrained UNet.")
|
510 |
+
in_channels = 8
|
511 |
+
out_channels = unet.conv_in.out_channels
|
512 |
+
unet.register_to_config(in_channels=in_channels)
|
513 |
+
|
514 |
+
with torch.no_grad():
|
515 |
+
new_conv_in = nn.Conv2d(
|
516 |
+
in_channels, out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding
|
517 |
+
)
|
518 |
+
new_conv_in.weight.zero_()
|
519 |
+
new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight)
|
520 |
+
unet.conv_in = new_conv_in
|
521 |
+
|
522 |
+
# Freeze vae and text_encoder
|
523 |
+
vae.requires_grad_(False)
|
524 |
+
text_encoder.requires_grad_(False)
|
525 |
+
|
526 |
+
# Create EMA for the unet.
|
527 |
+
if args.use_ema:
|
528 |
+
ema_unet = EMAModel(unet.parameters(), model_cls=UNet2DConditionModel, model_config=unet.config)
|
529 |
+
|
530 |
+
if args.enable_xformers_memory_efficient_attention:
|
531 |
+
if is_xformers_available():
|
532 |
+
import xformers
|
533 |
+
|
534 |
+
xformers_version = version.parse(xformers.__version__)
|
535 |
+
if xformers_version == version.parse("0.0.16"):
|
536 |
+
logger.warning(
|
537 |
+
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
|
538 |
+
)
|
539 |
+
unet.enable_xformers_memory_efficient_attention()
|
540 |
+
else:
|
541 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
542 |
+
|
543 |
+
def unwrap_model(model):
|
544 |
+
model = accelerator.unwrap_model(model)
|
545 |
+
model = model._orig_mod if is_compiled_module(model) else model
|
546 |
+
return model
|
547 |
+
|
548 |
+
# `accelerate` 0.16.0 will have better support for customized saving
|
549 |
+
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
|
550 |
+
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
|
551 |
+
def save_model_hook(models, weights, output_dir):
|
552 |
+
if accelerator.is_main_process:
|
553 |
+
if args.use_ema:
|
554 |
+
ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema"))
|
555 |
+
|
556 |
+
for i, model in enumerate(models):
|
557 |
+
model.save_pretrained(os.path.join(output_dir, "unet"))
|
558 |
+
|
559 |
+
# make sure to pop weight so that corresponding model is not saved again
|
560 |
+
if weights:
|
561 |
+
weights.pop()
|
562 |
+
|
563 |
+
def load_model_hook(models, input_dir):
|
564 |
+
if args.use_ema:
|
565 |
+
load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DConditionModel)
|
566 |
+
ema_unet.load_state_dict(load_model.state_dict())
|
567 |
+
ema_unet.to(accelerator.device)
|
568 |
+
del load_model
|
569 |
+
|
570 |
+
for i in range(len(models)):
|
571 |
+
# pop models so that they are not loaded again
|
572 |
+
model = models.pop()
|
573 |
+
|
574 |
+
# load diffusers style into model
|
575 |
+
load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet")
|
576 |
+
model.register_to_config(**load_model.config)
|
577 |
+
|
578 |
+
model.load_state_dict(load_model.state_dict())
|
579 |
+
del load_model
|
580 |
+
|
581 |
+
accelerator.register_save_state_pre_hook(save_model_hook)
|
582 |
+
accelerator.register_load_state_pre_hook(load_model_hook)
|
583 |
+
|
584 |
+
if args.gradient_checkpointing:
|
585 |
+
unet.enable_gradient_checkpointing()
|
586 |
+
|
587 |
+
# Enable TF32 for faster training on Ampere GPUs,
|
588 |
+
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
|
589 |
+
if args.allow_tf32:
|
590 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
591 |
+
|
592 |
+
if args.scale_lr:
|
593 |
+
args.learning_rate = (
|
594 |
+
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
595 |
+
)
|
596 |
+
|
597 |
+
# Initialize the optimizer
|
598 |
+
if args.use_8bit_adam:
|
599 |
+
try:
|
600 |
+
import bitsandbytes as bnb
|
601 |
+
except ImportError:
|
602 |
+
raise ImportError(
|
603 |
+
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
|
604 |
+
)
|
605 |
+
|
606 |
+
optimizer_cls = bnb.optim.AdamW8bit
|
607 |
+
else:
|
608 |
+
optimizer_cls = torch.optim.AdamW
|
609 |
+
|
610 |
+
optimizer = optimizer_cls(
|
611 |
+
unet.parameters(),
|
612 |
+
lr=args.learning_rate,
|
613 |
+
betas=(args.adam_beta1, args.adam_beta2),
|
614 |
+
weight_decay=args.adam_weight_decay,
|
615 |
+
eps=args.adam_epsilon,
|
616 |
+
)
|
617 |
+
|
618 |
+
# Get the datasets: you can either provide your own training and evaluation files (see below)
|
619 |
+
# or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
|
620 |
+
|
621 |
+
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
|
622 |
+
# download the dataset.
|
623 |
+
if args.dataset_name is not None:
|
624 |
+
# Downloading and loading a dataset from the hub.
|
625 |
+
dataset = load_dataset(
|
626 |
+
args.dataset_name,
|
627 |
+
args.dataset_config_name,
|
628 |
+
cache_dir=args.cache_dir,
|
629 |
+
)
|
630 |
+
else:
|
631 |
+
data_files = {}
|
632 |
+
if args.train_data_dir is not None:
|
633 |
+
data_files["train"] = os.path.join(args.train_data_dir, "**")
|
634 |
+
dataset = load_dataset(
|
635 |
+
"imagefolder",
|
636 |
+
data_files=data_files,
|
637 |
+
cache_dir=args.cache_dir,
|
638 |
+
)
|
639 |
+
# See more about loading custom images at
|
640 |
+
# https://huggingface.co/docs/datasets/main/en/image_load#imagefolder
|
641 |
+
|
642 |
+
# Preprocessing the datasets.
|
643 |
+
# We need to tokenize inputs and targets.
|
644 |
+
column_names = dataset["train"].column_names
|
645 |
+
|
646 |
+
# 6. Get the column names for input/target.
|
647 |
+
dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None)
|
648 |
+
if args.original_image_column is None:
|
649 |
+
original_image_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
|
650 |
+
else:
|
651 |
+
original_image_column = args.original_image_column
|
652 |
+
if original_image_column not in column_names:
|
653 |
+
raise ValueError(
|
654 |
+
f"--original_image_column' value '{args.original_image_column}' needs to be one of: {', '.join(column_names)}"
|
655 |
+
)
|
656 |
+
if args.edit_prompt_column is None:
|
657 |
+
edit_prompt_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
|
658 |
+
else:
|
659 |
+
edit_prompt_column = args.edit_prompt_column
|
660 |
+
if edit_prompt_column not in column_names:
|
661 |
+
raise ValueError(
|
662 |
+
f"--edit_prompt_column' value '{args.edit_prompt_column}' needs to be one of: {', '.join(column_names)}"
|
663 |
+
)
|
664 |
+
if args.edited_image_column is None:
|
665 |
+
edited_image_column = dataset_columns[2] if dataset_columns is not None else column_names[2]
|
666 |
+
else:
|
667 |
+
edited_image_column = args.edited_image_column
|
668 |
+
if edited_image_column not in column_names:
|
669 |
+
raise ValueError(
|
670 |
+
f"--edited_image_column' value '{args.edited_image_column}' needs to be one of: {', '.join(column_names)}"
|
671 |
+
)
|
672 |
+
|
673 |
+
# Preprocessing the datasets.
|
674 |
+
# We need to tokenize input captions and transform the images.
|
675 |
+
def tokenize_captions(captions):
|
676 |
+
inputs = tokenizer(
|
677 |
+
captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
|
678 |
+
)
|
679 |
+
return inputs.input_ids
|
680 |
+
|
681 |
+
# Preprocessing the datasets.
|
682 |
+
train_transforms = transforms.Compose(
|
683 |
+
[
|
684 |
+
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
|
685 |
+
transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
|
686 |
+
]
|
687 |
+
)
|
688 |
+
|
689 |
+
def preprocess_images(examples):
|
690 |
+
original_images = np.concatenate(
|
691 |
+
[convert_to_np(image, args.resolution) for image in examples[original_image_column]]
|
692 |
+
)
|
693 |
+
edited_images = np.concatenate(
|
694 |
+
[convert_to_np(image, args.resolution) for image in examples[edited_image_column]]
|
695 |
+
)
|
696 |
+
# We need to ensure that the original and the edited images undergo the same
|
697 |
+
# augmentation transforms.
|
698 |
+
images = np.concatenate([original_images, edited_images])
|
699 |
+
images = torch.tensor(images)
|
700 |
+
images = 2 * (images / 255) - 1
|
701 |
+
return train_transforms(images)
|
702 |
+
|
703 |
+
def preprocess_train(examples):
|
704 |
+
# Preprocess images.
|
705 |
+
preprocessed_images = preprocess_images(examples)
|
706 |
+
# Since the original and edited images were concatenated before
|
707 |
+
# applying the transformations, we need to separate them and reshape
|
708 |
+
# them accordingly.
|
709 |
+
original_images, edited_images = preprocessed_images.chunk(2)
|
710 |
+
original_images = original_images.reshape(-1, 3, args.resolution, args.resolution)
|
711 |
+
edited_images = edited_images.reshape(-1, 3, args.resolution, args.resolution)
|
712 |
+
|
713 |
+
# Collate the preprocessed images into the `examples`.
|
714 |
+
examples["original_pixel_values"] = original_images
|
715 |
+
examples["edited_pixel_values"] = edited_images
|
716 |
+
|
717 |
+
# Preprocess the captions.
|
718 |
+
captions = list(examples[edit_prompt_column])
|
719 |
+
examples["input_ids"] = tokenize_captions(captions)
|
720 |
+
return examples
|
721 |
+
|
722 |
+
with accelerator.main_process_first():
|
723 |
+
if args.max_train_samples is not None:
|
724 |
+
dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
|
725 |
+
# Set the training transforms
|
726 |
+
train_dataset = dataset["train"].with_transform(preprocess_train)
|
727 |
+
|
728 |
+
def collate_fn(examples):
|
729 |
+
original_pixel_values = torch.stack([example["original_pixel_values"] for example in examples])
|
730 |
+
original_pixel_values = original_pixel_values.to(memory_format=torch.contiguous_format).float()
|
731 |
+
edited_pixel_values = torch.stack([example["edited_pixel_values"] for example in examples])
|
732 |
+
edited_pixel_values = edited_pixel_values.to(memory_format=torch.contiguous_format).float()
|
733 |
+
input_ids = torch.stack([example["input_ids"] for example in examples])
|
734 |
+
return {
|
735 |
+
"original_pixel_values": original_pixel_values,
|
736 |
+
"edited_pixel_values": edited_pixel_values,
|
737 |
+
"input_ids": input_ids,
|
738 |
+
}
|
739 |
+
|
740 |
+
# DataLoaders creation:
|
741 |
+
train_dataloader = torch.utils.data.DataLoader(
|
742 |
+
train_dataset,
|
743 |
+
shuffle=True,
|
744 |
+
collate_fn=collate_fn,
|
745 |
+
batch_size=args.train_batch_size,
|
746 |
+
num_workers=args.dataloader_num_workers,
|
747 |
+
)
|
748 |
+
|
749 |
+
# Scheduler and math around the number of training steps.
|
750 |
+
# Check the PR https://github.com/huggingface/diffusers/pull/8312 for detailed explanation.
|
751 |
+
num_warmup_steps_for_scheduler = args.lr_warmup_steps * accelerator.num_processes
|
752 |
+
if args.max_train_steps is None:
|
753 |
+
len_train_dataloader_after_sharding = math.ceil(len(train_dataloader) / accelerator.num_processes)
|
754 |
+
num_update_steps_per_epoch = math.ceil(len_train_dataloader_after_sharding / args.gradient_accumulation_steps)
|
755 |
+
num_training_steps_for_scheduler = (
|
756 |
+
args.num_train_epochs * num_update_steps_per_epoch * accelerator.num_processes
|
757 |
+
)
|
758 |
+
else:
|
759 |
+
num_training_steps_for_scheduler = args.max_train_steps * accelerator.num_processes
|
760 |
+
|
761 |
+
lr_scheduler = get_scheduler(
|
762 |
+
args.lr_scheduler,
|
763 |
+
optimizer=optimizer,
|
764 |
+
num_warmup_steps=num_warmup_steps_for_scheduler,
|
765 |
+
num_training_steps=num_training_steps_for_scheduler,
|
766 |
+
)
|
767 |
+
|
768 |
+
# Prepare everything with our `accelerator`.
|
769 |
+
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
770 |
+
unet, optimizer, train_dataloader, lr_scheduler
|
771 |
+
)
|
772 |
+
|
773 |
+
if args.use_ema:
|
774 |
+
ema_unet.to(accelerator.device)
|
775 |
+
|
776 |
+
# For mixed precision training we cast the text_encoder and vae weights to half-precision
|
777 |
+
# as these models are only used for inference, keeping weights in full precision is not required.
|
778 |
+
weight_dtype = torch.float32
|
779 |
+
if accelerator.mixed_precision == "fp16":
|
780 |
+
weight_dtype = torch.float16
|
781 |
+
elif accelerator.mixed_precision == "bf16":
|
782 |
+
weight_dtype = torch.bfloat16
|
783 |
+
|
784 |
+
# Move text_encode and vae to gpu and cast to weight_dtype
|
785 |
+
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
786 |
+
vae.to(accelerator.device, dtype=weight_dtype)
|
787 |
+
|
788 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
789 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
790 |
+
if args.max_train_steps is None:
|
791 |
+
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
792 |
+
if num_training_steps_for_scheduler != args.max_train_steps * accelerator.num_processes:
|
793 |
+
logger.warning(
|
794 |
+
f"The length of the 'train_dataloader' after 'accelerator.prepare' ({len(train_dataloader)}) does not match "
|
795 |
+
f"the expected length ({len_train_dataloader_after_sharding}) when the learning rate scheduler was created. "
|
796 |
+
f"This inconsistency may result in the learning rate scheduler not functioning properly."
|
797 |
+
)
|
798 |
+
# Afterwards we recalculate our number of training epochs
|
799 |
+
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
800 |
+
|
801 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
802 |
+
# The trackers initializes automatically on the main process.
|
803 |
+
if accelerator.is_main_process:
|
804 |
+
accelerator.init_trackers("instruct-pix2pix", config=vars(args))
|
805 |
+
|
806 |
+
# Train!
|
807 |
+
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
808 |
+
|
809 |
+
logger.info("***** Running training *****")
|
810 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
811 |
+
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
812 |
+
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
813 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
814 |
+
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
815 |
+
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
816 |
+
global_step = 0
|
817 |
+
first_epoch = 0
|
818 |
+
|
819 |
+
# Potentially load in the weights and states from a previous save
|
820 |
+
if args.resume_from_checkpoint:
|
821 |
+
if args.resume_from_checkpoint != "latest":
|
822 |
+
path = os.path.basename(args.resume_from_checkpoint)
|
823 |
+
else:
|
824 |
+
# Get the most recent checkpoint
|
825 |
+
dirs = os.listdir(args.output_dir)
|
826 |
+
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
827 |
+
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
828 |
+
path = dirs[-1] if len(dirs) > 0 else None
|
829 |
+
|
830 |
+
if path is None:
|
831 |
+
accelerator.print(
|
832 |
+
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
833 |
+
)
|
834 |
+
args.resume_from_checkpoint = None
|
835 |
+
else:
|
836 |
+
accelerator.print(f"Resuming from checkpoint {path}")
|
837 |
+
accelerator.load_state(os.path.join(args.output_dir, path))
|
838 |
+
global_step = int(path.split("-")[1])
|
839 |
+
|
840 |
+
resume_global_step = global_step * args.gradient_accumulation_steps
|
841 |
+
first_epoch = global_step // num_update_steps_per_epoch
|
842 |
+
resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
|
843 |
+
|
844 |
+
# Only show the progress bar once on each machine.
|
845 |
+
progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process)
|
846 |
+
progress_bar.set_description("Steps")
|
847 |
+
|
848 |
+
for epoch in range(first_epoch, args.num_train_epochs):
|
849 |
+
unet.train()
|
850 |
+
train_loss = 0.0
|
851 |
+
for step, batch in enumerate(train_dataloader):
|
852 |
+
# Skip steps until we reach the resumed step
|
853 |
+
if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
|
854 |
+
if step % args.gradient_accumulation_steps == 0:
|
855 |
+
progress_bar.update(1)
|
856 |
+
continue
|
857 |
+
|
858 |
+
with accelerator.accumulate(unet):
|
859 |
+
# We want to learn the denoising process w.r.t the edited images which
|
860 |
+
# are conditioned on the original image (which was edited) and the edit instruction.
|
861 |
+
# So, first, convert images to latent space.
|
862 |
+
latents = vae.encode(batch["edited_pixel_values"].to(weight_dtype)).latent_dist.sample()
|
863 |
+
latents = latents * vae.config.scaling_factor
|
864 |
+
|
865 |
+
# Sample noise that we'll add to the latents
|
866 |
+
noise = torch.randn_like(latents)
|
867 |
+
bsz = latents.shape[0]
|
868 |
+
# Sample a random timestep for each image
|
869 |
+
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
|
870 |
+
timesteps = timesteps.long()
|
871 |
+
|
872 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
873 |
+
# (this is the forward diffusion process)
|
874 |
+
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
875 |
+
|
876 |
+
# Get the text embedding for conditioning.
|
877 |
+
encoder_hidden_states = text_encoder(batch["input_ids"])[0]
|
878 |
+
|
879 |
+
# Get the additional image embedding for conditioning.
|
880 |
+
# Instead of getting a diagonal Gaussian here, we simply take the mode.
|
881 |
+
original_image_embeds = vae.encode(batch["original_pixel_values"].to(weight_dtype)).latent_dist.mode()
|
882 |
+
|
883 |
+
# Conditioning dropout to support classifier-free guidance during inference. For more details
|
884 |
+
# check out the section 3.2.1 of the original paper https://arxiv.org/abs/2211.09800.
|
885 |
+
if args.conditioning_dropout_prob is not None:
|
886 |
+
random_p = torch.rand(bsz, device=latents.device, generator=generator)
|
887 |
+
# Sample masks for the edit prompts.
|
888 |
+
prompt_mask = random_p < 2 * args.conditioning_dropout_prob
|
889 |
+
prompt_mask = prompt_mask.reshape(bsz, 1, 1)
|
890 |
+
# Final text conditioning.
|
891 |
+
null_conditioning = text_encoder(tokenize_captions([""]).to(accelerator.device))[0]
|
892 |
+
encoder_hidden_states = torch.where(prompt_mask, null_conditioning, encoder_hidden_states)
|
893 |
+
|
894 |
+
# Sample masks for the original images.
|
895 |
+
image_mask_dtype = original_image_embeds.dtype
|
896 |
+
image_mask = 1 - (
|
897 |
+
(random_p >= args.conditioning_dropout_prob).to(image_mask_dtype)
|
898 |
+
* (random_p < 3 * args.conditioning_dropout_prob).to(image_mask_dtype)
|
899 |
+
)
|
900 |
+
image_mask = image_mask.reshape(bsz, 1, 1, 1)
|
901 |
+
# Final image conditioning.
|
902 |
+
original_image_embeds = image_mask * original_image_embeds
|
903 |
+
|
904 |
+
# Concatenate the `original_image_embeds` with the `noisy_latents`.
|
905 |
+
concatenated_noisy_latents = torch.cat([noisy_latents, original_image_embeds], dim=1)
|
906 |
+
|
907 |
+
# Get the target for loss depending on the prediction type
|
908 |
+
if noise_scheduler.config.prediction_type == "epsilon":
|
909 |
+
target = noise
|
910 |
+
elif noise_scheduler.config.prediction_type == "v_prediction":
|
911 |
+
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
912 |
+
else:
|
913 |
+
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
|
914 |
+
|
915 |
+
# Predict the noise residual and compute loss
|
916 |
+
model_pred = unet(concatenated_noisy_latents, timesteps, encoder_hidden_states, return_dict=False)[0]
|
917 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
918 |
+
|
919 |
+
# Gather the losses across all processes for logging (if we use distributed training).
|
920 |
+
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
|
921 |
+
train_loss += avg_loss.item() / args.gradient_accumulation_steps
|
922 |
+
|
923 |
+
# Backpropagate
|
924 |
+
accelerator.backward(loss)
|
925 |
+
if accelerator.sync_gradients:
|
926 |
+
accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm)
|
927 |
+
optimizer.step()
|
928 |
+
lr_scheduler.step()
|
929 |
+
optimizer.zero_grad()
|
930 |
+
|
931 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
932 |
+
if accelerator.sync_gradients:
|
933 |
+
if args.use_ema:
|
934 |
+
ema_unet.step(unet.parameters())
|
935 |
+
progress_bar.update(1)
|
936 |
+
global_step += 1
|
937 |
+
accelerator.log({"train_loss": train_loss}, step=global_step)
|
938 |
+
train_loss = 0.0
|
939 |
+
|
940 |
+
if global_step % args.checkpointing_steps == 0:
|
941 |
+
if accelerator.is_main_process:
|
942 |
+
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
|
943 |
+
if args.checkpoints_total_limit is not None:
|
944 |
+
checkpoints = os.listdir(args.output_dir)
|
945 |
+
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
|
946 |
+
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
|
947 |
+
|
948 |
+
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
|
949 |
+
if len(checkpoints) >= args.checkpoints_total_limit:
|
950 |
+
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
|
951 |
+
removing_checkpoints = checkpoints[0:num_to_remove]
|
952 |
+
|
953 |
+
logger.info(
|
954 |
+
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
|
955 |
+
)
|
956 |
+
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
|
957 |
+
|
958 |
+
for removing_checkpoint in removing_checkpoints:
|
959 |
+
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
|
960 |
+
shutil.rmtree(removing_checkpoint)
|
961 |
+
|
962 |
+
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
|
963 |
+
accelerator.save_state(save_path)
|
964 |
+
logger.info(f"Saved state to {save_path}")
|
965 |
+
|
966 |
+
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
967 |
+
progress_bar.set_postfix(**logs)
|
968 |
+
|
969 |
+
if global_step >= args.max_train_steps:
|
970 |
+
break
|
971 |
+
|
972 |
+
if accelerator.is_main_process:
|
973 |
+
if (
|
974 |
+
(args.val_image_url is not None)
|
975 |
+
and (args.validation_prompt is not None)
|
976 |
+
and (epoch % args.validation_epochs == 0)
|
977 |
+
):
|
978 |
+
if args.use_ema:
|
979 |
+
# Store the UNet parameters temporarily and load the EMA parameters to perform inference.
|
980 |
+
ema_unet.store(unet.parameters())
|
981 |
+
ema_unet.copy_to(unet.parameters())
|
982 |
+
# The models need unwrapping because for compatibility in distributed training mode.
|
983 |
+
pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained(
|
984 |
+
args.pretrained_model_name_or_path,
|
985 |
+
unet=unwrap_model(unet),
|
986 |
+
text_encoder=unwrap_model(text_encoder),
|
987 |
+
vae=unwrap_model(vae),
|
988 |
+
revision=args.revision,
|
989 |
+
variant=args.variant,
|
990 |
+
torch_dtype=weight_dtype,
|
991 |
+
)
|
992 |
+
|
993 |
+
log_validation(
|
994 |
+
pipeline,
|
995 |
+
args,
|
996 |
+
accelerator,
|
997 |
+
generator,
|
998 |
+
)
|
999 |
+
|
1000 |
+
if args.use_ema:
|
1001 |
+
# Switch back to the original UNet parameters.
|
1002 |
+
ema_unet.restore(unet.parameters())
|
1003 |
+
|
1004 |
+
del pipeline
|
1005 |
+
torch.cuda.empty_cache()
|
1006 |
+
|
1007 |
+
# Create the pipeline using the trained modules and save it.
|
1008 |
+
accelerator.wait_for_everyone()
|
1009 |
+
if accelerator.is_main_process:
|
1010 |
+
if args.use_ema:
|
1011 |
+
ema_unet.copy_to(unet.parameters())
|
1012 |
+
|
1013 |
+
pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained(
|
1014 |
+
args.pretrained_model_name_or_path,
|
1015 |
+
text_encoder=unwrap_model(text_encoder),
|
1016 |
+
vae=unwrap_model(vae),
|
1017 |
+
unet=unwrap_model(unet),
|
1018 |
+
revision=args.revision,
|
1019 |
+
variant=args.variant,
|
1020 |
+
)
|
1021 |
+
pipeline.save_pretrained(args.output_dir)
|
1022 |
+
|
1023 |
+
if args.push_to_hub:
|
1024 |
+
upload_folder(
|
1025 |
+
repo_id=repo_id,
|
1026 |
+
folder_path=args.output_dir,
|
1027 |
+
commit_message="End of training",
|
1028 |
+
ignore_patterns=["step_*", "epoch_*"],
|
1029 |
+
)
|
1030 |
+
|
1031 |
+
if (args.val_image_url is not None) and (args.validation_prompt is not None):
|
1032 |
+
log_validation(
|
1033 |
+
pipeline,
|
1034 |
+
args,
|
1035 |
+
accelerator,
|
1036 |
+
generator,
|
1037 |
+
)
|
1038 |
+
accelerator.end_training()
|
1039 |
+
|
1040 |
+
|
1041 |
+
if __name__ == "__main__":
|
1042 |
+
main()
|