Unit 1 complete, upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2-fez.zip +3 -0
- ppo-LunarLander-v2-fez/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-fez/data +95 -0
- ppo-LunarLander-v2-fez/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-fez/policy.pth +3 -0
- ppo-LunarLander-v2-fez/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-fez/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 257.55 +/- 19.36
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff3045a0dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff3045a0e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff3045a0ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff3045a0f70>", "_build": "<function ActorCriticPolicy._build at 0x7ff304524040>", "forward": "<function ActorCriticPolicy.forward at 0x7ff3045240d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff304524160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff3045241f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff304524280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff304524310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff3045243a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff304524430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff30459f3f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676429012592387434, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOC3Kr74WgU/TlQEPgvzfb7M92W8zj6DPAAAAAAAAAAAGjsIvZexrz96JYe+4r2TvsUKVb1tQvm9AAAAAAAAAABz+cA99qgMuj6CL7sgXRy2mCUauz0uTjoAAIA/AACAP82nND6OkIo/xLNBPp4N8L58cDU+VPeBvQAAAAAAAAAAGicSveG8jrro5/c3S0bUMtKMVzoxrg+3AACAPwAAgD9Nhza91/2MP4aDtr1gDgG/S6qjvYC/Kb0AAAAAAAAAAIBkrj3T42Q/lKQKPZlL1L6/VbM9GxvcvAAAAAAAAAAAmtXzu+HejbpYEnW4saBmszgU8Tp2HY43AACAPwAAgD/NgGQ8KFbQPYeeKD6DGHC+bhG7vHarCj4AAAAAAAAAAEBbkD3ma5M+4VMpvRTDLb7Af4y98FkTvQAAAAAAAAAAzXp9PfWACz8mFqE8DvmYvheGRb2Ne/q8AAAAAAAAAABg4S4+OLKeu6pZJLhJ3Vs1/1cHvQ6QQTcAAIA/AACAP830JzzZhRI+sNJivcSHl74eA1C9Qsa2vAAAAAAAAAAAGjhUvRRAkbo6s0Wz6gPIrlek/znytM8zAACAPwAAgD/zJ5q9T38NvLXEvTyZ6pS8c6lnPabrdD0AAIA/AACAP0YmMb52PFg/MjzrvL0I7b7IO/q9SzwGPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQieEDroBcUCUhpRSlIwBbJRNcQGMAXSUR0CahHLytmthdX2UKGgGaAloD0MI7NlzmRpVcECUhpRSlGgVTU8CaBZHQJqIDmwJPZZ1fZQoaAZoCWgPQwhbsirCjQVwQJSGlFKUaBVNnwJoFkdAmokriuMdcXV9lChoBmgJaA9DCAkWhzO/5GxAlIaUUpRoFU0RAWgWR0CaiVQHzH0cdX2UKGgGaAloD0MIlphnJe1/cUCUhpRSlGgVTTcDaBZHQJqMqicoYvZ1fZQoaAZoCWgPQwgXtmYrry1vQJSGlFKUaBVNNwJoFkdAmo1TWf9P13V9lChoBmgJaA9DCJIjnYGRfHFAlIaUUpRoFU3qAWgWR0CajcSBbwBpdX2UKGgGaAloD0MI9UvEWyf/cECUhpRSlGgVTbwCaBZHQJqN2YBvJil1fZQoaAZoCWgPQwgJGF3enNFyQJSGlFKUaBVN9QFoFkdAmo4rjT8YRHV9lChoBmgJaA9DCIHrihmhDnFAlIaUUpRoFU1MAWgWR0Cakkb4agmJdX2UKGgGaAloD0MIyCb5Eb9LZUCUhpRSlGgVTegDaBZHQJqTxQTEit91fZQoaAZoCWgPQwh+/+bFScdwQJSGlFKUaBVNNAFoFkdAmq3ugg5imXV9lChoBmgJaA9DCAnAP6WKdnFAlIaUUpRoFU3hA2gWR0Carus1sLv1dX2UKGgGaAloD0MIH54lyAhwcUCUhpRSlGgVTWgBaBZHQJqv3aIvalF1fZQoaAZoCWgPQwgQQGoT55twQJSGlFKUaBVN0QFoFkdAmrJ+6VdHD3V9lChoBmgJaA9DCFJF8SorNHBAlIaUUpRoFU1bAWgWR0CataYUFjd6dX2UKGgGaAloD0MInn3lQToDcUCUhpRSlGgVTU4BaBZHQJq2aYG+sYF1fZQoaAZoCWgPQwjHuU24V79wQJSGlFKUaBVN4gNoFkdAmraNnCfpU3V9lChoBmgJaA9DCL2KjA4InHFAlIaUUpRoFU03AmgWR0CaunJA+pwTdX2UKGgGaAloD0MI/G1PkFjGbECUhpRSlGgVTRsCaBZHQJq+bFAE+xJ1fZQoaAZoCWgPQwirlnSUw4RwQJSGlFKUaBVNCQFoFkdAmsEDoIOYpnV9lChoBmgJaA9DCEW8df5tY3BAlIaUUpRoFU2OAWgWR0CaxPvnKW9ldX2UKGgGaAloD0MI61T5npG8ckCUhpRSlGgVTRoCaBZHQJrFD92ovSN1fZQoaAZoCWgPQwhqEyf3u4BvQJSGlFKUaBVNMAFoFkdAmsZP4AS39nV9lChoBmgJaA9DCNlaXyS0IWFAlIaUUpRoFU3oA2gWR0Caxw66reZYdX2UKGgGaAloD0MIC5sBLogNckCUhpRSlGgVTVUCaBZHQJrI+GZeAut1fZQoaAZoCWgPQwgsSgnBqm1uQJSGlFKUaBVNEwFoFkdAmslP1L8JlnV9lChoBmgJaA9DCACOPXsuDmNAlIaUUpRoFU3oA2gWR0Caylp1RtP6dX2UKGgGaAloD0MIV2DI6lZlbECUhpRSlGgVTZ4BaBZHQJrKwrrgOz91fZQoaAZoCWgPQwhbQj7o2RpwQJSGlFKUaBVNlgJoFkdAmstuwX668XV9lChoBmgJaA9DCLZoAdpWaHJAlIaUUpRoFU1bAWgWR0Cay82P1ct5dX2UKGgGaAloD0MIXg8mxQc/ckCUhpRSlGgVTSABaBZHQJrMLzErGzd1fZQoaAZoCWgPQwhkdha90wFzQJSGlFKUaBVNWwFoFkdAmswv8yeqaXV9lChoBmgJaA9DCIT1fw7zRG9AlIaUUpRoFU0RAWgWR0CazVuWKMvRdX2UKGgGaAloD0MI4zWv6mzncECUhpRSlGgVTcwBaBZHQJrOFyyUs4F1fZQoaAZoCWgPQwibWUsBaeJvQJSGlFKUaBVNSgFoFkdAmtNKLjxTbXV9lChoBmgJaA9DCJl/9E2afkRAlIaUUpRoFUvGaBZHQJrTSqKgqVh1fZQoaAZoCWgPQwi/m27ZYaxwQJSGlFKUaBVNbgFoFkdAmtULCemNznV9lChoBmgJaA9DCItUGFvIgXFAlIaUUpRoFU08AWgWR0Ca2AbZezD5dX2UKGgGaAloD0MIJVzII3grc0CUhpRSlGgVTQ8BaBZHQJrYS5AhStN1fZQoaAZoCWgPQwhwXTEj/IByQJSGlFKUaBVNjgFoFkdAmtiNupCKJnV9lChoBmgJaA9DCBDs+C8QynBAlIaUUpRoFU1mAWgWR0Ca2MPgvUSadX2UKGgGaAloD0MIF58CYDwMcECUhpRSlGgVTXEBaBZHQJrZk7hegL91fZQoaAZoCWgPQwikpl1MMyhyQJSGlFKUaBVNVAFoFkdAmtsKNAC4jXV9lChoBmgJaA9DCMr7OJojCzVAlIaUUpRoFUvDaBZHQJreqig00nB1fZQoaAZoCWgPQwhZFkz8UTFmQJSGlFKUaBVN6ANoFkdAmt8fMjeKsXV9lChoBmgJaA9DCPWeymlPMW9AlIaUUpRoFU2dAWgWR0Ca4Kaz/p+udX2UKGgGaAloD0MIbt+j/npDbkCUhpRSlGgVTZMBaBZHQJrhKQgcLjR1fZQoaAZoCWgPQwhJopdRLNRtQJSGlFKUaBVNHwFoFkdAmuFPJiiItXV9lChoBmgJaA9DCAdDHVZ4QnBAlIaUUpRoFU1dAmgWR0Ca4YwlSjxkdX2UKGgGaAloD0MI547+l+vfcUCUhpRSlGgVTScBaBZHQJrho93bEgp1fZQoaAZoCWgPQwiYh0z5kKJwQJSGlFKUaBVNCAFoFkdAmv4MZgogFHV9lChoBmgJaA9DCMyWrIpwO3BAlIaUUpRoFU0WAWgWR0Ca/1Fpfx+bdX2UKGgGaAloD0MIQSswZDW8cECUhpRSlGgVTUECaBZHQJsArUMG5c11fZQoaAZoCWgPQwgS2QdZVglxQJSGlFKUaBVNOwFoFkdAmwHALZzxPXV9lChoBmgJaA9DCIuoiT5f/XBAlIaUUpRoFU01AWgWR0CbAmxCY1HfdX2UKGgGaAloD0MIdFyN7Ap2cUCUhpRSlGgVTTEDaBZHQJsCkzSCvox1fZQoaAZoCWgPQwhEFmniHfBxQJSGlFKUaBVNgAFoFkdAmwSIegctG3V9lChoBmgJaA9DCA2reCPzt2xAlIaUUpRoFU0CAWgWR0CbBRhM8HObdX2UKGgGaAloD0MIFOtU+Z5jSECUhpRSlGgVS9VoFkdAmwXXgUDdQHV9lChoBmgJaA9DCJaS5STUtnFAlIaUUpRoFU2GAWgWR0CbByUQ04zadX2UKGgGaAloD0MIMT83NOXdb0CUhpRSlGgVTRoBaBZHQJsHnZ13dKx1fZQoaAZoCWgPQwgTLXk8LYFwQJSGlFKUaBVNHwFoFkdAmwiSGrS3LHV9lChoBmgJaA9DCJGb4Qb8cnBAlIaUUpRoFU0qAWgWR0CbCMU7Sy+pdX2UKGgGaAloD0MIZY9QM6TWb0CUhpRSlGgVTYMBaBZHQJsKZVPva111fZQoaAZoCWgPQwins5PB0fBtQJSGlFKUaBVNCQFoFkdAmwsYsVclgXV9lChoBmgJaA9DCHHHm/xW/XJAlIaUUpRoFU18AWgWR0CbC97BwdbQdX2UKGgGaAloD0MICYm0jb/ucECUhpRSlGgVTQIBaBZHQJsM/ivPkaN1fZQoaAZoCWgPQwjNlNbfkmNwQJSGlFKUaBVNHAFoFkdAmw3yAtnPFHV9lChoBmgJaA9DCB+6oL5lxHFAlIaUUpRoFU0IAWgWR0CbD3/BFd9ldX2UKGgGaAloD0MIWB8Pfff8ZECUhpRSlGgVTegDaBZHQJsQ/PiT+vR1fZQoaAZoCWgPQwg+r3jqkTVvQJSGlFKUaBVNbgFoFkdAmxEVqnFYMnV9lChoBmgJaA9DCKbvNQTHy3FAlIaUUpRoFUv1aBZHQJsSykRBeHB1fZQoaAZoCWgPQwg2O1J959NyQJSGlFKUaBVNcQFoFkdAmxOS/bj943V9lChoBmgJaA9DCNKMRdNZKW5AlIaUUpRoFU1SAWgWR0CbE7yzollcdX2UKGgGaAloD0MIFF6CU59LcECUhpRSlGgVTUQBaBZHQJsVDSRbKRx1fZQoaAZoCWgPQwjaykv+J6VuQJSGlFKUaBVNKQFoFkdAmxU4nv2GqXV9lChoBmgJaA9DCOqXiLdO6XBAlIaUUpRoFU1mAWgWR0CbFeXqqwQldX2UKGgGaAloD0MI5L7VOvGXcUCUhpRSlGgVTSUCaBZHQJsWLY4ACGN1fZQoaAZoCWgPQwgeVOI6hmRzQJSGlFKUaBVNEQJoFkdAmxb2GM4tH3V9lChoBmgJaA9DCJTZIJPMIXFAlIaUUpRoFU0wAWgWR0CbGEr9ETg3dX2UKGgGaAloD0MIZM+ey9QucUCUhpRSlGgVTUUBaBZHQJsYWElE7XB1fZQoaAZoCWgPQwjizRq8r21zQJSGlFKUaBVNYgFoFkdAmxjCQ5myxHV9lChoBmgJaA9DCCFWf4Th0W5AlIaUUpRoFU02AWgWR0CbGXri2lVMdX2UKGgGaAloD0MIoUj3c0pVc0CUhpRSlGgVTS4BaBZHQJsaAmBvrGB1fZQoaAZoCWgPQwghIjXtolZwQJSGlFKUaBVNCQFoFkdAmxoCCBf8dnV9lChoBmgJaA9DCFyrPewFTW9AlIaUUpRoFU0IAWgWR0CbGvWIoE0SdX2UKGgGaAloD0MIn48y4oK6cUCUhpRSlGgVTSABaBZHQJsbq2nbZe11fZQoaAZoCWgPQwhDke7n1NtwQJSGlFKUaBVL/2gWR0CbG+qo60Y1dX2UKGgGaAloD0MIGqVL/xJ1b0CUhpRSlGgVS/xoFkdAmx2V6Rhc7nV9lChoBmgJaA9DCHAGf78YknBAlIaUUpRoFU1WAWgWR0CbIBACGN70dX2UKGgGaAloD0MIgVt389TNcUCUhpRSlGgVTR8BaBZHQJsgTYf4h2Z1fZQoaAZoCWgPQwjJq3MMCClxQJSGlFKUaBVNOAFoFkdAmyBOwPiDNHV9lChoBmgJaA9DCK7Zyku+WXFAlIaUUpRoFU2DAWgWR0CbIcFINEw4dX2UKGgGaAloD0MIFY+LatFJcECUhpRSlGgVTUMBaBZHQJsivDn/1g91fZQoaAZoCWgPQwgLYTWWcIZxQJSGlFKUaBVNOwFoFkdAmyQQV45cT3V9lChoBmgJaA9DCAfOGVHaoW9AlIaUUpRoFU2AAWgWR0CbJCOR1X/6dX2UKGgGaAloD0MIiLg5lYzocECUhpRSlGgVS/NoFkdAmyR/dqL0jHV9lChoBmgJaA9DCAmNYON6Qm5AlIaUUpRoFU0rAWgWR0CbJXcf/3nIdX2UKGgGaAloD0MIrizRWWbDcECUhpRSlGgVTUMBaBZHQJsmeLZSNwR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2-fez.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c3baf7a45a98e32a26ccbc1f24e71f62b11708de03b76e455589e5a47c4e475
|
3 |
+
size 147416
|
ppo-LunarLander-v2-fez/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2-fez/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff3045a0dc0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff3045a0e50>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff3045a0ee0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff3045a0f70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff304524040>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff3045240d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff304524160>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff3045241f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff304524280>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff304524310>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff3045243a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff304524430>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7ff30459f3f0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1676429012592387434,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOC3Kr74WgU/TlQEPgvzfb7M92W8zj6DPAAAAAAAAAAAGjsIvZexrz96JYe+4r2TvsUKVb1tQvm9AAAAAAAAAABz+cA99qgMuj6CL7sgXRy2mCUauz0uTjoAAIA/AACAP82nND6OkIo/xLNBPp4N8L58cDU+VPeBvQAAAAAAAAAAGicSveG8jrro5/c3S0bUMtKMVzoxrg+3AACAPwAAgD9Nhza91/2MP4aDtr1gDgG/S6qjvYC/Kb0AAAAAAAAAAIBkrj3T42Q/lKQKPZlL1L6/VbM9GxvcvAAAAAAAAAAAmtXzu+HejbpYEnW4saBmszgU8Tp2HY43AACAPwAAgD/NgGQ8KFbQPYeeKD6DGHC+bhG7vHarCj4AAAAAAAAAAEBbkD3ma5M+4VMpvRTDLb7Af4y98FkTvQAAAAAAAAAAzXp9PfWACz8mFqE8DvmYvheGRb2Ne/q8AAAAAAAAAABg4S4+OLKeu6pZJLhJ3Vs1/1cHvQ6QQTcAAIA/AACAP830JzzZhRI+sNJivcSHl74eA1C9Qsa2vAAAAAAAAAAAGjhUvRRAkbo6s0Wz6gPIrlek/znytM8zAACAPwAAgD/zJ5q9T38NvLXEvTyZ6pS8c6lnPabrdD0AAIA/AACAP0YmMb52PFg/MjzrvL0I7b7IO/q9SzwGPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQieEDroBcUCUhpRSlIwBbJRNcQGMAXSUR0CahHLytmthdX2UKGgGaAloD0MI7NlzmRpVcECUhpRSlGgVTU8CaBZHQJqIDmwJPZZ1fZQoaAZoCWgPQwhbsirCjQVwQJSGlFKUaBVNnwJoFkdAmokriuMdcXV9lChoBmgJaA9DCAkWhzO/5GxAlIaUUpRoFU0RAWgWR0CaiVQHzH0cdX2UKGgGaAloD0MIlphnJe1/cUCUhpRSlGgVTTcDaBZHQJqMqicoYvZ1fZQoaAZoCWgPQwgXtmYrry1vQJSGlFKUaBVNNwJoFkdAmo1TWf9P13V9lChoBmgJaA9DCJIjnYGRfHFAlIaUUpRoFU3qAWgWR0CajcSBbwBpdX2UKGgGaAloD0MI9UvEWyf/cECUhpRSlGgVTbwCaBZHQJqN2YBvJil1fZQoaAZoCWgPQwgJGF3enNFyQJSGlFKUaBVN9QFoFkdAmo4rjT8YRHV9lChoBmgJaA9DCIHrihmhDnFAlIaUUpRoFU1MAWgWR0Cakkb4agmJdX2UKGgGaAloD0MIyCb5Eb9LZUCUhpRSlGgVTegDaBZHQJqTxQTEit91fZQoaAZoCWgPQwh+/+bFScdwQJSGlFKUaBVNNAFoFkdAmq3ugg5imXV9lChoBmgJaA9DCAnAP6WKdnFAlIaUUpRoFU3hA2gWR0Carus1sLv1dX2UKGgGaAloD0MIH54lyAhwcUCUhpRSlGgVTWgBaBZHQJqv3aIvalF1fZQoaAZoCWgPQwgQQGoT55twQJSGlFKUaBVN0QFoFkdAmrJ+6VdHD3V9lChoBmgJaA9DCFJF8SorNHBAlIaUUpRoFU1bAWgWR0CataYUFjd6dX2UKGgGaAloD0MInn3lQToDcUCUhpRSlGgVTU4BaBZHQJq2aYG+sYF1fZQoaAZoCWgPQwjHuU24V79wQJSGlFKUaBVN4gNoFkdAmraNnCfpU3V9lChoBmgJaA9DCL2KjA4InHFAlIaUUpRoFU03AmgWR0CaunJA+pwTdX2UKGgGaAloD0MI/G1PkFjGbECUhpRSlGgVTRsCaBZHQJq+bFAE+xJ1fZQoaAZoCWgPQwirlnSUw4RwQJSGlFKUaBVNCQFoFkdAmsEDoIOYpnV9lChoBmgJaA9DCEW8df5tY3BAlIaUUpRoFU2OAWgWR0CaxPvnKW9ldX2UKGgGaAloD0MI61T5npG8ckCUhpRSlGgVTRoCaBZHQJrFD92ovSN1fZQoaAZoCWgPQwhqEyf3u4BvQJSGlFKUaBVNMAFoFkdAmsZP4AS39nV9lChoBmgJaA9DCNlaXyS0IWFAlIaUUpRoFU3oA2gWR0Caxw66reZYdX2UKGgGaAloD0MIC5sBLogNckCUhpRSlGgVTVUCaBZHQJrI+GZeAut1fZQoaAZoCWgPQwgsSgnBqm1uQJSGlFKUaBVNEwFoFkdAmslP1L8JlnV9lChoBmgJaA9DCACOPXsuDmNAlIaUUpRoFU3oA2gWR0Caylp1RtP6dX2UKGgGaAloD0MIV2DI6lZlbECUhpRSlGgVTZ4BaBZHQJrKwrrgOz91fZQoaAZoCWgPQwhbQj7o2RpwQJSGlFKUaBVNlgJoFkdAmstuwX668XV9lChoBmgJaA9DCLZoAdpWaHJAlIaUUpRoFU1bAWgWR0Cay82P1ct5dX2UKGgGaAloD0MIXg8mxQc/ckCUhpRSlGgVTSABaBZHQJrMLzErGzd1fZQoaAZoCWgPQwhkdha90wFzQJSGlFKUaBVNWwFoFkdAmswv8yeqaXV9lChoBmgJaA9DCIT1fw7zRG9AlIaUUpRoFU0RAWgWR0CazVuWKMvRdX2UKGgGaAloD0MI4zWv6mzncECUhpRSlGgVTcwBaBZHQJrOFyyUs4F1fZQoaAZoCWgPQwibWUsBaeJvQJSGlFKUaBVNSgFoFkdAmtNKLjxTbXV9lChoBmgJaA9DCJl/9E2afkRAlIaUUpRoFUvGaBZHQJrTSqKgqVh1fZQoaAZoCWgPQwi/m27ZYaxwQJSGlFKUaBVNbgFoFkdAmtULCemNznV9lChoBmgJaA9DCItUGFvIgXFAlIaUUpRoFU08AWgWR0Ca2AbZezD5dX2UKGgGaAloD0MIJVzII3grc0CUhpRSlGgVTQ8BaBZHQJrYS5AhStN1fZQoaAZoCWgPQwhwXTEj/IByQJSGlFKUaBVNjgFoFkdAmtiNupCKJnV9lChoBmgJaA9DCBDs+C8QynBAlIaUUpRoFU1mAWgWR0Ca2MPgvUSadX2UKGgGaAloD0MIF58CYDwMcECUhpRSlGgVTXEBaBZHQJrZk7hegL91fZQoaAZoCWgPQwikpl1MMyhyQJSGlFKUaBVNVAFoFkdAmtsKNAC4jXV9lChoBmgJaA9DCMr7OJojCzVAlIaUUpRoFUvDaBZHQJreqig00nB1fZQoaAZoCWgPQwhZFkz8UTFmQJSGlFKUaBVN6ANoFkdAmt8fMjeKsXV9lChoBmgJaA9DCPWeymlPMW9AlIaUUpRoFU2dAWgWR0Ca4Kaz/p+udX2UKGgGaAloD0MIbt+j/npDbkCUhpRSlGgVTZMBaBZHQJrhKQgcLjR1fZQoaAZoCWgPQwhJopdRLNRtQJSGlFKUaBVNHwFoFkdAmuFPJiiItXV9lChoBmgJaA9DCAdDHVZ4QnBAlIaUUpRoFU1dAmgWR0Ca4YwlSjxkdX2UKGgGaAloD0MI547+l+vfcUCUhpRSlGgVTScBaBZHQJrho93bEgp1fZQoaAZoCWgPQwiYh0z5kKJwQJSGlFKUaBVNCAFoFkdAmv4MZgogFHV9lChoBmgJaA9DCMyWrIpwO3BAlIaUUpRoFU0WAWgWR0Ca/1Fpfx+bdX2UKGgGaAloD0MIQSswZDW8cECUhpRSlGgVTUECaBZHQJsArUMG5c11fZQoaAZoCWgPQwgS2QdZVglxQJSGlFKUaBVNOwFoFkdAmwHALZzxPXV9lChoBmgJaA9DCIuoiT5f/XBAlIaUUpRoFU01AWgWR0CbAmxCY1HfdX2UKGgGaAloD0MIdFyN7Ap2cUCUhpRSlGgVTTEDaBZHQJsCkzSCvox1fZQoaAZoCWgPQwhEFmniHfBxQJSGlFKUaBVNgAFoFkdAmwSIegctG3V9lChoBmgJaA9DCA2reCPzt2xAlIaUUpRoFU0CAWgWR0CbBRhM8HObdX2UKGgGaAloD0MIFOtU+Z5jSECUhpRSlGgVS9VoFkdAmwXXgUDdQHV9lChoBmgJaA9DCJaS5STUtnFAlIaUUpRoFU2GAWgWR0CbByUQ04zadX2UKGgGaAloD0MIMT83NOXdb0CUhpRSlGgVTRoBaBZHQJsHnZ13dKx1fZQoaAZoCWgPQwgTLXk8LYFwQJSGlFKUaBVNHwFoFkdAmwiSGrS3LHV9lChoBmgJaA9DCJGb4Qb8cnBAlIaUUpRoFU0qAWgWR0CbCMU7Sy+pdX2UKGgGaAloD0MIZY9QM6TWb0CUhpRSlGgVTYMBaBZHQJsKZVPva111fZQoaAZoCWgPQwins5PB0fBtQJSGlFKUaBVNCQFoFkdAmwsYsVclgXV9lChoBmgJaA9DCHHHm/xW/XJAlIaUUpRoFU18AWgWR0CbC97BwdbQdX2UKGgGaAloD0MICYm0jb/ucECUhpRSlGgVTQIBaBZHQJsM/ivPkaN1fZQoaAZoCWgPQwjNlNbfkmNwQJSGlFKUaBVNHAFoFkdAmw3yAtnPFHV9lChoBmgJaA9DCB+6oL5lxHFAlIaUUpRoFU0IAWgWR0CbD3/BFd9ldX2UKGgGaAloD0MIWB8Pfff8ZECUhpRSlGgVTegDaBZHQJsQ/PiT+vR1fZQoaAZoCWgPQwg+r3jqkTVvQJSGlFKUaBVNbgFoFkdAmxEVqnFYMnV9lChoBmgJaA9DCKbvNQTHy3FAlIaUUpRoFUv1aBZHQJsSykRBeHB1fZQoaAZoCWgPQwg2O1J959NyQJSGlFKUaBVNcQFoFkdAmxOS/bj943V9lChoBmgJaA9DCNKMRdNZKW5AlIaUUpRoFU1SAWgWR0CbE7yzollcdX2UKGgGaAloD0MIFF6CU59LcECUhpRSlGgVTUQBaBZHQJsVDSRbKRx1fZQoaAZoCWgPQwjaykv+J6VuQJSGlFKUaBVNKQFoFkdAmxU4nv2GqXV9lChoBmgJaA9DCOqXiLdO6XBAlIaUUpRoFU1mAWgWR0CbFeXqqwQldX2UKGgGaAloD0MI5L7VOvGXcUCUhpRSlGgVTSUCaBZHQJsWLY4ACGN1fZQoaAZoCWgPQwgeVOI6hmRzQJSGlFKUaBVNEQJoFkdAmxb2GM4tH3V9lChoBmgJaA9DCJTZIJPMIXFAlIaUUpRoFU0wAWgWR0CbGEr9ETg3dX2UKGgGaAloD0MIZM+ey9QucUCUhpRSlGgVTUUBaBZHQJsYWElE7XB1fZQoaAZoCWgPQwjizRq8r21zQJSGlFKUaBVNYgFoFkdAmxjCQ5myxHV9lChoBmgJaA9DCCFWf4Th0W5AlIaUUpRoFU02AWgWR0CbGXri2lVMdX2UKGgGaAloD0MIoUj3c0pVc0CUhpRSlGgVTS4BaBZHQJsaAmBvrGB1fZQoaAZoCWgPQwghIjXtolZwQJSGlFKUaBVNCQFoFkdAmxoCCBf8dnV9lChoBmgJaA9DCFyrPewFTW9AlIaUUpRoFU0IAWgWR0CbGvWIoE0SdX2UKGgGaAloD0MIn48y4oK6cUCUhpRSlGgVTSABaBZHQJsbq2nbZe11fZQoaAZoCWgPQwhDke7n1NtwQJSGlFKUaBVL/2gWR0CbG+qo60Y1dX2UKGgGaAloD0MIGqVL/xJ1b0CUhpRSlGgVS/xoFkdAmx2V6Rhc7nV9lChoBmgJaA9DCHAGf78YknBAlIaUUpRoFU1WAWgWR0CbIBACGN70dX2UKGgGaAloD0MIgVt389TNcUCUhpRSlGgVTR8BaBZHQJsgTYf4h2Z1fZQoaAZoCWgPQwjJq3MMCClxQJSGlFKUaBVNOAFoFkdAmyBOwPiDNHV9lChoBmgJaA9DCK7Zyku+WXFAlIaUUpRoFU2DAWgWR0CbIcFINEw4dX2UKGgGaAloD0MIFY+LatFJcECUhpRSlGgVTUMBaBZHQJsivDn/1g91fZQoaAZoCWgPQwgLYTWWcIZxQJSGlFKUaBVNOwFoFkdAmyQQV45cT3V9lChoBmgJaA9DCAfOGVHaoW9AlIaUUpRoFU2AAWgWR0CbJCOR1X/6dX2UKGgGaAloD0MIiLg5lYzocECUhpRSlGgVS/NoFkdAmyR/dqL0jHV9lChoBmgJaA9DCAmNYON6Qm5AlIaUUpRoFU0rAWgWR0CbJXcf/3nIdX2UKGgGaAloD0MIrizRWWbDcECUhpRSlGgVTUMBaBZHQJsmeLZSNwR1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2-fez/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d930a5ef66922290de96f90d8c5163a161a78a9acc2f8ee79f607aa6c42bdc4
|
3 |
+
size 87929
|
ppo-LunarLander-v2-fez/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5379eb809f79f4223d16e1e19078708f2d817b94bd5eaee06e22bc8ea68bfe2f
|
3 |
+
size 43393
|
ppo-LunarLander-v2-fez/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-fez/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (188 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 257.55111522983714, "std_reward": 19.359313206884025, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-15T03:24:56.351565"}
|