Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.22 +/- 0.09
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ba6e40873f44016f486a3f214ccf9ffb94039d8f6f15f316224a0643e3d2e5d
|
3 |
+
size 106915
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e66b279f0a0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e66b27ac240>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1694964782749353410,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqnp2PoRndrtwjeQ+st7pPKTxnz8rXlC/dsSpO+RP377lPlu+itMmPt+c2b5lDTM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwjWavvOoHz5xIag/P96dPmQWtj8U7yW+pLpWPk+bsr+0KcK//jDoPsu7aL8N5m4/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACqenY+hGd2u3CN5D6o2PY+8PDOOtc+xD6y3uk8pPGfPyteUL/lUcI/wMxjP45Mxb12xKk75E/fvuU+W77PcWW/mlDSvwUVoL+K0yY+35zZvmUNMz8G5w4/DWbPvwyNmz+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 0.2407023 -0.00375983 0.44639158]\n [ 0.02854857 1.2495618 -0.8139369 ]\n [ 0.00518089 -0.4361564 -0.21410711]\n [ 0.16291633 -0.42502496 0.69942313]]",
|
34 |
+
"desired_goal": "[[-0.3011914 0.15591793 1.3135206 ]\n [ 0.30833623 1.4225583 -0.16204482]\n [ 0.20969635 -1.3953646 -1.5168977 ]\n [ 0.45349878 -0.9091155 0.9331978 ]]",
|
35 |
+
"observation": "[[ 2.4070230e-01 -3.7598321e-03 4.4639158e-01 4.8212171e-01\n 1.5788358e-03 3.8329193e-01]\n [ 2.8548572e-02 1.2495618e+00 -8.1393689e-01 1.5181242e+00\n 8.8984299e-01 -9.6337423e-02]\n [ 5.1808907e-03 -4.3615639e-01 -2.1410711e-01 -8.9626783e-01\n -1.6430848e+00 -1.2506415e+00]\n [ 1.6291633e-01 -4.2502496e-01 6.9942313e-01 5.5821264e-01\n -1.6203018e+00 1.2152419e+00]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGo0Pvl5EjT0rfgY+HjEYviwoCz5Uwgg+N43Dvdp4hT3RZ0M+kxDgPc3on7xAd1o+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.1401867 0.06897806 0.13134067]\n [-0.14862487 0.13589543 0.1335538 ]\n [-0.09548419 0.06517191 0.19082572]\n [ 0.10940661 -0.01952019 0.21334553]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8RrWRRuTA6MAWyUSwKMAXSUR0CkRhwfIS13dX2UKGgGR7/PVQQ+UyHmaAdLA2gIR0CkReFchTwVdX2UKGgGR7/BL/S6UaAGaAdLAmgIR0CkRmf8l5WzdX2UKGgGR7/QmeDnNgSfaAdLA2gIR0CkRbPQv6CUdX2UKGgGR7/Jn8sMAmzCaAdLA2gIR0CkRjZzYEntdX2UKGgGR7/QzdUKiO/+aAdLA2gIR0CkRft21UlzdX2UKGgGR7/DD7655JK8aAdLAmgIR0CkRnrl/6O6dX2UKGgGR7/UXrt3OfNBaAdLA2gIR0CkRcy/j81odX2UKGgGR7/FPTG5tm+TaAdLAmgIR0CkRoiMxXXAdX2UKGgGR7/DEKmbb1yvaAdLA2gIR0CkRkw/5ckddX2UKGgGR7/I71ZkkKNRaAdLA2gIR0CkRhE43m3fdX2UKGgGR7/EFlkH2RJVaAdLAmgIR0CkRpnpSrHVdX2UKGgGR7/O4n4O+ZgHaAdLA2gIR0CkReWPtD2KdX2UKGgGR7/HSXt0FKTTaAdLA2gIR0CkRmQt8NQTdX2UKGgGR7/LBtUGVzIWaAdLA2gIR0CkRikTQE6ldX2UKGgGR7/Eb2Dg62fDaAdLAmgIR0CkRqg62fCidX2UKGgGR7+hKDkELYwqaAdLAWgIR0CkRi/6oESvdX2UKGgGR7+iItUXHim3aAdLAWgIR0CkRq8XFcY7dX2UKGgGR7/CUN8VpKzzaAdLAmgIR0CkRnJFb3XadX2UKGgGR7/SDzAeq7yyaAdLA2gIR0CkRfqm8/UwdX2UKGgGR7/DyUcGTs6aaAdLAmgIR0CkRj2l/H5rdX2UKGgGR7+39vS+g13uaAdLAmgIR0CkRsC9ytFKdX2UKGgGR7/O1rIo3JgcaAdLA2gIR0CkRouK4x1xdX2UKGgGR7/OoGY8dPtVaAdLA2gIR0CkRhQ9JSR9dX2UKGgGR7+yrjo6jnFHaAdLAmgIR0CkRtAu7HyVdX2UKGgGR7/IGlhw2l2vaAdLA2gIR0CkRlhX8wYcdX2UKGgGR7+71Iy0rsjWaAdLAmgIR0CkRpp9qk/KdX2UKGgGR7/BcDbJwKjSaAdLAmgIR0CkRiLvLHMmdX2UKGgGR7/LJbMX7+DOaAdLA2gIR0CkRuhbOeJ6dX2UKGgGR7/G2XLNfPX1aAdLA2gIR0CkRnALZzxPdX2UKGgGR7/T1SwW3z+WaAdLA2gIR0CkRrOkUKzBdX2UKGgGR7/NmZE2Hck/aAdLA2gIR0CkRjwcHWz4dX2UKGgGR7+367/XGwRoaAdLAmgIR0CkRvfDLr5ZdX2UKGgGR7+2EeyRjjJdaAdLAmgIR0CkRn+eOGTLdX2UKGgGR7/APq9oN/e+aAdLAmgIR0CkRwUlqrR0dX2UKGgGR7/Q/cFhXr+paAdLA2gIR0CkRlCswL3LdX2UKGgGR7/a62fChvitaAdLBGgIR0CkRtJ8OTaCdX2UKGgGR7/OCL/CIk7faAdLA2gIR0CkRpdhiLEUdX2UKGgGR7+lGEwnH/96aAdLAWgIR0CkRtqDbrTqdX2UKGgGR7/RAE+xGDtgaAdLA2gIR0CkRx6AvtdBdX2UKGgGR7/D3QD3dsSCaAdLAmgIR0CkRuhuXNTtdX2UKGgGR7/Ug5zYEnstaAdLBGgIR0CkRrOvdM0xdX2UKGgGR7/cTB68g6ltaAdLBWgIR0CkRnfsVtXQdX2UKGgGR7/hLNwBHTZyaAdLBWgIR0CkR0ZamoBJdX2UKGgGR7/R41P3ztkXaAdLBGgIR0CkRwmlANXpdX2UKGgGR7/KQ176YVqOaAdLA2gIR0CkRs6bWmP6dX2UKGgGR7/X5v99+gDiaAdLBGgIR0CkRpsJpnHvdX2UKGgGR7/OfFrEcbR4aAdLA2gIR0CkRyQcghbGdX2UKGgGR7/Ye4Cp3os7aAdLBGgIR0CkR2jjin50dX2UKGgGR7/XVbRnezlcaAdLBGgIR0CkRvFtj0+UdX2UKGgGR7/Sm+0w8GLUaAdLA2gIR0CkRrU8eS0TdX2UKGgGR7/JKqXF98Z2aAdLA2gIR0CkRzouoP07dX2UKGgGR7/QDye7L+xXaAdLA2gIR0CkR37eVLSNdX2UKGgGR7+6eiBXjlxPaAdLAmgIR0CkR5DdP+GXdX2UKGgGR7/RYc/+sHSnaAdLA2gIR0CkR1QY1pCbdX2UKGgGR7/YLOzIFNcoaAdLBWgIR0CkRxj9XLeRdX2UKGgGR7/Hd0JWvKU3aAdLA2gIR0CkR6boB7u2dX2UKGgGR7/QM36yjYZmaAdLA2gIR0CkR2pEH+qBdX2UKGgGR7/Gay8jAzpHaAdLA2gIR0CkRy9JJ5E/dX2UKGgGR7/kpaq0dBBzaAdLCGgIR0CkRvMNtqHodX2UKGgGR7+nVqesgdOqaAdLAWgIR0CkRzu4PPLQdX2UKGgGR7/CmJm/WUbDaAdLAmgIR0CkR0k7GNrCdX2UKGgGR7/ON6PbO/tZaAdLA2gIR0CkRw1/DtPYdX2UKGgGR7/XuRLbpNbkaAdLBGgIR0CkR8oGpuMudX2UKGgGR7/d21D0Dlo2aAdLBGgIR0CkR40i6g/UdX2UKGgGR7/Fw5vLowEhaAdLA2gIR0CkR2V5KODKdX2UKGgGR7/NGo73fyf+aAdLA2gIR0CkRymCyyD7dX2UKGgGR7/TkjX4CZF5aAdLA2gIR0CkR+XlS0jUdX2UKGgGR7/LWYF7laKUaAdLA2gIR0CkR6kzGgjAdX2UKGgGR7+j1kDp1RtQaAdLAWgIR0CkR7CQkonbdX2UKGgGR7+4hHLA57w8aAdLAmgIR0CkRzj+717IdX2UKGgGR7/PwmVqveP8aAdLA2gIR0CkR3yLqD9PdX2UKGgGR7+5rzoUzsQeaAdLAmgIR0CkR7850bLmdX2UKGgGR7/Weq7yxzJZaAdLBGgIR0CkSAb+DOC5dX2UKGgGR7/RFefI0ZWJaAdLA2gIR0CkR1JZwGW2dX2UKGgGR7/R08NhE0BPaAdLA2gIR0CkR5Xd0q6OdX2UKGgGR7++ZE2Hck+paAdLAmgIR0CkSBTtb9qDdX2UKGgGR7/KpvxYq5LAaAdLA2gIR0CkR9fzJ6ppdX2UKGgGR7/SN+LFXJYDaAdLA2gIR0CkR2f5ULlWdX2UKGgGR7/H7CSA6MisaAdLA2gIR0CkR6wBYFJQdX2UKGgGR7/SG5c1O0swaAdLA2gIR0CkR/JdSl3ydX2UKGgGR7/NgZTAFgUlaAdLBGgIR0CkSDZGz8gqdX2UKGgGR7/OiYb83uNQaAdLA2gIR0CkR8YlpoK2dX2UKGgGR7/Yz19ORDCxaAdLBGgIR0CkR4ohyKekdX2UKGgGR7/DmYBvJiiJaAdLAmgIR0CkSEYOc2BKdX2UKGgGR7/QBCUornTzaAdLA2gIR0CkSAlERaoudX2UKGgGR7+n8XN1QqI8aAdLAWgIR0CkSE3sHB1tdX2UKGgGR7+08La24NI9aAdLAmgIR0CkSBuuA7PqdX2UKGgGR7/T4eLehwl0aAdLBGgIR0CkR6rX18LKdX2UKGgGR7/Hq+Jxeb/faAdLA2gIR0CkSGaisXBQdX2UKGgGR7/Plbu+h4+saAdLA2gIR0CkSDCOFQEZdX2UKGgGR7+5mjCYTj//aAdLAmgIR0CkR7jx9XtCdX2UKGgGR7/eGViWmgrZaAdLB2gIR0CkR/xBE8aGdX2UKGgGR7/KblzU7Sy/aAdLA2gIR0CkSH+XAuZkdX2UKGgGR7/ASkj5bhWHaAdLAmgIR0CkR8rs0HhTdX2UKGgGR7/As+3Ytg8baAdLAmgIR0CkSA5hBqsVdX2UKGgGR7/V7TlT3qRmaAdLBGgIR0CkSFBt+CsfdX2UKGgGR7+0bfgrH2h7aAdLAmgIR0CkSBwdbPhRdX2UKGgGR7/F6+FlCkXUaAdLA2gIR0CkR9/gJkXldX2UKGgGR7/XJWeYlY2baAdLBGgIR0CkSJwRwqAjdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1bc2d808e03e6a55a9b258e5e9091cae17e183751b22900c82685fb2fa11aa40
|
3 |
+
size 44734
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32b527764de75a745dd42ea95b98d5f3557eb4195c02fb8b96974a262b82e83f
|
3 |
+
size 46014
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e66b279f0a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e66b27ac240>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694964782749353410, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAqnp2PoRndrtwjeQ+st7pPKTxnz8rXlC/dsSpO+RP377lPlu+itMmPt+c2b5lDTM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAwjWavvOoHz5xIag/P96dPmQWtj8U7yW+pLpWPk+bsr+0KcK//jDoPsu7aL8N5m4/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACqenY+hGd2u3CN5D6o2PY+8PDOOtc+xD6y3uk8pPGfPyteUL/lUcI/wMxjP45Mxb12xKk75E/fvuU+W77PcWW/mlDSvwUVoL+K0yY+35zZvmUNMz8G5w4/DWbPvwyNmz+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.2407023 -0.00375983 0.44639158]\n [ 0.02854857 1.2495618 -0.8139369 ]\n [ 0.00518089 -0.4361564 -0.21410711]\n [ 0.16291633 -0.42502496 0.69942313]]", "desired_goal": "[[-0.3011914 0.15591793 1.3135206 ]\n [ 0.30833623 1.4225583 -0.16204482]\n [ 0.20969635 -1.3953646 -1.5168977 ]\n [ 0.45349878 -0.9091155 0.9331978 ]]", "observation": "[[ 2.4070230e-01 -3.7598321e-03 4.4639158e-01 4.8212171e-01\n 1.5788358e-03 3.8329193e-01]\n [ 2.8548572e-02 1.2495618e+00 -8.1393689e-01 1.5181242e+00\n 8.8984299e-01 -9.6337423e-02]\n [ 5.1808907e-03 -4.3615639e-01 -2.1410711e-01 -8.9626783e-01\n -1.6430848e+00 -1.2506415e+00]\n [ 1.6291633e-01 -4.2502496e-01 6.9942313e-01 5.5821264e-01\n -1.6203018e+00 1.2152419e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAGo0Pvl5EjT0rfgY+HjEYviwoCz5Uwgg+N43Dvdp4hT3RZ0M+kxDgPc3on7xAd1o+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.1401867 0.06897806 0.13134067]\n [-0.14862487 0.13589543 0.1335538 ]\n [-0.09548419 0.06517191 0.19082572]\n [ 0.10940661 -0.01952019 0.21334553]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8RrWRRuTA6MAWyUSwKMAXSUR0CkRhwfIS13dX2UKGgGR7/PVQQ+UyHmaAdLA2gIR0CkReFchTwVdX2UKGgGR7/BL/S6UaAGaAdLAmgIR0CkRmf8l5WzdX2UKGgGR7/QmeDnNgSfaAdLA2gIR0CkRbPQv6CUdX2UKGgGR7/Jn8sMAmzCaAdLA2gIR0CkRjZzYEntdX2UKGgGR7/QzdUKiO/+aAdLA2gIR0CkRft21UlzdX2UKGgGR7/DD7655JK8aAdLAmgIR0CkRnrl/6O6dX2UKGgGR7/UXrt3OfNBaAdLA2gIR0CkRcy/j81odX2UKGgGR7/FPTG5tm+TaAdLAmgIR0CkRoiMxXXAdX2UKGgGR7/DEKmbb1yvaAdLA2gIR0CkRkw/5ckddX2UKGgGR7/I71ZkkKNRaAdLA2gIR0CkRhE43m3fdX2UKGgGR7/EFlkH2RJVaAdLAmgIR0CkRpnpSrHVdX2UKGgGR7/O4n4O+ZgHaAdLA2gIR0CkReWPtD2KdX2UKGgGR7/HSXt0FKTTaAdLA2gIR0CkRmQt8NQTdX2UKGgGR7/LBtUGVzIWaAdLA2gIR0CkRikTQE6ldX2UKGgGR7/Eb2Dg62fDaAdLAmgIR0CkRqg62fCidX2UKGgGR7+hKDkELYwqaAdLAWgIR0CkRi/6oESvdX2UKGgGR7+iItUXHim3aAdLAWgIR0CkRq8XFcY7dX2UKGgGR7/CUN8VpKzzaAdLAmgIR0CkRnJFb3XadX2UKGgGR7/SDzAeq7yyaAdLA2gIR0CkRfqm8/UwdX2UKGgGR7/DyUcGTs6aaAdLAmgIR0CkRj2l/H5rdX2UKGgGR7+39vS+g13uaAdLAmgIR0CkRsC9ytFKdX2UKGgGR7/O1rIo3JgcaAdLA2gIR0CkRouK4x1xdX2UKGgGR7/OoGY8dPtVaAdLA2gIR0CkRhQ9JSR9dX2UKGgGR7+yrjo6jnFHaAdLAmgIR0CkRtAu7HyVdX2UKGgGR7/IGlhw2l2vaAdLA2gIR0CkRlhX8wYcdX2UKGgGR7+71Iy0rsjWaAdLAmgIR0CkRpp9qk/KdX2UKGgGR7/BcDbJwKjSaAdLAmgIR0CkRiLvLHMmdX2UKGgGR7/LJbMX7+DOaAdLA2gIR0CkRuhbOeJ6dX2UKGgGR7/G2XLNfPX1aAdLA2gIR0CkRnALZzxPdX2UKGgGR7/T1SwW3z+WaAdLA2gIR0CkRrOkUKzBdX2UKGgGR7/NmZE2Hck/aAdLA2gIR0CkRjwcHWz4dX2UKGgGR7+367/XGwRoaAdLAmgIR0CkRvfDLr5ZdX2UKGgGR7+2EeyRjjJdaAdLAmgIR0CkRn+eOGTLdX2UKGgGR7/APq9oN/e+aAdLAmgIR0CkRwUlqrR0dX2UKGgGR7/Q/cFhXr+paAdLA2gIR0CkRlCswL3LdX2UKGgGR7/a62fChvitaAdLBGgIR0CkRtJ8OTaCdX2UKGgGR7/OCL/CIk7faAdLA2gIR0CkRpdhiLEUdX2UKGgGR7+lGEwnH/96aAdLAWgIR0CkRtqDbrTqdX2UKGgGR7/RAE+xGDtgaAdLA2gIR0CkRx6AvtdBdX2UKGgGR7/D3QD3dsSCaAdLAmgIR0CkRuhuXNTtdX2UKGgGR7/Ug5zYEnstaAdLBGgIR0CkRrOvdM0xdX2UKGgGR7/cTB68g6ltaAdLBWgIR0CkRnfsVtXQdX2UKGgGR7/hLNwBHTZyaAdLBWgIR0CkR0ZamoBJdX2UKGgGR7/R41P3ztkXaAdLBGgIR0CkRwmlANXpdX2UKGgGR7/KQ176YVqOaAdLA2gIR0CkRs6bWmP6dX2UKGgGR7/X5v99+gDiaAdLBGgIR0CkRpsJpnHvdX2UKGgGR7/OfFrEcbR4aAdLA2gIR0CkRyQcghbGdX2UKGgGR7/Ye4Cp3os7aAdLBGgIR0CkR2jjin50dX2UKGgGR7/XVbRnezlcaAdLBGgIR0CkRvFtj0+UdX2UKGgGR7/Sm+0w8GLUaAdLA2gIR0CkRrU8eS0TdX2UKGgGR7/JKqXF98Z2aAdLA2gIR0CkRzouoP07dX2UKGgGR7/QDye7L+xXaAdLA2gIR0CkR37eVLSNdX2UKGgGR7+6eiBXjlxPaAdLAmgIR0CkR5DdP+GXdX2UKGgGR7/RYc/+sHSnaAdLA2gIR0CkR1QY1pCbdX2UKGgGR7/YLOzIFNcoaAdLBWgIR0CkRxj9XLeRdX2UKGgGR7/Hd0JWvKU3aAdLA2gIR0CkR6boB7u2dX2UKGgGR7/QM36yjYZmaAdLA2gIR0CkR2pEH+qBdX2UKGgGR7/Gay8jAzpHaAdLA2gIR0CkRy9JJ5E/dX2UKGgGR7/kpaq0dBBzaAdLCGgIR0CkRvMNtqHodX2UKGgGR7+nVqesgdOqaAdLAWgIR0CkRzu4PPLQdX2UKGgGR7/CmJm/WUbDaAdLAmgIR0CkR0k7GNrCdX2UKGgGR7/ON6PbO/tZaAdLA2gIR0CkRw1/DtPYdX2UKGgGR7/XuRLbpNbkaAdLBGgIR0CkR8oGpuMudX2UKGgGR7/d21D0Dlo2aAdLBGgIR0CkR40i6g/UdX2UKGgGR7/Fw5vLowEhaAdLA2gIR0CkR2V5KODKdX2UKGgGR7/NGo73fyf+aAdLA2gIR0CkRymCyyD7dX2UKGgGR7/TkjX4CZF5aAdLA2gIR0CkR+XlS0jUdX2UKGgGR7/LWYF7laKUaAdLA2gIR0CkR6kzGgjAdX2UKGgGR7+j1kDp1RtQaAdLAWgIR0CkR7CQkonbdX2UKGgGR7+4hHLA57w8aAdLAmgIR0CkRzj+717IdX2UKGgGR7/PwmVqveP8aAdLA2gIR0CkR3yLqD9PdX2UKGgGR7+5rzoUzsQeaAdLAmgIR0CkR7850bLmdX2UKGgGR7/Weq7yxzJZaAdLBGgIR0CkSAb+DOC5dX2UKGgGR7/RFefI0ZWJaAdLA2gIR0CkR1JZwGW2dX2UKGgGR7/R08NhE0BPaAdLA2gIR0CkR5Xd0q6OdX2UKGgGR7++ZE2Hck+paAdLAmgIR0CkSBTtb9qDdX2UKGgGR7/KpvxYq5LAaAdLA2gIR0CkR9fzJ6ppdX2UKGgGR7/SN+LFXJYDaAdLA2gIR0CkR2f5ULlWdX2UKGgGR7/H7CSA6MisaAdLA2gIR0CkR6wBYFJQdX2UKGgGR7/SG5c1O0swaAdLA2gIR0CkR/JdSl3ydX2UKGgGR7/NgZTAFgUlaAdLBGgIR0CkSDZGz8gqdX2UKGgGR7/OiYb83uNQaAdLA2gIR0CkR8YlpoK2dX2UKGgGR7/Yz19ORDCxaAdLBGgIR0CkR4ohyKekdX2UKGgGR7/DmYBvJiiJaAdLAmgIR0CkSEYOc2BKdX2UKGgGR7/QBCUornTzaAdLA2gIR0CkSAlERaoudX2UKGgGR7+n8XN1QqI8aAdLAWgIR0CkSE3sHB1tdX2UKGgGR7+08La24NI9aAdLAmgIR0CkSBuuA7PqdX2UKGgGR7/T4eLehwl0aAdLBGgIR0CkR6rX18LKdX2UKGgGR7/Hq+Jxeb/faAdLA2gIR0CkSGaisXBQdX2UKGgGR7/Plbu+h4+saAdLA2gIR0CkSDCOFQEZdX2UKGgGR7+5mjCYTj//aAdLAmgIR0CkR7jx9XtCdX2UKGgGR7/eGViWmgrZaAdLB2gIR0CkR/xBE8aGdX2UKGgGR7/KblzU7Sy/aAdLA2gIR0CkSH+XAuZkdX2UKGgGR7/ASkj5bhWHaAdLAmgIR0CkR8rs0HhTdX2UKGgGR7/As+3Ytg8baAdLAmgIR0CkSA5hBqsVdX2UKGgGR7/V7TlT3qRmaAdLBGgIR0CkSFBt+CsfdX2UKGgGR7+0bfgrH2h7aAdLAmgIR0CkSBwdbPhRdX2UKGgGR7/F6+FlCkXUaAdLA2gIR0CkR9/gJkXldX2UKGgGR7/XJWeYlY2baAdLBGgIR0CkSJwRwqAjdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (701 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.22259414941072464, "std_reward": 0.09284625392930475, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-17T16:23:54.814148"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e6dbac59f0f05155bccd2d3279f10a5dc427f08e42c36e5380d0af8f9307780
|
3 |
+
size 2623
|