federicovolponi commited on
Commit
16c59c8
·
verified ·
1 Parent(s): 6b2c4b8

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,963 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Snowflake/snowflake-arctic-embed-m
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@5
10
+ - cosine_precision@10
11
+ - cosine_recall@5
12
+ - cosine_recall@10
13
+ - cosine_ndcg@5
14
+ - cosine_ndcg@10
15
+ - cosine_mrr@5
16
+ - cosine_mrr@10
17
+ - cosine_map@5
18
+ - cosine_map@10
19
+ pipeline_tag: sentence-similarity
20
+ tags:
21
+ - sentence-transformers
22
+ - sentence-similarity
23
+ - feature-extraction
24
+ - generated_from_trainer
25
+ - loss:CoSENTLoss
26
+ - dataset_size:7232
27
+ - loss:WeightedMultipleNegativesRankingLoss
28
+ widget:
29
+ - source_sentence: ', antenna, or other sensor to attain mission performance levels
30
+ that
31
+
32
+ currently cannot be achieved by a monolithic satellite. Most aspects of this concept
33
+ have been widely studied, but
34
+
35
+ the first implementation has yet to be realized, with the exception of a few initial
36
+ experiments.
37
+
38
+ A distributed satellite system taxonomy is shown in Fig. 1 with a discussion of
39
+ current and planned systems to
40
+
41
+ follow. At the end of this section, a candidate distributed space mission is presented
42
+ as a common reference for
43
+
44
+ Table 1 presents a selection of current distributed satellite systems, grouped
45
+ in the four typical mission
46
+
47
+ categories'
48
+ sentences:
49
+ - 'What is the precision that the system is aiming for in terms of tracking error?
50
+
51
+
52
+ '
53
+ - 'What is the main challenge in implementing a distributed satellite system?
54
+
55
+
56
+ '
57
+ - 'Who are the authors of the NASA document "Space Radiation Cancer Risk Projections
58
+ for Explorative Missions: Uncertainty Reduction and Mitigation"?
59
+
60
+
61
+ '
62
+ - source_sentence: ':250,000 scale for regional context) . Near-term efforts should
63
+ focus on high-priority locations .
64
+
65
+ [16] Terrain hazard (e .g ., slope, surface roughness), line-of-sight (i .e .,
66
+ viewshed), and time-dependent
67
+
68
+ illumination maps at appropriate scales (e .g ., best-available supported by the
69
+ data) are high-priority derived products essential in mission planning, and they
70
+ should be made available as soon as possible .
71
+
72
+ [17] South polar data products could be initially controlled to coarser data and
73
+ known surface reference points to support early Artemis missions and other surface
74
+ activities, but establishment of a local control network applied to all necessary
75
+ data layers would facilitate interoperability and provide more precision for specific
76
+ sites .
77
+
78
+ Higher-order data products are tied to controlled foundational data and are derived
79
+ from source data, such as measurements of elemental abundance, temperature or
80
+ reflectance at multiple wavelengths, observations of solar illumination, and output
81
+ from space weather models . Higher-order data products derived from these source
82
+ data will play an essential role in planning and executing south polar missions
83
+ . Planning the science activities to be carried out on the lunar surface will
84
+ be based on these higher-order data products, and, in turn, the science returned
85
+ by those activities will be used to update those same products . For example,
86
+ geologic maps based on remotely sensed data prior to early Artemis landings will
87
+ be a likely outcome of site assessments and will form the critical basis for traverse
88
+ plans and planning of science tasks . The observations, samples, and measurements
89
+ made during Artemis surface activities will feed back into updating the geologic
90
+ maps, to the benefit of future crewed or robotic missions to the same area . Similarly,
91
+ resource maps will drive the selection of landing sites for missions focused on
92
+ resource discovery, characterization, and utilization, and the findings of those
93
+ missions will be used to iteratively update the resource maps . In these cases,
94
+ and others'
95
+ sentences:
96
+ - 'What are the specifications of the Theia imager that make it suitable for quantitative
97
+ remote sensing studies?
98
+
99
+
100
+ '
101
+ - 'Who supported the first study?
102
+
103
+
104
+ '
105
+ - 'What are the essential derived products in mission planning, and why are they
106
+ crucial for south polar missions?
107
+
108
+
109
+ '
110
+ - source_sentence: ', there are still
111
+
112
+ some challenges to be overcome it is shown that it is possible to perform such
113
+ links. Furthermore,
114
+
115
+ recommendations for future operations of optical links were provided.
116
+
117
+ FLP is also integrated in the educational aspects of the Institute. Many future
118
+ aerospace engineers were
119
+
120
+ trained for satellite operations and Earth Observations and the satellite will
121
+ be used to train operators
122
+
123
+ Further investigation of the Attitude Control is required for the stabilization
124
+ of the optical links on
125
+
126
+ other G/S as Oberpfaffenhofen. However, future projects might benefit from more
127
+ standardization on
128
+
129
+ the side of G/S Feedback for optical links. Overall Flying Laptop is a stable
130
+ platform for technology demonstration, Earth Observation, and ed-
131
+
132
+ 588. [Online]. Available'
133
+ sentences:
134
+ - 'What are the remaining challenges that need to be addressed for the successful
135
+ implementation of optical links?
136
+
137
+
138
+ '
139
+ - 'What are the benefits of enhancing the radiometric resolution of VLEO satellite
140
+ systems?
141
+
142
+
143
+ '
144
+ - 'What is the reason for using the uncoupled approach for the radiation calculations
145
+ in this study?
146
+
147
+
148
+ '
149
+ - source_sentence: ': they are visible on the waterfall plots with a very high amplitude.
150
+ Moreover, some peaks appear on waterfall plots while they are not
151
+
152
+ visible on zero speed curves. These peaks correspond to first order unbalance,
153
+ engine orders or wheel eigenmodes. By repeating the tests with different configurations
154
+ (without ventilation, changing the axes, etc...), conclusions have been made and
155
+ are presented in table 4.
156
+
157
+ It is necessary to check if the modes presented in table 4 do not cross the order
158
+ 1 unbalance or the rocking mode. The visible lines starting from the origin and
159
+ evolving with the rotation speed of the wheel are the engine orders due to the
160
+ imperfections of the wheel. When they cross modes of the wheel, the amplitudes
161
+ corresponding to the crossing are much higher as we can clearly see in Table 2,
162
+ on the x axis waterfall plots at 1050 Hz and 4000 RPM. The waterfall plots allow
163
+ to have a global view on the wheel structure. By looking at these curves, two
164
+ wheels can be compared. For example, higher amplitudes on engine orders mean that
165
+ the wheel has defects. Moreover, a shift of the rocking mode means that the parameters
166
+ of the wheel are different as shown in equations 4.
167
+
168
+ Table 3 summarizes the static and dynamic unbalances calculated on three wheels.
169
+ We notice that they all have the same order of magnitude. Environmental vibration
170
+ and shock tests can vary this value by damaging the wheel. On the other hand,
171
+ bearing defects can be reduced when the wheel is continuously rotated due to the
172
+ running-in process, which can decrease the unbalance value. In general, environmental
173
+ testing has more impact than running-in.
174
+
175
+ When the frequencies are low, the wheel has no trouble following the setpoint.
176
+ At high frequencies, the wheel follows the setpoint but with a loss of amplitude
177
+ and a phase shift'
178
+ sentences:
179
+ - 'What are the peaks that appear on waterfall plots but not on zero speed curves?
180
+
181
+
182
+ '
183
+ - 'Why is separately scheduling the imaging and download tasks a natural choice
184
+ for real-world complex systems?
185
+
186
+
187
+ '
188
+ - 'What are the dominant orbit determination uncertainties?
189
+
190
+
191
+ '
192
+ - source_sentence: ': Block diagram of the 7-band CCD-in-CMOS TDI sensor. Each TX
193
+ slice has two serializers and its own PLL.
194
+
195
+ The CCD bands operate continuously and time interleaved. The output stages for
196
+ the CCD arrays are implemented both at the top and bottom of each band to support
197
+ the bi-directional operation. All 14 output stages in one column are connected
198
+ to one delta-sigma column-level ADC with digital CDS implemented in the digital
199
+ decimator. The outputs of every 128 ADCs are serialized to one of 32 LVDS outputs.
200
+ Two clock signals are also provided via LVDS to synchronize the channels. These
201
+ outputs are capable of running at an aggregate data rate of >50Gb/s using on-chip
202
+ PLLs.
203
+
204
+ The sensor has been processed for Back-Side Illumination and it has been packaged
205
+ in a custom ceramic PGA package. Figure 15 shows a picture of the sensor with
206
+ its 7 bands. The figure shows the front-side and back-side versions of the chip
207
+ side by side.
208
+
209
+ (a) (b) Figure 15: 7-band CCD-in-CMOS TDI chip photograph. FSI shown only for
210
+ reference (a) and BSI version (b).
211
+
212
+ As a proof-of-concept, an RGB butcher-brick filter has been used as glass lid
213
+ for the sensor, to enable multicolor TDI, although filters may be processed directly
214
+ on the wafer as well [9]. The sensor,
215
+
216
+ camera system and a color image captured from the setup are depicted in Figure
217
+ 16, providing evidence that multispectral TDI is viable with the sensor.
218
+
219
+ Figure 16: Colour TDI image captured from the sensor, sensor with RGB color filter
220
+ and camera set-up.
221
+
222
+ Table 3 below shows a comparison of different TDI sensors, including the first
223
+ iteration of our sensor.
224
+
225
+ Integrated drivers
226
+
227
+ The measurements on the first iteration of the SoC verified'
228
+ sentences:
229
+ - 'What is the primary objective of the Zodiac Pioneer Mission?
230
+
231
+
232
+ '
233
+ - 'What is the main topic of the papers listed in the context?
234
+
235
+
236
+ '
237
+ - 'What is the aggregate data rate of the outputs of the 7-band CCD-in-CMOS TDI
238
+ sensor?
239
+
240
+
241
+ '
242
+ model-index:
243
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
244
+ results:
245
+ - task:
246
+ type: information-retrieval
247
+ name: Information Retrieval
248
+ dataset:
249
+ name: dim 768
250
+ type: dim_768
251
+ metrics:
252
+ - type: cosine_accuracy@5
253
+ value: 0.8407960199004975
254
+ name: Cosine Accuracy@5
255
+ - type: cosine_accuracy@10
256
+ value: 0.8843283582089553
257
+ name: Cosine Accuracy@10
258
+ - type: cosine_precision@5
259
+ value: 0.16815920398009948
260
+ name: Cosine Precision@5
261
+ - type: cosine_precision@10
262
+ value: 0.08843283582089552
263
+ name: Cosine Precision@10
264
+ - type: cosine_recall@5
265
+ value: 0.8407960199004975
266
+ name: Cosine Recall@5
267
+ - type: cosine_recall@10
268
+ value: 0.8843283582089553
269
+ name: Cosine Recall@10
270
+ - type: cosine_ndcg@5
271
+ value: 0.749593576396566
272
+ name: Cosine Ndcg@5
273
+ - type: cosine_ndcg@10
274
+ value: 0.7638900783774348
275
+ name: Cosine Ndcg@10
276
+ - type: cosine_mrr@5
277
+ value: 0.7189676616915421
278
+ name: Cosine Mrr@5
279
+ - type: cosine_mrr@10
280
+ value: 0.7249965450525153
281
+ name: Cosine Mrr@10
282
+ - type: cosine_map@5
283
+ value: 0.7189676616915422
284
+ name: Cosine Map@5
285
+ - type: cosine_map@10
286
+ value: 0.7249965450525152
287
+ name: Cosine Map@10
288
+ - type: cosine_accuracy@5
289
+ value: 0.9198717948717948
290
+ name: Cosine Accuracy@5
291
+ - type: cosine_accuracy@10
292
+ value: 0.9551282051282052
293
+ name: Cosine Accuracy@10
294
+ - type: cosine_precision@5
295
+ value: 0.18397435897435896
296
+ name: Cosine Precision@5
297
+ - type: cosine_precision@10
298
+ value: 0.0955128205128205
299
+ name: Cosine Precision@10
300
+ - type: cosine_recall@5
301
+ value: 0.9198717948717948
302
+ name: Cosine Recall@5
303
+ - type: cosine_recall@10
304
+ value: 0.9551282051282052
305
+ name: Cosine Recall@10
306
+ - type: cosine_ndcg@5
307
+ value: 0.786039298615645
308
+ name: Cosine Ndcg@5
309
+ - type: cosine_ndcg@10
310
+ value: 0.7975208279742617
311
+ name: Cosine Ndcg@10
312
+ - type: cosine_mrr@5
313
+ value: 0.740758547008547
314
+ name: Cosine Mrr@5
315
+ - type: cosine_mrr@10
316
+ value: 0.7455369861619862
317
+ name: Cosine Mrr@10
318
+ - type: cosine_map@5
319
+ value: 0.740758547008547
320
+ name: Cosine Map@5
321
+ - type: cosine_map@10
322
+ value: 0.7455369861619863
323
+ name: Cosine Map@10
324
+ - task:
325
+ type: information-retrieval
326
+ name: Information Retrieval
327
+ dataset:
328
+ name: dim 512
329
+ type: dim_512
330
+ metrics:
331
+ - type: cosine_accuracy@5
332
+ value: 0.8345771144278606
333
+ name: Cosine Accuracy@5
334
+ - type: cosine_accuracy@10
335
+ value: 0.8781094527363185
336
+ name: Cosine Accuracy@10
337
+ - type: cosine_precision@5
338
+ value: 0.16691542288557212
339
+ name: Cosine Precision@5
340
+ - type: cosine_precision@10
341
+ value: 0.08781094527363183
342
+ name: Cosine Precision@10
343
+ - type: cosine_recall@5
344
+ value: 0.8345771144278606
345
+ name: Cosine Recall@5
346
+ - type: cosine_recall@10
347
+ value: 0.8781094527363185
348
+ name: Cosine Recall@10
349
+ - type: cosine_ndcg@5
350
+ value: 0.7384076037005772
351
+ name: Cosine Ndcg@5
352
+ - type: cosine_ndcg@10
353
+ value: 0.7524024562602603
354
+ name: Cosine Ndcg@10
355
+ - type: cosine_mrr@5
356
+ value: 0.7060530679933663
357
+ name: Cosine Mrr@5
358
+ - type: cosine_mrr@10
359
+ value: 0.7117739674642659
360
+ name: Cosine Mrr@10
361
+ - type: cosine_map@5
362
+ value: 0.7060530679933666
363
+ name: Cosine Map@5
364
+ - type: cosine_map@10
365
+ value: 0.7117739674642659
366
+ name: Cosine Map@10
367
+ - type: cosine_accuracy@5
368
+ value: 0.907051282051282
369
+ name: Cosine Accuracy@5
370
+ - type: cosine_accuracy@10
371
+ value: 0.9519230769230769
372
+ name: Cosine Accuracy@10
373
+ - type: cosine_precision@5
374
+ value: 0.1814102564102564
375
+ name: Cosine Precision@5
376
+ - type: cosine_precision@10
377
+ value: 0.09519230769230767
378
+ name: Cosine Precision@10
379
+ - type: cosine_recall@5
380
+ value: 0.907051282051282
381
+ name: Cosine Recall@5
382
+ - type: cosine_recall@10
383
+ value: 0.9519230769230769
384
+ name: Cosine Recall@10
385
+ - type: cosine_ndcg@5
386
+ value: 0.7793612708940784
387
+ name: Cosine Ndcg@5
388
+ - type: cosine_ndcg@10
389
+ value: 0.7942949173487753
390
+ name: Cosine Ndcg@10
391
+ - type: cosine_mrr@5
392
+ value: 0.7363247863247866
393
+ name: Cosine Mrr@5
394
+ - type: cosine_mrr@10
395
+ value: 0.7427375864875867
396
+ name: Cosine Mrr@10
397
+ - type: cosine_map@5
398
+ value: 0.7363247863247864
399
+ name: Cosine Map@5
400
+ - type: cosine_map@10
401
+ value: 0.7427375864875865
402
+ name: Cosine Map@10
403
+ - task:
404
+ type: information-retrieval
405
+ name: Information Retrieval
406
+ dataset:
407
+ name: dim 256
408
+ type: dim_256
409
+ metrics:
410
+ - type: cosine_accuracy@5
411
+ value: 0.8146766169154229
412
+ name: Cosine Accuracy@5
413
+ - type: cosine_accuracy@10
414
+ value: 0.8631840796019901
415
+ name: Cosine Accuracy@10
416
+ - type: cosine_precision@5
417
+ value: 0.16293532338308458
418
+ name: Cosine Precision@5
419
+ - type: cosine_precision@10
420
+ value: 0.08631840796019902
421
+ name: Cosine Precision@10
422
+ - type: cosine_recall@5
423
+ value: 0.8146766169154229
424
+ name: Cosine Recall@5
425
+ - type: cosine_recall@10
426
+ value: 0.8631840796019901
427
+ name: Cosine Recall@10
428
+ - type: cosine_ndcg@5
429
+ value: 0.7159371426767726
430
+ name: Cosine Ndcg@5
431
+ - type: cosine_ndcg@10
432
+ value: 0.731814701526023
433
+ name: Cosine Ndcg@10
434
+ - type: cosine_mrr@5
435
+ value: 0.6826907131011605
436
+ name: Cosine Mrr@5
437
+ - type: cosine_mrr@10
438
+ value: 0.6893587617468213
439
+ name: Cosine Mrr@10
440
+ - type: cosine_map@5
441
+ value: 0.6826907131011608
442
+ name: Cosine Map@5
443
+ - type: cosine_map@10
444
+ value: 0.6893587617468214
445
+ name: Cosine Map@10
446
+ - type: cosine_accuracy@5
447
+ value: 0.8846153846153846
448
+ name: Cosine Accuracy@5
449
+ - type: cosine_accuracy@10
450
+ value: 0.9455128205128205
451
+ name: Cosine Accuracy@10
452
+ - type: cosine_precision@5
453
+ value: 0.1769230769230769
454
+ name: Cosine Precision@5
455
+ - type: cosine_precision@10
456
+ value: 0.09455128205128205
457
+ name: Cosine Precision@10
458
+ - type: cosine_recall@5
459
+ value: 0.8846153846153846
460
+ name: Cosine Recall@5
461
+ - type: cosine_recall@10
462
+ value: 0.9455128205128205
463
+ name: Cosine Recall@10
464
+ - type: cosine_ndcg@5
465
+ value: 0.7547512036424451
466
+ name: Cosine Ndcg@5
467
+ - type: cosine_ndcg@10
468
+ value: 0.7747939646301274
469
+ name: Cosine Ndcg@10
470
+ - type: cosine_mrr@5
471
+ value: 0.7107905982905985
472
+ name: Cosine Mrr@5
473
+ - type: cosine_mrr@10
474
+ value: 0.7192778286528287
475
+ name: Cosine Mrr@10
476
+ - type: cosine_map@5
477
+ value: 0.7107905982905982
478
+ name: Cosine Map@5
479
+ - type: cosine_map@10
480
+ value: 0.7192778286528286
481
+ name: Cosine Map@10
482
+ ---
483
+
484
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
485
+
486
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
487
+
488
+ ## Model Details
489
+
490
+ ### Model Description
491
+ - **Model Type:** Sentence Transformer
492
+ - **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision 71bc94c8f9ea1e54fba11167004205a65e5da2cc -->
493
+ - **Maximum Sequence Length:** 512 tokens
494
+ - **Output Dimensionality:** 768 tokens
495
+ - **Similarity Function:** Cosine Similarity
496
+ <!-- - **Training Dataset:** Unknown -->
497
+ <!-- - **Language:** Unknown -->
498
+ <!-- - **License:** Unknown -->
499
+
500
+ ### Model Sources
501
+
502
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
503
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
504
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
505
+
506
+ ### Full Model Architecture
507
+
508
+ ```
509
+ SentenceTransformer(
510
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
511
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
512
+ (2): Normalize()
513
+ )
514
+ ```
515
+
516
+ ## Usage
517
+
518
+ ### Direct Usage (Sentence Transformers)
519
+
520
+ First install the Sentence Transformers library:
521
+
522
+ ```bash
523
+ pip install -U sentence-transformers
524
+ ```
525
+
526
+ Then you can load this model and run inference.
527
+ ```python
528
+ from sentence_transformers import SentenceTransformer
529
+
530
+ # Download from the 🤗 Hub
531
+ model = SentenceTransformer("federicovolponi/Snowflake-snowflake-arctic-embed-m-space-sup")
532
+ # Run inference
533
+ sentences = [
534
+ ': Block diagram of the 7-band CCD-in-CMOS TDI sensor. Each TX slice has two serializers and its own PLL.\nThe CCD bands operate continuously and time interleaved. The output stages for the CCD arrays are implemented both at the top and bottom of each band to support the bi-directional operation. All 14 output stages in one column are connected to one delta-sigma column-level ADC with digital CDS implemented in the digital decimator. The outputs of every 128 ADCs are serialized to one of 32 LVDS outputs. Two clock signals are also provided via LVDS to synchronize the channels. These outputs are capable of running at an aggregate data rate of >50Gb/s using on-chip PLLs.\nThe sensor has been processed for Back-Side Illumination and it has been packaged in a custom ceramic PGA package. Figure 15 shows a picture of the sensor with its 7 bands. The figure shows the front-side and back-side versions of the chip side by side.\n(a) (b) Figure 15: 7-band CCD-in-CMOS TDI chip photograph. FSI shown only for reference (a) and BSI version (b).\nAs a proof-of-concept, an RGB butcher-brick filter has been used as glass lid for the sensor, to enable multicolor TDI, although filters may be processed directly on the wafer as well [9]. The sensor,\ncamera system and a color image captured from the setup are depicted in Figure 16, providing evidence that multispectral TDI is viable with the sensor.\nFigure 16: Colour TDI image captured from the sensor, sensor with RGB color filter and camera set-up.\nTable 3 below shows a comparison of different TDI sensors, including the first iteration of our sensor.\nIntegrated drivers\nThe measurements on the first iteration of the SoC verified',
535
+ 'What is the aggregate data rate of the outputs of the 7-band CCD-in-CMOS TDI sensor?\n\n',
536
+ 'What is the primary objective of the Zodiac Pioneer Mission?\n\n',
537
+ ]
538
+ embeddings = model.encode(sentences)
539
+ print(embeddings.shape)
540
+ # [3, 768]
541
+
542
+ # Get the similarity scores for the embeddings
543
+ similarities = model.similarity(embeddings, embeddings)
544
+ print(similarities.shape)
545
+ # [3, 3]
546
+ ```
547
+
548
+ <!--
549
+ ### Direct Usage (Transformers)
550
+
551
+ <details><summary>Click to see the direct usage in Transformers</summary>
552
+
553
+ </details>
554
+ -->
555
+
556
+ <!--
557
+ ### Downstream Usage (Sentence Transformers)
558
+
559
+ You can finetune this model on your own dataset.
560
+
561
+ <details><summary>Click to expand</summary>
562
+
563
+ </details>
564
+ -->
565
+
566
+ <!--
567
+ ### Out-of-Scope Use
568
+
569
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
570
+ -->
571
+
572
+ ## Evaluation
573
+
574
+ ### Metrics
575
+
576
+ #### Information Retrieval
577
+ * Dataset: `dim_768`
578
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
579
+
580
+ | Metric | Value |
581
+ |:--------------------|:----------|
582
+ | cosine_accuracy@5 | 0.8408 |
583
+ | cosine_accuracy@10 | 0.8843 |
584
+ | cosine_precision@5 | 0.1682 |
585
+ | cosine_precision@10 | 0.0884 |
586
+ | cosine_recall@5 | 0.8408 |
587
+ | cosine_recall@10 | 0.8843 |
588
+ | cosine_ndcg@5 | 0.7496 |
589
+ | cosine_ndcg@10 | 0.7639 |
590
+ | cosine_mrr@5 | 0.719 |
591
+ | cosine_mrr@10 | 0.725 |
592
+ | cosine_map@5 | 0.719 |
593
+ | **cosine_map@10** | **0.725** |
594
+
595
+ #### Information Retrieval
596
+ * Dataset: `dim_512`
597
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
598
+
599
+ | Metric | Value |
600
+ |:--------------------|:-----------|
601
+ | cosine_accuracy@5 | 0.8346 |
602
+ | cosine_accuracy@10 | 0.8781 |
603
+ | cosine_precision@5 | 0.1669 |
604
+ | cosine_precision@10 | 0.0878 |
605
+ | cosine_recall@5 | 0.8346 |
606
+ | cosine_recall@10 | 0.8781 |
607
+ | cosine_ndcg@5 | 0.7384 |
608
+ | cosine_ndcg@10 | 0.7524 |
609
+ | cosine_mrr@5 | 0.7061 |
610
+ | cosine_mrr@10 | 0.7118 |
611
+ | cosine_map@5 | 0.7061 |
612
+ | **cosine_map@10** | **0.7118** |
613
+
614
+ #### Information Retrieval
615
+ * Dataset: `dim_256`
616
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
617
+
618
+ | Metric | Value |
619
+ |:--------------------|:-----------|
620
+ | cosine_accuracy@5 | 0.8147 |
621
+ | cosine_accuracy@10 | 0.8632 |
622
+ | cosine_precision@5 | 0.1629 |
623
+ | cosine_precision@10 | 0.0863 |
624
+ | cosine_recall@5 | 0.8147 |
625
+ | cosine_recall@10 | 0.8632 |
626
+ | cosine_ndcg@5 | 0.7159 |
627
+ | cosine_ndcg@10 | 0.7318 |
628
+ | cosine_mrr@5 | 0.6827 |
629
+ | cosine_mrr@10 | 0.6894 |
630
+ | cosine_map@5 | 0.6827 |
631
+ | **cosine_map@10** | **0.6894** |
632
+
633
+ #### Information Retrieval
634
+ * Dataset: `dim_768`
635
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
636
+
637
+ | Metric | Value |
638
+ |:--------------------|:-----------|
639
+ | cosine_accuracy@5 | 0.9199 |
640
+ | cosine_accuracy@10 | 0.9551 |
641
+ | cosine_precision@5 | 0.184 |
642
+ | cosine_precision@10 | 0.0955 |
643
+ | cosine_recall@5 | 0.9199 |
644
+ | cosine_recall@10 | 0.9551 |
645
+ | cosine_ndcg@5 | 0.786 |
646
+ | cosine_ndcg@10 | 0.7975 |
647
+ | cosine_mrr@5 | 0.7408 |
648
+ | cosine_mrr@10 | 0.7455 |
649
+ | cosine_map@5 | 0.7408 |
650
+ | **cosine_map@10** | **0.7455** |
651
+
652
+ #### Information Retrieval
653
+ * Dataset: `dim_512`
654
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
655
+
656
+ | Metric | Value |
657
+ |:--------------------|:-----------|
658
+ | cosine_accuracy@5 | 0.9071 |
659
+ | cosine_accuracy@10 | 0.9519 |
660
+ | cosine_precision@5 | 0.1814 |
661
+ | cosine_precision@10 | 0.0952 |
662
+ | cosine_recall@5 | 0.9071 |
663
+ | cosine_recall@10 | 0.9519 |
664
+ | cosine_ndcg@5 | 0.7794 |
665
+ | cosine_ndcg@10 | 0.7943 |
666
+ | cosine_mrr@5 | 0.7363 |
667
+ | cosine_mrr@10 | 0.7427 |
668
+ | cosine_map@5 | 0.7363 |
669
+ | **cosine_map@10** | **0.7427** |
670
+
671
+ #### Information Retrieval
672
+ * Dataset: `dim_256`
673
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
674
+
675
+ | Metric | Value |
676
+ |:--------------------|:-----------|
677
+ | cosine_accuracy@5 | 0.8846 |
678
+ | cosine_accuracy@10 | 0.9455 |
679
+ | cosine_precision@5 | 0.1769 |
680
+ | cosine_precision@10 | 0.0946 |
681
+ | cosine_recall@5 | 0.8846 |
682
+ | cosine_recall@10 | 0.9455 |
683
+ | cosine_ndcg@5 | 0.7548 |
684
+ | cosine_ndcg@10 | 0.7748 |
685
+ | cosine_mrr@5 | 0.7108 |
686
+ | cosine_mrr@10 | 0.7193 |
687
+ | cosine_map@5 | 0.7108 |
688
+ | **cosine_map@10** | **0.7193** |
689
+
690
+ <!--
691
+ ## Bias, Risks and Limitations
692
+
693
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
694
+ -->
695
+
696
+ <!--
697
+ ### Recommendations
698
+
699
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
700
+ -->
701
+
702
+ ## Training Details
703
+
704
+ ### Training Dataset
705
+
706
+ #### Unnamed Dataset
707
+
708
+
709
+ * Size: 7,232 training samples
710
+ * Columns: <code>positive</code> and <code>anchor</code>
711
+ * Approximate statistics based on the first 1000 samples:
712
+ | | positive | anchor |
713
+ |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
714
+ | type | string | string |
715
+ | details | <ul><li>min: 5 tokens</li><li>mean: 354.69 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 19.21 tokens</li><li>max: 40 tokens</li></ul> |
716
+ * Samples:
717
+ | positive | anchor |
718
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------|
719
+ | <code>, using diverse software or hardware designs may double design and verification costs due to having to build two different components for the same functionality. Hence, although DCLS execution also halves performance efficiency (the corresponding functionality is executed twice), it allows reusing the same design (e.g. the same core design) for the primary and the redundant paths (e.g. with staggered execution), thus containing design and verification costs.<br>Redundancy can be applied at different granularities accord- ing to the sphere of replication (SoR). Choosing the right SoR depends on several tradeoffs like area overheads, re- design costs, fault detection time, and overall system costs. In the context of DCLS, the SoR is placed at the level of the CPU (core), as done for the AURIX processors. This requires including two replicas of the same core and compare their memory transactions, which requires roughly duplicating com- putational resources in the chip and being able to ensure that replicas can provide independent behavior. On the other hand, storage (memories, caches) and communication means (buses, crossbars) do not need to be fully replicated and can build upon Error Correction Codes (ECC) and Cyclic Redundancy Check (CRC) as a form of lightweight redundancy with diversity.<br>HPC ASIL-D capable platforms typically combine a low- performance microcontroller amenable for the automotive do- main (i.e. ASIL-D capable) and an HPC accelerator deliv- ering high computation throughput, but whose adherence to ISO26262 requirements is unknown, so its appropriate use for ASIL-C/D systems needs to be investigated. Without loss of generality, we consider an NVIDIA GPU accelerator, thus analogous to those in NVIDIA Drive and Xavier families for the automotive domain. However, the findings in this paper can easily be extrapolated to other products.<br>Software faults and some hardware faults are regarded as systematic, and it must be proven that their failure risk is residual. However, random hardware faults cannot be avoided, and means are required to prevent them from causing hazards. Those faults can be caused by, for example, voltage droops</code> | <code>What are the advantages of using the same design for the primary and redundant paths in DCLS execution?<br><br></code> |
720
+ | <code>: First, the TT&C spectrum requirements of the new satellites shall be assessed. Second, the utilization of existing TT&C frequency allocations and their potential to incorporate the future number of satellites is studied. Only for the case that this study results in the need for new spectrum, the study groups were asked to investigate new potential TT&C frequency allocations in the frequency ranges 150.05-174 MHz and 400.15-420 MHz. The studies shall be completed for WRC-19.<br>This paper presents the intermediate results of the study groups. A study of the spectrum requirements of small satellites has been completed. The required spectrum for TT&C is expected to be less than 2.5 MHz for downlink and less than 1 MHz for uplink. Consequently, the study groups conducted sharing studies in various bands which will be summarized and evaluated from a satellite developer’s perspective.<br>After the Cubesat design standard was introduced in 1999 and first satellites of this new class have been launched in the subsequent years, small satellites have become increasingly popular in the past five years. Today not only universities use small satellite platforms for education and technology demonstration, but also commercial operators started to develop and deploy satellites with masses of typically less than 50 kg and reasonably short development times. Currently more than hundred new satellites are currently launched into space per year. The increase of launches was recognized by the International Telecommunication Union (ITU) which is responsible for the coordination of the shared use of frequencies. As the first Cubesats were mainly launched by new entrants into the space sector, mandatory regulatory procedures like frequency coordination were omitted or underestimated by the developers. Additionally, the new developers complaint that the existing regulatory procedures are too complicated and time-consuming for satellites with short development times. The ITU therefore decided at the WRC-12 to study the characteristics of picosatellites and nanosatellites and their current practice in filing satellites to the ITU. The studies were concluded in 2015 with two reports on the characteristics [1] and current filing practice [2]. In these reports it was identified that the characteristics that define small satellites (low mass, small dimensions, low power, …) are not relevant from a frequency coordination perspective and that the short development times are still long enough to properly file the systems to the ITU. As a result</code> | <code>What are the spectrum requirements for TT&C of small satellites?<br><br></code> |
721
+ | <code>:287–299, Dec 2019.<br>[20] Tam´as Vink´o and Dario Izzo. Global optimi- sation heuristics and test problems for prelimi- nary spacecraft trajectory design. Technical re- port, 2008.<br>[21] Matej Petkovic, Luke Lucas, Dragi Kocev, Saˇso Dˇzeroski, Redouane Boumghar, and Nikola Simidjievski. Quantifying the effects of gyro- less flying of the mars express spacecraft with machine learning. In 2019 IEEE International<br>[22] Janhavi H. Borse, Dipti D. Patil, Vinod Kumar, and Sudhir Kumar. Soft landing parameter measurements for candidate navigation trajec- tories using deep learning and ai-enabled plan- etary descent. Mathematical Problems in Engi- neering, 2022</code> | <code>What are some of the research topics and methods explored in the provided references?<br><br></code> |
722
+ * Loss: <code>losses.WeightedMultipleNegativesRankingLoss</code> with these parameters:
723
+ ```json
724
+ {
725
+ "scale": 20,
726
+ "similarity_fct": "cos_sim"
727
+ }
728
+ ```
729
+
730
+ ### Evaluation Dataset
731
+
732
+ #### Unnamed Dataset
733
+
734
+
735
+ * Size: 804 evaluation samples
736
+ * Columns: <code>positive</code> and <code>anchor</code>
737
+ * Approximate statistics based on the first 1000 samples:
738
+ | | positive | anchor |
739
+ |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
740
+ | type | string | string |
741
+ | details | <ul><li>min: 4 tokens</li><li>mean: 351.15 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 19.36 tokens</li><li>max: 45 tokens</li></ul> |
742
+ * Samples:
743
+ | positive | anchor |
744
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------|
745
+ | <code>, the total number of test thermocouples has been rationalized taking into account redundancy needs, accommodation constraints and hardware passivation needs for flight. The test is subdivided into 19 phases (see Figure 12) with two phases before and after the test for the health check functional tests under room conditions. Functional tests demonstrate anomalies such as the PCDU Reset and operational malfunctions of the RAX instrument at its high temperatures. The PCDU Reset anomaly was solved during the test by a software patch and validated during the final hot and cold plateaus. To address the RAX anomaly at hot, various test configurations were simulated using the thermal numerical model during the test to actually perform RAX functional test at an intermediate plateau facilitating mission operational constraints for flight. Data collected from hot and cold thermal balance test phases, as well as the rover OFF transition from hot to cold, are the inputs for correlation activities conducted post-TV/TB test. The thermal numerical model updates mainly focus on conductive couplings</code> | <code>What was the solution to the PCDU Reset anomaly during the test?<br><br></code> |
746
+ | <code>, where +Z axis orients to the earth, and sun pointing attitude mode during day time<br>orienting -Z axis to the sun. Therefore, attitude control subsystem is required to maneuver the satellite attitude twice per revolution around its pitch axis. Figure 6 shows concept of the attitude maneuverer. Another attitude maneuverer is necessary to perform SAR observation and SAR data download to a to ground station, because X-band transmit antenna is oriented to +Z, so the satellite has to offset its attitude to orient the X-band transmit antenna toward the ground station.<br>3.4 High pointing accuracy<br>Disturbance torque and system momentum profiles during few revolutions were estimated as shown in Figure 7 and 8. Four micro reaction wheels, which can respond to these profiles were selected which enable attitude maneuvers within a short period of time. In order to perform a pitch attitude maneuver quickly, two wheels are located on pitch axis while one wheel was located on each of the remaining roll and yaw axes. Figure 9 shows the satellite attitudes during SAR observation. There are three kinds of attitude, strip map mode, sliding spot light mode, and spotlight mode. Large change of momentum is required for pitch axis when the satellite is in spotlight mode. However, two pitch reaction wheels do not generate enough momentum to execute spotlight mode. So, sliding spotlight mode was selected for high resolution SAR observation mode instead of spotlight mode, in order to relax the torque and momentum requirements to the pitch wheels. In addition, two pitch<br>Figure 7. Disturbance torque profile Figure 8. System momentum profile<br>reaction wheels are accelerated to plus direction or minus direction by using magnet torque before observation. In order to obtain a high resolution SAR data, high attitude control accuracy is required for spotlight mode observation. To achieve high pointing accuracy against a defined ground target point, the attitude control loop applied feed forward compensation with estimated attitude angle and rate. Figure 10 shows an example of dynamic error during a spotlight mode observation maneuver.[4]<br>Equipment for SAR mission consumes total large power more than 1300W, therefore PCDU has a risk of causing electrical and RF influence to the bus power and signal line. In order to research the system, electrical interface check was performed using bread board model of PCDU, battery</code> | <code>What is the reason for selecting sliding spotlight mode instead of spotlight mode for high resolution SAR observation?<br><br></code> |
747
+ | <code>, body shape and motion assumptions. Then, ORSAT uses DCA to determine the reentry risk posed to the Earth’s<br>population based on the year of reentry and orbit inclination. It also predicts impact kinetic energy (impact velocity and impact mass) of objects that survive reentry[18]. ORSAT has been in use for the last decade and currently in its 6.0 version. However, unlike DAS, OR-<br>SAT is not readily available. Only personnel at the Johnson Space Center, Orbital Debris Program Office run ORSAT. ORSAT is limited to ballistic reentry, only tumbling motions or<br>stable orientations of objects are allowed which produce no lift. Partial melting of objects is considered by a demise factor and almost all materials in the database are temperature de- pendent. Heating by oxidation is also considered [20]. Therefore, ORSAT determines when<br>and if a reentry object demises by using integrated trajectory, atmospheric, aerodynamic, aero-thermodynamic, and thermal models as outlined in section 3.1 [17, 18, 20].<br>Reentry demisability analysis using DAS requires the spacecraft to be defined to the level of each individual hardware part constituting the spacecraft. This step facilitates population<br>of the DAS Spacecraft Definition Module . Section 3.2.1 illustrates a generic spacecraft subdivision approach that can be followed to itemize the individual parts spacecraft parts.<br>Subsequently, non-demisable parts are identified before or by the actual reentry analysis as explained in section 3.2.2.<br>Itemization of the demisable spacecraft basic parts can be best approached by decompos- ing the spacecraft according to the Hierarchical System Terminology defined in the NASA Systems Engineering Handbook [14]. Tables 3.2, 3.3 and 3.4 illustrate a generic approach<br>to decompose a spacecraft into basic parts [29, 30, 9] excluding the payload. Description of the specific product for the basic part identified completes the process. Though slight vari-<br>ations are likely to occur in the decomposition of different missions, the Generic Spacecraft Subsystems Hierarchical Subdivision approach is robust, hence</code> | <code>What is the limitation of ORSAT in terms of object motion?<br><br></code> |
748
+ * Loss: <code>losses.WeightedMultipleNegativesRankingLoss</code> with these parameters:
749
+ ```json
750
+ {
751
+ "scale": 20,
752
+ "similarity_fct": "cos_sim"
753
+ }
754
+ ```
755
+
756
+ ### Training Hyperparameters
757
+ #### Non-Default Hyperparameters
758
+
759
+ - `eval_strategy`: steps
760
+ - `per_device_train_batch_size`: 32
761
+ - `per_device_eval_batch_size`: 32
762
+ - `learning_rate`: 3e-06
763
+ - `weight_decay`: 0.001
764
+ - `num_train_epochs`: 20
765
+ - `bf16`: True
766
+ - `tf32`: False
767
+ - `load_best_model_at_end`: True
768
+ - `batch_sampler`: no_duplicates
769
+
770
+ #### All Hyperparameters
771
+ <details><summary>Click to expand</summary>
772
+
773
+ - `overwrite_output_dir`: False
774
+ - `do_predict`: False
775
+ - `eval_strategy`: steps
776
+ - `prediction_loss_only`: True
777
+ - `per_device_train_batch_size`: 32
778
+ - `per_device_eval_batch_size`: 32
779
+ - `per_gpu_train_batch_size`: None
780
+ - `per_gpu_eval_batch_size`: None
781
+ - `gradient_accumulation_steps`: 1
782
+ - `eval_accumulation_steps`: None
783
+ - `learning_rate`: 3e-06
784
+ - `weight_decay`: 0.001
785
+ - `adam_beta1`: 0.9
786
+ - `adam_beta2`: 0.999
787
+ - `adam_epsilon`: 1e-08
788
+ - `max_grad_norm`: 1.0
789
+ - `num_train_epochs`: 20
790
+ - `max_steps`: -1
791
+ - `lr_scheduler_type`: linear
792
+ - `lr_scheduler_kwargs`: {}
793
+ - `warmup_ratio`: 0.0
794
+ - `warmup_steps`: 0
795
+ - `log_level`: passive
796
+ - `log_level_replica`: warning
797
+ - `log_on_each_node`: True
798
+ - `logging_nan_inf_filter`: True
799
+ - `save_safetensors`: True
800
+ - `save_on_each_node`: False
801
+ - `save_only_model`: False
802
+ - `restore_callback_states_from_checkpoint`: False
803
+ - `no_cuda`: False
804
+ - `use_cpu`: False
805
+ - `use_mps_device`: False
806
+ - `seed`: 42
807
+ - `data_seed`: None
808
+ - `jit_mode_eval`: False
809
+ - `use_ipex`: False
810
+ - `bf16`: True
811
+ - `fp16`: False
812
+ - `fp16_opt_level`: O1
813
+ - `half_precision_backend`: auto
814
+ - `bf16_full_eval`: False
815
+ - `fp16_full_eval`: False
816
+ - `tf32`: False
817
+ - `local_rank`: 0
818
+ - `ddp_backend`: None
819
+ - `tpu_num_cores`: None
820
+ - `tpu_metrics_debug`: False
821
+ - `debug`: []
822
+ - `dataloader_drop_last`: False
823
+ - `dataloader_num_workers`: 0
824
+ - `dataloader_prefetch_factor`: None
825
+ - `past_index`: -1
826
+ - `disable_tqdm`: False
827
+ - `remove_unused_columns`: True
828
+ - `label_names`: None
829
+ - `load_best_model_at_end`: True
830
+ - `ignore_data_skip`: False
831
+ - `fsdp`: []
832
+ - `fsdp_min_num_params`: 0
833
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
834
+ - `fsdp_transformer_layer_cls_to_wrap`: None
835
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
836
+ - `deepspeed`: None
837
+ - `label_smoothing_factor`: 0.0
838
+ - `optim`: adamw_torch
839
+ - `optim_args`: None
840
+ - `adafactor`: False
841
+ - `group_by_length`: False
842
+ - `length_column_name`: length
843
+ - `ddp_find_unused_parameters`: None
844
+ - `ddp_bucket_cap_mb`: None
845
+ - `ddp_broadcast_buffers`: False
846
+ - `dataloader_pin_memory`: True
847
+ - `dataloader_persistent_workers`: False
848
+ - `skip_memory_metrics`: True
849
+ - `use_legacy_prediction_loop`: False
850
+ - `push_to_hub`: False
851
+ - `resume_from_checkpoint`: None
852
+ - `hub_model_id`: None
853
+ - `hub_strategy`: every_save
854
+ - `hub_private_repo`: False
855
+ - `hub_always_push`: False
856
+ - `gradient_checkpointing`: False
857
+ - `gradient_checkpointing_kwargs`: None
858
+ - `include_inputs_for_metrics`: False
859
+ - `eval_do_concat_batches`: True
860
+ - `fp16_backend`: auto
861
+ - `push_to_hub_model_id`: None
862
+ - `push_to_hub_organization`: None
863
+ - `mp_parameters`:
864
+ - `auto_find_batch_size`: False
865
+ - `full_determinism`: False
866
+ - `torchdynamo`: None
867
+ - `ray_scope`: last
868
+ - `ddp_timeout`: 1800
869
+ - `torch_compile`: False
870
+ - `torch_compile_backend`: None
871
+ - `torch_compile_mode`: None
872
+ - `dispatch_batches`: None
873
+ - `split_batches`: None
874
+ - `include_tokens_per_second`: False
875
+ - `include_num_input_tokens_seen`: False
876
+ - `neftune_noise_alpha`: None
877
+ - `optim_target_modules`: None
878
+ - `batch_eval_metrics`: False
879
+ - `batch_sampler`: no_duplicates
880
+ - `multi_dataset_batch_sampler`: proportional
881
+
882
+ </details>
883
+
884
+ ### Training Logs
885
+ | Epoch | Step | Training Loss | loss | dim_256_cosine_map@10 | dim_512_cosine_map@10 | dim_768_cosine_map@10 |
886
+ |:------:|:----:|:-------------:|:------:|:---------------------:|:---------------------:|:---------------------:|
887
+ | 0.4425 | 100 | 0.5883 | - | - | - | - |
888
+ | 0.8850 | 200 | 0.2765 | - | - | - | - |
889
+ | 1.3274 | 300 | 0.2047 | - | - | - | - |
890
+ | 1.7699 | 400 | 0.1628 | - | - | - | - |
891
+ | 2.2124 | 500 | 0.1519 | 0.1204 | 0.7094 | 0.7271 | 0.7266 |
892
+ | 2.6549 | 600 | 0.1309 | - | - | - | - |
893
+ | 3.0973 | 700 | 0.1228 | - | - | - | - |
894
+ | 3.5398 | 800 | 0.1062 | - | - | - | - |
895
+ | 3.9823 | 900 | 0.097 | - | - | - | - |
896
+ | 4.4248 | 1000 | 0.0853 | 0.1026 | 0.7281 | 0.7409 | 0.7468 |
897
+ | 4.8673 | 1100 | 0.086 | - | - | - | - |
898
+ | 5.3097 | 1200 | 0.0723 | - | - | - | - |
899
+ | 5.7522 | 1300 | 0.0678 | - | - | - | - |
900
+ | 6.1947 | 1400 | 0.0655 | - | - | - | - |
901
+ | 6.6372 | 1500 | 0.0583 | 0.0970 | 0.7252 | 0.7479 | 0.7502 |
902
+ | 7.0796 | 1600 | 0.0586 | - | - | - | - |
903
+ | 7.5221 | 1700 | 0.0521 | - | - | - | - |
904
+ | 7.9646 | 1800 | 0.049 | - | - | - | - |
905
+ | 8.4071 | 1900 | 0.0437 | - | - | - | - |
906
+ | 8.8496 | 2000 | 0.0443 | 0.0974 | 0.7193 | 0.7427 | 0.7455 |
907
+
908
+
909
+ ### Framework Versions
910
+ - Python: 3.12.0
911
+ - Sentence Transformers: 3.0.1
912
+ - Transformers: 4.41.2
913
+ - PyTorch: 2.3.1+cu118
914
+ - Accelerate: 0.31.0
915
+ - Datasets: 2.20.0
916
+ - Tokenizers: 0.19.1
917
+
918
+ ## Citation
919
+
920
+ ### BibTeX
921
+
922
+ #### Sentence Transformers
923
+ ```bibtex
924
+ @inproceedings{reimers-2019-sentence-bert,
925
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
926
+ author = "Reimers, Nils and Gurevych, Iryna",
927
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
928
+ month = "11",
929
+ year = "2019",
930
+ publisher = "Association for Computational Linguistics",
931
+ url = "https://arxiv.org/abs/1908.10084",
932
+ }
933
+ ```
934
+
935
+ #### WeightedMultipleNegativesRankingLoss
936
+ ```bibtex
937
+ @misc{henderson2017efficient,
938
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
939
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
940
+ year={2017},
941
+ eprint={1705.00652},
942
+ archivePrefix={arXiv},
943
+ primaryClass={cs.CL}
944
+ }
945
+ ```
946
+
947
+ <!--
948
+ ## Glossary
949
+
950
+ *Clearly define terms in order to be accessible across audiences.*
951
+ -->
952
+
953
+ <!--
954
+ ## Model Card Authors
955
+
956
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
957
+ -->
958
+
959
+ <!--
960
+ ## Model Card Contact
961
+
962
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
963
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/fvolponi/data/models/sup-Snowflake-snowflake-arctic-embed-m-w1-l3e-06-08181612/checkpoint-2000",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.1+cu118"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": null
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f73c6cd953f86ef78eec63c132976043585770ab4d65be14aa87882fdc321464
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff