fats-fme commited on
Commit
4643751
1 Parent(s): 5cf9d74

End of training

Browse files
Files changed (2) hide show
  1. README.md +164 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: gemma
4
+ base_model: UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 9376c29d-a111-4697-ab9b-d2c2dc35f94a
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2
23
+ bf16: true
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - a380e3a1edba7900_train_data.json
29
+ ds_type: json
30
+ format: custom
31
+ path: /workspace/input_data/a380e3a1edba7900_train_data.json
32
+ type:
33
+ field_input: docname
34
+ field_instruction: conclusion
35
+ field_output: judges
36
+ format: '{instruction} {input}'
37
+ no_input_format: '{instruction}'
38
+ system_format: '{system}'
39
+ system_prompt: ''
40
+ ddp_find_unused_parameters: false
41
+ distributed_type: ddp
42
+ early_stopping_patience: null
43
+ env:
44
+ CUDA_VISIBLE_DEVICES: 0,1
45
+ MASTER_ADDR: localhost
46
+ MASTER_PORT: '29500'
47
+ NCCL_DEBUG: INFO
48
+ NCCL_IB_DISABLE: '0'
49
+ NCCL_P2P_DISABLE: '0'
50
+ NCCL_P2P_LEVEL: NVL
51
+ PYTORCH_CUDA_ALLOC_CONF: max_split_size_mb:512, garbage_collection_threshold:0.8
52
+ WORLD_SIZE: '2'
53
+ eval_max_new_tokens: 128
54
+ eval_table_size: null
55
+ evals_per_epoch: 4
56
+ flash_attention: true
57
+ fp16: false
58
+ gradient_accumulation_steps: 8
59
+ gradient_checkpointing: true
60
+ group_by_length: true
61
+ hub_model_id: fats-fme/9376c29d-a111-4697-ab9b-d2c2dc35f94a
62
+ hub_repo: null
63
+ hub_strategy: checkpoint
64
+ hub_token: null
65
+ learning_rate: 0.0001
66
+ load_in_4bit: false
67
+ load_in_8bit: false
68
+ logging_steps: 1
69
+ lora_alpha: 32
70
+ lora_dropout: 0.05
71
+ lora_fan_in_fan_out: null
72
+ lora_model_dir: null
73
+ lora_r: 16
74
+ lora_target_linear: true
75
+ lr_scheduler: cosine
76
+ max_memory_MB: 65000
77
+ max_steps: -1
78
+ micro_batch_size: 2
79
+ mlflow_experiment_name: /tmp/a380e3a1edba7900_train_data.json
80
+ model_type: AutoModelForCausalLM
81
+ num_devices: 2
82
+ num_epochs: 1
83
+ optimizer: adamw_torch
84
+ output_dir: miner_id_24
85
+ pad_to_sequence_len: true
86
+ resume_from_checkpoint: null
87
+ s2_attention: null
88
+ sample_packing: false
89
+ saves_per_epoch: 4
90
+ sequence_len: 2048
91
+ strict: false
92
+ tf32: true
93
+ tokenizer_type: AutoTokenizer
94
+ train_on_inputs: false
95
+ trust_remote_code: true
96
+ val_set_size: 0.05
97
+ wandb_entity: null
98
+ wandb_mode: online
99
+ wandb_name: 9376c29d-a111-4697-ab9b-d2c2dc35f94a
100
+ wandb_project: Gradients-On-Demand
101
+ wandb_run: your_name
102
+ wandb_runid: 9376c29d-a111-4697-ab9b-d2c2dc35f94a
103
+ warmup_steps: 50
104
+ world_size: 2
105
+ xformers_attention: true
106
+
107
+ ```
108
+
109
+ </details><br>
110
+
111
+ # 9376c29d-a111-4697-ab9b-d2c2dc35f94a
112
+
113
+ This model is a fine-tuned version of [UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2](https://huggingface.co/UCLA-AGI/Gemma-2-9B-It-SPPO-Iter2) on the None dataset.
114
+ It achieves the following results on the evaluation set:
115
+ - Loss: nan
116
+
117
+ ## Model description
118
+
119
+ More information needed
120
+
121
+ ## Intended uses & limitations
122
+
123
+ More information needed
124
+
125
+ ## Training and evaluation data
126
+
127
+ More information needed
128
+
129
+ ## Training procedure
130
+
131
+ ### Training hyperparameters
132
+
133
+ The following hyperparameters were used during training:
134
+ - learning_rate: 0.0001
135
+ - train_batch_size: 2
136
+ - eval_batch_size: 2
137
+ - seed: 42
138
+ - distributed_type: multi-GPU
139
+ - num_devices: 2
140
+ - gradient_accumulation_steps: 8
141
+ - total_train_batch_size: 32
142
+ - total_eval_batch_size: 4
143
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
144
+ - lr_scheduler_type: cosine
145
+ - lr_scheduler_warmup_steps: 50
146
+ - num_epochs: 1
147
+
148
+ ### Training results
149
+
150
+ | Training Loss | Epoch | Step | Validation Loss |
151
+ |:-------------:|:------:|:----:|:---------------:|
152
+ | 2.9681 | 0.0030 | 1 | nan |
153
+ | 0.751 | 0.2501 | 83 | nan |
154
+ | 0.3361 | 0.5002 | 166 | nan |
155
+ | 0.3779 | 0.7503 | 249 | nan |
156
+
157
+
158
+ ### Framework versions
159
+
160
+ - PEFT 0.13.2
161
+ - Transformers 4.46.0
162
+ - Pytorch 2.5.0+cu124
163
+ - Datasets 3.0.1
164
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b39a3de5ab9cb0b904f9adbc584095e75f4d117e736ea409825491bb225ac196
3
+ size 216284090