fats-fme commited on
Commit
e67f64e
1 Parent(s): 2ad8d6e

End of training

Browse files
Files changed (2) hide show
  1. README.md +157 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama3.2
4
+ base_model: unsloth/Llama-3.2-3B
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 76fe64ac-a9e7-446d-9942-b8aaf7ec897b
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: unsloth/Llama-3.2-3B
23
+ bf16: true
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - 1e7b9c404170ea58_train_data.json
29
+ ds_type: json
30
+ field: text
31
+ path: /workspace/input_data/1e7b9c404170ea58_train_data.json
32
+ type: completion
33
+ ddp_find_unused_parameters: false
34
+ distributed_type: ddp
35
+ early_stopping_patience: null
36
+ env:
37
+ CUDA_VISIBLE_DEVICES: 0,1
38
+ MASTER_ADDR: localhost
39
+ MASTER_PORT: '29500'
40
+ NCCL_DEBUG: INFO
41
+ NCCL_IB_DISABLE: '0'
42
+ NCCL_P2P_DISABLE: '0'
43
+ NCCL_P2P_LEVEL: NVL
44
+ PYTORCH_CUDA_ALLOC_CONF: max_split_size_mb:512, garbage_collection_threshold:0.8
45
+ WORLD_SIZE: '2'
46
+ eval_max_new_tokens: 128
47
+ eval_table_size: null
48
+ evals_per_epoch: 4
49
+ flash_attention: true
50
+ fp16: false
51
+ gradient_accumulation_steps: 8
52
+ gradient_checkpointing: false
53
+ group_by_length: true
54
+ hub_model_id: fats-fme/76fe64ac-a9e7-446d-9942-b8aaf7ec897b
55
+ hub_repo: null
56
+ hub_strategy: checkpoint
57
+ hub_token: null
58
+ learning_rate: 0.0002
59
+ load_in_4bit: false
60
+ load_in_8bit: false
61
+ logging_steps: 1
62
+ lora_alpha: 32
63
+ lora_dropout: 0.05
64
+ lora_fan_in_fan_out: null
65
+ lora_model_dir: null
66
+ lora_r: 16
67
+ lora_target_linear: true
68
+ lr_scheduler: cosine
69
+ max_memory_MB: 65000
70
+ max_steps: -1
71
+ micro_batch_size: 2
72
+ mlflow_experiment_name: /tmp/1e7b9c404170ea58_train_data.json
73
+ model_type: AutoModelForCausalLM
74
+ num_devices: 2
75
+ num_epochs: 1
76
+ optimizer: adamw_torch
77
+ output_dir: miner_id_24
78
+ pad_to_sequence_len: true
79
+ resume_from_checkpoint: null
80
+ s2_attention: null
81
+ sample_packing: false
82
+ saves_per_epoch: 4
83
+ sequence_len: 4056
84
+ strict: false
85
+ tf32: true
86
+ tokenizer_type: AutoTokenizer
87
+ train_on_inputs: false
88
+ trust_remote_code: true
89
+ val_set_size: 0.05
90
+ wandb_entity: null
91
+ wandb_mode: online
92
+ wandb_name: 76fe64ac-a9e7-446d-9942-b8aaf7ec897b
93
+ wandb_project: Gradients-On-Demand
94
+ wandb_run: your_name
95
+ wandb_runid: 76fe64ac-a9e7-446d-9942-b8aaf7ec897b
96
+ warmup_steps: 50
97
+ world_size: 2
98
+ xformers_attention: true
99
+
100
+ ```
101
+
102
+ </details><br>
103
+
104
+ # 76fe64ac-a9e7-446d-9942-b8aaf7ec897b
105
+
106
+ This model is a fine-tuned version of [unsloth/Llama-3.2-3B](https://huggingface.co/unsloth/Llama-3.2-3B) on the None dataset.
107
+ It achieves the following results on the evaluation set:
108
+ - Loss: 3.1639
109
+
110
+ ## Model description
111
+
112
+ More information needed
113
+
114
+ ## Intended uses & limitations
115
+
116
+ More information needed
117
+
118
+ ## Training and evaluation data
119
+
120
+ More information needed
121
+
122
+ ## Training procedure
123
+
124
+ ### Training hyperparameters
125
+
126
+ The following hyperparameters were used during training:
127
+ - learning_rate: 0.0002
128
+ - train_batch_size: 2
129
+ - eval_batch_size: 2
130
+ - seed: 42
131
+ - distributed_type: multi-GPU
132
+ - num_devices: 2
133
+ - gradient_accumulation_steps: 8
134
+ - total_train_batch_size: 32
135
+ - total_eval_batch_size: 4
136
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
137
+ - lr_scheduler_type: cosine
138
+ - lr_scheduler_warmup_steps: 50
139
+ - num_epochs: 1
140
+
141
+ ### Training results
142
+
143
+ | Training Loss | Epoch | Step | Validation Loss |
144
+ |:-------------:|:------:|:----:|:---------------:|
145
+ | 3.4415 | 0.0043 | 1 | 4.9561 |
146
+ | 3.4875 | 0.2516 | 58 | 3.5455 |
147
+ | 3.1373 | 0.5033 | 116 | 3.2728 |
148
+ | 3.2149 | 0.7549 | 174 | 3.1639 |
149
+
150
+
151
+ ### Framework versions
152
+
153
+ - PEFT 0.13.2
154
+ - Transformers 4.46.0
155
+ - Pytorch 2.5.0+cu124
156
+ - Datasets 3.0.1
157
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be5d45d70262cc57c8b2510077cbe4d754d9265834447c59d8f65d4ed3bd3b05
3
+ size 97396522