a2c-AntBulletEnv-v0 / config.json
fatcat22's picture
Initial commit
d8035e2
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f816900e440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f816900e4d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f816900e560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f816900e5f0>", "_build": "<function ActorCriticPolicy._build at 0x7f816900e680>", "forward": "<function ActorCriticPolicy.forward at 0x7f816900e710>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f816900e7a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f816900e830>", "_predict": "<function ActorCriticPolicy._predict at 0x7f816900e8c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f816900e950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f816900e9e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f816900ea70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f816b34e280>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687941262606046980, "learning_rate": 0.00096, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAB98LD+B/Hg/BCYEv6PEBD40MSY/1LOJPxT06D8eDLm+rFQ6v6Q+F7+/+Iw/CH00wHPzXj+Q7bM+GIWnvzpqtj8PDfS/OtYIv/GCGz+Kxqi96sC8Pt7HL7++cQC+pX1jPppqdb9ZWA0/cn6dPlDMKj9wlGk/yOc5v+ElRD8ZQow+n1tDvwVJFb/+4Kc/CXAhP2qepz7Z6KM/v/gBQMrOw7/5RIc/7rkbQFQePcAGgi4/6eurP/8u1D85fRk/ZNgKPO2Gfr8qqKA/5eiTv+rOkb6aanW/WVgNPw0PUMAt2r+/7cy2P4386z6cFj8+jlaUPxw84j53J7M/RdnZP5Ffcr+hUSc+W0GivzgHb78MXK49AZHaPhqEIr9Gzu2/gbMAQOsB9b9D8LQ6s5cZP/zpybt90n6/S+6JvzCKH76/rSK9mmp1v1lYDT9yfp0+UMwqP+mZbb7RZi0/0Kx8vSHc/L1IVf29RSdMPX8oHT+HBaY+bSLSvjmwjz8RGis/IJDmPgUz5b6EaWw+VH2pvkLTP78wkKG/6jywPyYJuT4ZBKY+2lWhvS7bwz+D31C/L9g1vx6FhT9o1Oe/cn6dPi3av7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACumTS1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHH7bPQAAAABSidu/AAAAAC9f+b0AAAAAEuTnPwAAAACeeJU9AAAAAN9c/z8AAAAAzeD/vQAAAAAzvvK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmMpetQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPYuB74AAAAAbPrlvwAAAACN0Me7AAAAAIHR9j8AAAAAlZjPvQAAAAC++ts/AAAAANYqdj0AAAAAT+/4vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALKg1zQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBC2B69AAAAAKhT6b8AAAAAH88OPgAAAACPzt0/AAAAAGBsu70AAAAA8tDrPwAAAACTy5E9AAAAALM0AcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD6RsA1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAZ2xoPAAAAAC3/d6/AAAAAAlahL0AAAAAgKP2PwAAAACefA8+AAAAAGOb3z8AAAAA03awuwAAAAACh+2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIsw4vQF9rqMAWyUTegDjAF0lEdArku1L6DXe3V9lChoBkdAkhg/6CUX52gHTegDaAhHQK5SfGyX2M91fZQoaAZHQJCrUPqcEvFoB03oA2gIR0CuUqhMi8nNdX2UKGgGR0CRUZijL0SRaAdN6ANoCEdArli09QoCuHV9lChoBkdAku466asp5WgHTegDaAhHQK5coID5j6N1fZQoaAZHQJDXRxMnJDFoB03oA2gIR0CuYSfOD8LsdX2UKGgGR0CIREQarFOxaAdN6ANoCEdArmFDqSowVXV9lChoBkdAkSBwVsUIs2gHTegDaAhHQK5lt+RYA811fZQoaAZHQJGoYWl/H5toB03oA2gIR0CuaZLOZ9eAdX2UKGgGR0CUjz6nivPkaAdN6ANoCEdArm9+2VmjCnV9lChoBkdAlErjodMj/2gHTegDaAhHQK5vqgbp/w11fZQoaAZHQJPTKed07r9oB03oA2gIR0Cudr8cMmWudX2UKGgGR0CULDOby6MBaAdN6ANoCEdArnrblRxcV3V9lChoBkdAdyOHN5dGAmgHTegDaAhHQK5/bhJAdGR1fZQoaAZHQI4BOozeoDRoB03oA2gIR0Cuf4nVG0/odX2UKGgGR0CL4IvboKUnaAdN6ANoCEdAroP+1KGtZHV9lChoBkdAk3otfkWAPWgHTegDaAhHQK6H4pWFN+N1fZQoaAZHQJP44PlMh5hoB03oA2gIR0CujPxiXpnpdX2UKGgGR0CSxRWDYh+waAdN6ANoCEdAro0kRtgrpnV9lChoBkdAk4wp6IFeOWgHTegDaAhHQK6UHO/tY0V1fZQoaAZHQJPBh9a2WptoB03oA2gIR0CumSW6kIomdX2UKGgGR0CB5PSc9W6taAdN6ANoCEdArp2qvgWJrXV9lChoBkdAkxkqE8JUpGgHTegDaAhHQK6dyB3A2yd1fZQoaAZHQJPRg2gnMMZoB03oA2gIR0CuokbcGkeqdX2UKGgGR0CSiOa5PM0QaAdN6ANoCEdArqYo2OyVwHV9lChoBkdAlO0osunMuGgHTegDaAhHQK6qkrYoRZl1fZQoaAZHQJVz5Dtw71ZoB03oA2gIR0Cuqq8hcJMQdX2UKGgGR0CR1PsHB1s+aAdN6ANoCEdArrEpOBUaQ3V9lChoBkdAlGO2EXcgyWgHTegDaAhHQK63ZcdHUc51fZQoaAZHQJHLp3HJcPhoB03oA2gIR0Cuu9Qob4rSdX2UKGgGR0CVUdxQSBbwaAdN6ANoCEdArrvvdhy8z3V9lChoBkdAks5m2w3YMGgHTegDaAhHQK7ASZR8+id1fZQoaAZHQJPwcV8CxNZoB03oA2gIR0CuxCRCIDYAdX2UKGgGR0CRyPkUbkwOaAdN6ANoCEdArsijAxi5NHV9lChoBkdAlJCj/6wdKmgHTegDaAhHQK7Ivqlgtvp1fZQoaAZHQJJu+jqOcUdoB03oA2gIR0Cuzi2ki2UjdX2UKGgGR0CU/ZdTHbRGaAdN6ANoCEdArtQvH1e0HHV9lChoBkdAkyHnuE25x2gHTegDaAhHQK7Zs0kWykd1fZQoaAZHQJPzRprULD1oB03oA2gIR0Cu2c9WQwK0dX2UKGgGR0CR77LNOdoWaAdN6ANoCEdArt5JFiKBNHV9lChoBkdAkfaIM4LkS2gHTegDaAhHQK7iMQo1DSh1fZQoaAZHQJB3K9mHxjJoB03oA2gIR0Cu5tSlnAZbdX2UKGgGR0CSjUUvwmVraAdN6ANoCEdArubxqEeyRnV9lChoBkdAkvlqnivPkmgHTegDaAhHQK7rjDD0lJJ1fZQoaAZHQJNgLEAHVwxoB03oA2gIR0Cu8XN5dGAkdX2UKGgGR0CUy81RLsa9aAdN6ANoCEdArvgb6DXe33V9lChoBkdAlB+cnVoYemgHTegDaAhHQK74OTV2A5J1fZQoaAZHQJNZ2ZgG8mNoB03oA2gIR0Cu/K7K7qY7dX2UKGgGR0CPKTGR3eN2aAdN6ANoCEdArwClOVPepHV9lChoBkdAk6E0s8PnS2gHTegDaAhHQK8FExgy/K11fZQoaAZHQJPZgXcgyM1oB03oA2gIR0CvBS/Ru0kXdX2UKGgGR0CTv4KsuFpPaAdN6ANoCEdArwmfHT7VKHV9lChoBkdAk3ULrPdEcGgHTegDaAhHQK8Oq3T/hl11fZQoaAZHQJNkpbt7a7FoB03oA2gIR0CvFavYvnKXdX2UKGgGR0CSwaeo1k1/aAdN6ANoCEdArxXYJE6T4nV9lChoBkdAkNT+8wpOOGgHTegDaAhHQK8a2Jw84gl1fZQoaAZHQJPmQjY7JXBoB03oA2gIR0CvHsFEAo5QdX2UKGgGR0CTL9rZamoBaAdN6ANoCEdAryNEsrd30XV9lChoBkdAk2P5F1B+nmgHTegDaAhHQK8jYIt16mh1fZQoaAZHQJKXr9gnc+JoB03oA2gIR0CvJ807jkuIdX2UKGgGR0CTrIhgVoHtaAdN6ANoCEdArywA6wMYuXV9lChoBkdAlM+9FOO802gHTegDaAhHQK8y+CxNZeR1fZQoaAZHQJT7SxwAEMdoB03oA2gIR0CvMyTLW7OFdX2UKGgGR0CSyU8/D+BIaAdN6ANoCEdArzka4axX4nV9lChoBkdAkzHACwKSgWgHTegDaAhHQK889yYG+sZ1fZQoaAZHQJRrX8GcFyJoB03oA2gIR0CvQYzbFjusdX2UKGgGR0CR3/Pd2xIKaAdN6ANoCEdAr0GnwVj7RHV9lChoBkdAlNL7xy4nW2gHTegDaAhHQK9GOJOWSlp1fZQoaAZHQJJG4eRxLkFoB03oA2gIR0CvShNjbzshdX2UKGgGR0CUzW2alUIcaAdN6ANoCEdAr1A55JK8MHV9lChoBkdAlN1JIxxku2gHTegDaAhHQK9QZGn4wh51fZQoaAZHQJQanxQSBbxoB03oA2gIR0CvV0/ywwCbdX2UKGgGR0CTPvYKpkwwaAdN6ANoCEdAr1tCrLhaT3V9lChoBkdAlDcXOnl4kmgHTegDaAhHQK9fuz5XU6R1fZQoaAZHQJQvtXJYDDFoB03oA2gIR0CvX9kRradudX2UKGgGR0CUHhJfICEIaAdN6ANoCEdAr2RXvBrN4nV9lChoBkdAlM2Z5JK8MGgHTegDaAhHQK9oPXfZVXF1fZQoaAZHQJQ7xbGFSKpoB03oA2gIR0CvbXZ5JK8MdX2UKGgGR0CU4Om5UcXFaAdN6ANoCEdAr22cQAdXDHV9lChoBkdAlBnoyGi5/mgHTegDaAhHQK90gZYxL011fZQoaAZHQJSeb0z0pVloB03oA2gIR0CveVus90RwdX2UKGgGR0CSmo3Jgb6yaAdN6ANoCEdAr33VOXVslHV9lChoBkdAkI1WTTvy9WgHTegDaAhHQK998IY3vQZ1fZQoaAZHQJBaV9XtBv9oB03oA2gIR0CvgnNlI3BIdX2UKGgGR0CL9thegL7XaAdN6ANoCEdAr4Zbu4PPLXV9lChoBkdAhxq/j81n/WgHTegDaAhHQK+K7iYsunN1fZQoaAZHQJKhacf/3nJoB03oA2gIR0CviwuZb6gvdX2UKGgGR0CTgcOQyRCAaAdN6ANoCEdAr5GukLx7RnV9lChoBkdAjnFrdepn6GgHTegDaAhHQK+XfVNHpbF1fZQoaAZHQJS8UpMHryFoB03oA2gIR0Cvm/+4TbnHdX2UKGgGR0CTId+LWI43aAdN6ANoCEdAr5wcCmuTzXV9lChoBkdAk2FIsunMuGgHTegDaAhHQK+gnj6N2kl1fZQoaAZHQImNIFNcnmdoB03oA2gIR0CvpI/FR51OdX2UKGgGR0CTpkyO7xusaAdN6ANoCEdAr6kHaews5HV9lChoBkdAkQACt7rs0GgHTegDaAhHQK+pJcjZ+QV1fZQoaAZHQJJmmiFj/dZoB03oA2gIR0Cvrvw+UyHmdX2UKGgGR0CTZ1X6qKgqaAdN6ANoCEdAr7UxW1c+q3V9lChoBkdAkXKAxnFo+WgHTegDaAhHQK+6P6nBLwp1fZQoaAZHQJJ8WqDK5kNoB03oA2gIR0Cvul1a4c3mdX2UKGgGR0CRYxlYEGJOaAdN6ANoCEdAr77awD/2kHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVlwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxyFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaBVLHIWUaBl0lFKUjAZfc2hhcGWUSxyFlIwDbG93lGgRKJZwAAAAAAAAAAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaAtLHIWUaBl0lFKUjARoaWdolGgRKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBl0lFKUjAhsb3dfcmVwcpSMBC1pbmaUjAloaWdoX3JlcHKUjANpbmaUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVzwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}