|
from typing import Dict, List, Any |
|
from PIL import Image |
|
from io import BytesIO |
|
from transformers import pipeline |
|
import base64 |
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.pipeline=pipeline("zero-shot-image-classification",model="openai/clip-vit-large-patch14-336") |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
image (:obj:`string`) |
|
parameters (:obj:) |
|
Return: |
|
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82} |
|
""" |
|
image_data = data.pop("image", data) |
|
|
|
image = Image.open(BytesIO(base64.b64decode(image_data))) |
|
|
|
parameters = data.pop("parameters", data) |
|
candidate_labels = parameters['candidate_labels'] |
|
|
|
candidate_labels_array = list(map(str.strip, candidate_labels.split(','))) |
|
|
|
|
|
prediction = self.pipeline(images=[image], candidate_labels=candidate_labels_array) |
|
return prediction[0] |