farleyknight
commited on
Commit
•
f5cfc31
1
Parent(s):
0581309
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- big_patent
|
7 |
+
metrics:
|
8 |
+
- rouge
|
9 |
+
model-index:
|
10 |
+
- name: patent-summarization-t5-base-2022-09-20
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Sequence-to-sequence Language Modeling
|
14 |
+
type: text2text-generation
|
15 |
+
dataset:
|
16 |
+
name: big_patent
|
17 |
+
type: big_patent
|
18 |
+
config: all
|
19 |
+
split: train
|
20 |
+
args: all
|
21 |
+
metrics:
|
22 |
+
- name: Rouge1
|
23 |
+
type: rouge
|
24 |
+
value: 19.4044
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# patent-summarization-t5-base-2022-09-20
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the big_patent dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 1.9973
|
35 |
+
- Rouge1: 19.4044
|
36 |
+
- Rouge2: 7.5483
|
37 |
+
- Rougel: 16.2429
|
38 |
+
- Rougelsum: 17.488
|
39 |
+
- Gen Len: 19.0
|
40 |
+
|
41 |
+
## Model description
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Intended uses & limitations
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training and evaluation data
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Training procedure
|
54 |
+
|
55 |
+
### Training hyperparameters
|
56 |
+
|
57 |
+
The following hyperparameters were used during training:
|
58 |
+
- learning_rate: 5e-05
|
59 |
+
- train_batch_size: 1
|
60 |
+
- eval_batch_size: 1
|
61 |
+
- seed: 42
|
62 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
+
- lr_scheduler_type: linear
|
64 |
+
- num_epochs: 1.0
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
69 |
+
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
|
70 |
+
| 2.2811 | 0.08 | 5000 | 2.1767 | 18.5624 | 6.8795 | 15.5361 | 16.6836 | 19.0 |
|
71 |
+
| 2.2551 | 0.17 | 10000 | 2.1327 | 19.077 | 6.8512 | 15.79 | 17.086 | 19.0 |
|
72 |
+
| 2.2818 | 0.25 | 15000 | 2.1029 | 18.8637 | 6.9233 | 15.7341 | 16.9717 | 19.0 |
|
73 |
+
| 2.1952 | 0.33 | 20000 | 2.0805 | 18.962 | 7.1157 | 15.8297 | 17.0333 | 19.0 |
|
74 |
+
| 2.157 | 0.41 | 25000 | 2.0641 | 19.1418 | 7.315 | 16.05 | 17.2551 | 19.0 |
|
75 |
+
| 2.1775 | 0.5 | 30000 | 2.0452 | 19.2387 | 7.3193 | 16.0852 | 17.3563 | 19.0 |
|
76 |
+
| 2.1376 | 0.58 | 35000 | 2.0308 | 19.291 | 7.363 | 16.1243 | 17.4151 | 19.0 |
|
77 |
+
| 2.1853 | 0.66 | 40000 | 2.0207 | 19.2808 | 7.4671 | 16.1593 | 17.3836 | 19.0 |
|
78 |
+
| 2.1416 | 0.75 | 45000 | 2.0113 | 19.0414 | 7.3335 | 15.9747 | 17.1899 | 19.0 |
|
79 |
+
| 2.1245 | 0.83 | 50000 | 2.0055 | 19.1445 | 7.3715 | 16.0166 | 17.2621 | 19.0 |
|
80 |
+
| 2.133 | 0.91 | 55000 | 1.9997 | 19.3033 | 7.4821 | 16.1413 | 17.3949 | 19.0 |
|
81 |
+
| 2.1191 | 0.99 | 60000 | 1.9973 | 19.4044 | 7.5483 | 16.2429 | 17.488 | 19.0 |
|
82 |
+
|
83 |
+
|
84 |
+
### Framework versions
|
85 |
+
|
86 |
+
- Transformers 4.23.0.dev0
|
87 |
+
- Pytorch 1.12.0
|
88 |
+
- Datasets 2.4.0
|
89 |
+
- Tokenizers 0.12.1
|