|
from flask import Flask |
|
from flask import request |
|
|
|
|
|
app = Flask(__name__) |
|
|
|
@app.route('/get-img', methods = ['POST']) |
|
def get(): |
|
if request.method == 'POST': |
|
arg1=request.get_json()['url'] |
|
|
|
@app.route('/') |
|
def home(): |
|
|
|
return "hello world" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import tensorflow |
|
import pickle |
|
import cv2 |
|
import numpy as np |
|
from tensorflow.keras.models import load_model |
|
|
|
def pridict (url): |
|
instance=pickle.load(open(r"Label_Instance.pkl","rb")) |
|
mod=load_model(r"model.h5") |
|
img = cv2.imread(url) |
|
img = cv2.resize(img,(256,256)) |
|
img = np.reshape(img,[1,256,256,3]) |
|
img=img/255.0 |
|
max_val=np.argmax(mod.predict(img)) |
|
label=instance.classes_[max_val] |
|
return label |
|
|
|
def test(url): |
|
return url |
|
|
|
|