Kallinteris-Andreas commited on
Commit
3547c79
·
verified ·
1 Parent(s): 83559f4
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: Ant-v5
17
  metrics:
18
  - type: mean_reward
19
- value: 1677.84 +/- 848.55
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: Ant-v5
17
  metrics:
18
  - type: mean_reward
19
+ value: 4473.16 +/- 1392.04
20
  name: mean_reward
21
  verified: false
22
  ---
ant-v5-sac-medium.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:79efb219a263f7af8dec4ae61a9dd549d730e9f34cf70c791969b3448772c593
3
- size 4275877
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05f4ad6dfad607af79c177ef065038acc1262be04d8700eda5a33c251f4c420c
3
+ size 4275881
ant-v5-sac-medium/actor.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f873fe42573193e951c90cd069af5ff9b11dc32a0572f32916d413e16990d1ea
3
  size 783182
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0c331dadd4ddde83e8c94dd296bf78a3cc7f46b1a2a34b3881adbb02009f233
3
  size 783182
ant-v5-sac-medium/critic.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bacdcd3d856f50ec3c78e9ac6f04d023dbeb72a8c2a1591a56952e287c581384
3
  size 1533866
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd3722ac4d395c19dae61411d02b21cdacd6a56db70512f3ee105bc03da0e3a6
3
  size 1533866
ant-v5-sac-medium/data CHANGED
@@ -5,33 +5,33 @@
5
  "__module__": "stable_baselines3.sac.policies",
6
  "__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}",
7
  "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
8
- "__init__": "<function SACPolicy.__init__ at 0x7fdd5b9584a0>",
9
- "_build": "<function SACPolicy._build at 0x7fdd5b958ae0>",
10
- "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7fdd5b958b80>",
11
- "reset_noise": "<function SACPolicy.reset_noise at 0x7fdd5b958c20>",
12
- "make_actor": "<function SACPolicy.make_actor at 0x7fdd5b958cc0>",
13
- "make_critic": "<function SACPolicy.make_critic at 0x7fdd5b958d60>",
14
- "forward": "<function SACPolicy.forward at 0x7fdd5b958e00>",
15
- "_predict": "<function SACPolicy._predict at 0x7fdd5b958ea0>",
16
- "set_training_mode": "<function SACPolicy.set_training_mode at 0x7fdd5b958f40>",
17
  "__abstractmethods__": "frozenset()",
18
- "_abc_impl": "<_abc._abc_data object at 0x7fdd5b95d540>"
19
  },
20
  "verbose": 0,
21
  "policy_kwargs": {
22
  "use_sde": false
23
  },
24
- "num_timesteps": 1000000,
25
- "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": 0,
28
  "action_noise": null,
29
- "start_time": 1730901255514565729,
30
  "learning_rate": 0.0003,
31
- "tensorboard_log": "runs/r09bii4z",
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWV3RAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZoEAAAAAAAAMfqdR3XjuY/55bk89Cb7z9v+iKm52eRv8VOdJpyN78/+KOJpkV9uD+bXL/+5GjXPwdWy/wHO+8/VwUhSA3l4L9gu3biEkzlv5n9P8cUDts/WHym4aOd8L/wxbM+ZMzgP9rOyPZMKe4/mfXOJCyN/j/aAspO0/3CPw+mgoJlEdQ/9EmU9tLnxb93ypFeODkRwFUpTIXhL9e/t2Mc5vN3GcAbs+hR+bLvvz4VYy/Up7g/aXpgeHfIFsCu8lgSPgEdQLiC1HVAthtALLk3XrDyUL9/nBC87pciQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPC/AAAAAAAA8L/oc/R21i7gPwAAAAAAAPA/AAAAAAAA8L8AAAAAAADwP8VD2zKiIOk/vmpdN+pR7j/fpT5wrVWRP6WIvoer2L+/1BAzzDTS0j+SBsoSamDRv0ejNlWewvI/0sAIOJED47+jlySZTMnnvwh+BaDzK9m/4SfhUc+U378+e3KYp8bgP80b5/TyVvE/cgU9CeoOAEDai4d+iN/AP2Bfb6NfAfU/D3C7kQPn+L8vyNeVP5f2vwQPftvDAte/6znxxTCPHsDswD7GIRsAwLJMv3k1dwfAoNvfDFNk0b9Tfyep9OMUQMcSnbeVR+O/vE3IDffvOD8bBJGQYKEHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAPf6DVNec/HSzcHN9r7D93RWMPwbmtP7DrgvFem8e/d0CGLtmt2j9XHkk7vNzfv//3lQUlivE/v/tDDsdJ4L8gx2cYfLngvzJHMb5I7ps/GD+HkCGF3r9dNK4oFdDgP/CWu83sgfA/W6OqXURKAUBY4KWBu2biP5sWur0Kts2/7+KUW/759r90ZLlcaST7v/hkn8NP3ca/DZZ10+W3CMCdzNkCYZH6vw2s6eSlNOM/HVL3N5MfWz+bHbhiSlcIQGsgXoLQPvy/2X9qysvGQr/1fMQCPPUKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACLe7UzI7uc/Tpp3mmqQ7j/whiHLmPe1P9GBtu1P8Ma/mT8QcMEdzD/DEA/VFFXgv6iTequ82vE/il9id3Ml2z8sz5LLzrzjv5IsZP+Wl8G/t84eBdWv4L+4Y9qlm9HgPxhjPpXGfNo/RPDDYLGNEUBSK+TyBDLvP8COKnw9qPQ/ojNdorJzAsD59OLVEHTdP6EIpLI79uA/EyDzRYUn4r8EYg2l37EAwKt5qwsazBVAP3XrqffACkCs3k1ixcwewB5k2roQlpm/pTPNePAMhj+E4qVeG8rrPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANsl/KPi/eQ/tiXrL79d7j+KHP7iSCGjv7Jhb/PjKr2/g49HGVOs0j9OGnq4Mv7gP6HBaAxikvM//7S+R71D2z/OvUGDfKTgv/ScDjTyq8y/3UdqhCtW5L/hjNOfPt3gP6tOMJLEYN8/hVOvhS4QC0A7rslpprrKvzd5G+pcaey/6dxuk0SeCUBRd2X5dg7EvwkJNV926wFA/hiNzIYcy79e33McHF+Nv+PmJ30bvxTANnYctoh+n7+1ZsboPvsgwA/ifCDWKe+/XnMPiDQ9tL8nEqfrIMPxPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBUtphpSMAUOUdJRSlC4="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
@@ -39,22 +39,22 @@
39
  },
40
  "_last_original_obs": {
41
  ":type:": "<class 'numpy.ndarray'>",
42
- ":serialized:": "gAWV3RAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZoEAAAAAAAADKzWRa1WuY/q3Kb5md97z/a61o/2c6kv1hPdjubZ8I/y8IvWguxuD8dmNW2bOHgP8g6cG5fHvA/zVOMI/hW4b/bTC12UbXgv/iZc6DoSMY/9vegiHvS879GCJw8W83gP/2p80DFuOM/0CimEJ/zA0BQNFjrjFi8P64wBfEwA82/UWCcevWPAEAqtshIDQ0DQDca79Y8Dek/FajPkToDrL8M6WwuXJXQv7r/rz9bOuI/iemaYB2GdT8t74gE+CEFQILvRNfaqfA/jM9IihvcXj8IK1V3eXwNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFHBDHzkmuY/huqp9/+t7j9Wg3LDXDikP/Dp25DwMrS/Fdgonq5L0T9iANzAYcPCP1ybCzpilfM/uNUKIgR8wL8PlL37JCfkvwwBzh3sy+C/AwYSz5BV47/w1SksrMjgP0DAu4lq1/M/Xtpkdqo2AUAw3wjZqTzMv/qJRfq9K/4/ag2j3h4k6L+m4lvMiMr7vxYT+qiefPk/rEKffyEjIsC609gfycGTvyeg4wexvB/AdvTvW945EcB6CNUAb3qiPwVt3OxFYBNAhjh5EbS3iL+8csCpzGgKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDbrksnQuc/8o1cq5WL7D+8IDrvDmOuP/Jv9LmtJcC/QmGNYsmD2z9YxlEHzTXSv8mQ3u3/3/I/2ZtB+3zI4L/C6YshYLvgv/vvrUMANMi/osXzoPVM4r/ssufkOtDgP8FhlxWQcvI/OUwgLU3u/z96/ecFCELkP084Pg57XsA/ocv9UHRx4L9vCKeZTlsGwCX+vHR3ytK/NZOgLAfbFcD6Eq68mcD6v8EfWWxQ8o8/U6KmxeETZD8Zi1EDo4oWQJxlEMNn8SBAmYMKeqgfVD/OGT3K4GX3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFLiY/KD1+U/CurYg2Rb7j8puSoyGn+7P7Ic/ekdFMm/WpNwuHuozD/jfJJTsUDdv3Quv8DV2vI/1XjRJHjitj8GrnkDx9zqv9ragDJJKso/4se3usaY4L+CS+g+EMzgPxTVesewVuk/zpAr0UUND0CJGTSIcpXvP9WdM/2vVtU/VDagH0OCA0B+LPGUbzH4v94EinApOfi/FSXZ6jAh+b8EPu21A0fYv7tOkVOrgSBAfMS1mCAgFkC0tlp51j0ZwPeqL4j6Obm/qJKRPBz3cb//wq+VNQUiwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA/AAAAAAAA8D8AAAAAAADwvwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPC/AAAAAAAA8L8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8L8AAAAAAADwPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFoAfHvcR+Y/j61Y9gKI7j/hvk10AHa4v1kloR4Cw8G/9s1Txh+xzz87MvLqIaLhP0+CHyF4mvM/pzUZ/93K4T/Os7J1o3rgv1ElnsOoNMM/fy3uRxIl4r/I6Qt2UjThP439Px3bjOA/U2+aN+FBDUC198iX+2TnP1aXxE7WuPS/GKoicAUJ8T/XqMB2lZ/vPxQ9vyAfAcs/stQWWk4/27/Uqqt8fJa2vyAanroGs6s/cDt3Snrwzb8UtbYY2L0ZwHtYkMbMd/y/TBc/20nu2b+m/fQ90RIfwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBUtphpSMAUOUdJRSlC4="
43
  },
44
- "_episode_num": 1283,
45
  "use_sde": false,
46
  "sde_sample_freq": -1,
47
  "_current_progress_remaining": 0.0,
48
  "_stats_window_size": 100,
49
  "ep_info_buffer": {
50
  ":type:": "<class 'collections.deque'>",
51
- ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJfPB58jRlaMAWyUTTsCjAF0lEdAqNtHk3juKHV9lChoBkdApR7mp2ll9WgHTegDaAhHQKjgTXo1UER1fZQoaAZHQKVGoLHdXT5oB03oA2gIR0Co5tf+bVjJdX2UKGgGR0CDhYdkJ8fFaAdN6ANoCEdAqOgvpD/lyXV9lChoBkdAivbLHuJDV2gHTTkBaAhHQKjwEYpDu0F1fZQoaAZHQKC9aziS7oVoB00dA2gIR0Co8V3ocJdCdX2UKGgGR0ClXwOy/sVtaAdN6ANoCEdAqPf6FPBSDXV9lChoBkdAmf5uKjzqbGgHTegDaAhHQKj9EsCDEm91fZQoaAZHQJmT4HLRrrRoB03oA2gIR0CpBUCoS+QEdX2UKGgGR0CkZx7nPmgbaAdN6ANoCEdAqQ11K28Zk3V9lChoBkdApMmosXizcGgHTegDaAhHQKkOzThHbyp1fZQoaAZHQKcON9YwIt1oB03oA2gIR0CpFebKzRhMdX2UKGgGR0CkuKCyY5T7aAdN6ANoCEdAqRsmJ79hqnV9lChoBkdApfoz7655JWgHTegDaAhHQKki0b961LJ1fZQoaAZHQKXZ7uyeI2xoB03oA2gIR0CpKePP1L8KdX2UKGgGR0CljLzM7lq8aAdN6ANoCEdAqSsXkvK2a3V9lChoBkdAnEo5DE3sHGgHTZgCaAhHQKks1WjGkvd1fZQoaAZHQKbrF8iwB5poB03oA2gIR0CpMQhQm/nGdX2UKGgGR0ChYN+jdpIuaAdN6ANoCEdAqT1P642CNHV9lChoBkdApUUs7GNrCWgHTegDaAhHQKlEl8Q7LdN1fZQoaAZHQKX6wv+wTuhoB03oA2gIR0CpRc1J17pndX2UKGgGR0Cf5Wjvd/KAaAdN6ANoCEdAqUeMd92HL3V9lChoBkdApk0eN5t3wGgHTegDaAhHQKlL3VBlcyF1fZQoaAZHQKG3bQrtmcxoB00tA2gIR0CpU0gz544ZdX2UKGgGR0CYfSAJb+tKaAdNIgJoCEdAqVNWcz67/XV9lChoBkdApX3/bmEGq2gHTegDaAhHQKlhJnJT2nN1fZQoaAZHQKXHIJwbVBloB03oA2gIR0CpYtzuv2XcdX2UKGgGR0ClbEf/echDaAdN6ANoCEdAqWdRv99+gHV9lChoBkdApNukTcqOLmgHTegDaAhHQKlum9Iwudx1fZQoaAZHQKV91PUKArhoB03oA2gIR0CpbqsvRJEqdX2UKGgGR0CYA3xnnMdMaAdNRgJoCEdAqXDaNsFdLXV9lChoBkdALmRBE8aGYmgHSxJoCEdAqXFPqZ+hG3V9lChoBkdAjmaIeYD1XmgHTV0BaAhHQKl7B433pOh1fZQoaAZHQKW0kX3xnWdoB03oA2gIR0CpfgFXJYDDdX2UKGgGR0ClPnS5iExqaAdN6ANoCEdAqYJuBFuvU3V9lChoBkdApfqqyD7Ik2gHTegDaAhHQKmKzRceKbd1fZQoaAZHQKUIvzmOlwdoB03oA2gIR0Cpit5PM0P6dX2UKGgGR0BeG1mWdEsraAdLO2gIR0CpjIlUADJVdX2UKGgGR0ClDus5fdAPaAdN6ANoCEdAqZdwQz1scnV9lChoBkdApQv6hUR3/2gHTegDaAhHQKmahrIHTql1fZQoaAZHQJx+1SLqD9RoB03oA2gIR0Cpnt+dCmdidX2UKGgGR0Cloa6I3zczaAdN6ANoCEdAqaYPoHLRr3V9lChoBkdApS4wRIz3y2gHTegDaAhHQKmnw8vEjxF1fZQoaAZHQKXWhSR8twtoB03oA2gIR0Cpsis0xdpqdX2UKGgGR0BR5j6WPcSHaAdLOWgIR0Cps7vxYq5LdX2UKGgGR0CludyvC/GmaAdN6ANoCEdAqbVNaW5Yo3V9lChoBkdAphLJuIhyKmgHTegDaAhHQKm6j6iTMaF1fZQoaAZHQKPRzOO801toB03oA2gIR0Cpw0FdcB2fdX2UKGgGR0CjuO8ynDR/aAdN6ANoCEdAqcUNW6shgXV9lChoBkdAdzufOUt7KWgHS6hoCEdAqchod+5OJ3V9lChoBkdAkpKWhmGucWgHTaoBaAhHQKnR0kadc0N1fZQoaAZHQKNCG9g4OtpoB03oA2gIR0Cp0owUQCjldX2UKGgGR0Cl2vGg8KXwaAdN6ANoCEdAqdQzF2mpEXV9lChoBkdAjQdRRVIZqGgHTegDaAhHQKnZTFa0Qbx1fZQoaAZHQJI83aTOgQJoB02ZAWgIR0Cp3zIhIOH4dX2UKGgGR0CKf76cAimmaAdN6ANoCEdAqecKb8WKuXV9lChoBkdAkZAKgM+eOGgHTegDaAhHQKnxDYoy9El1fZQoaAZHQKWBWdI5HVhoB03oA2gIR0Cp8w+Zw4sFdX2UKGgGR0ClRkBaTwDvaAdN6ANoCEdAqfdnYL9deXV9lChoBkdApsCSDh99dGgHTegDaAhHQKn8qk8A7xN1fZQoaAZHQKX+VeANG3FoB03oA2gIR0CqA0TjFQ2udX2UKGgGR0ClOhLeqJdjaAdN6ANoCEdAqgvEpd8iOnV9lChoBkdApZOevOhTO2gHTegDaAhHQKoNvg75mAd1fZQoaAZHQKUNy7ihnJ1oB03oA2gIR0CqEhCbtqpMdX2UKGgGR0ClzmP1tfoiaAdN6ANoCEdAqhdFlAeJYXV9lChoBkdAkvSH2dupCWgHTegDaAhHQKoeAgRK6Fx1fZQoaAZHQKagn5AyEctoB03oA2gIR0CqJqNpVS4wdX2UKGgGR0CkUxeyzHCGaAdN6ANoCEdAqii5TqB3A3V9lChoBkdApXJ0C1Z1WGgHTegDaAhHQKotEBQvYe11fZQoaAZHQKXXlCeEqUhoB03oA2gIR0CqMg/u1F6SdX2UKGgGR0Cly5NdRiw0aAdN6ANoCEdAqjju9tdiUnV9lChoBkdApL8vH1e0HGgHTegDaAhHQKpBWF+uvEF1fZQoaAZHQKW0FKkEcKhoB03oA2gIR0CqQ1/u1F6SdX2UKGgGR0ChBeMJQcghaAdN6ANoCEdAqkfkr08NhHV9lChoBkdAjuYuM2m52GgHTV4BaAhHQKpND70nPVx1fZQoaAZHQKUgRqgRK6FoB03oA2gIR0CqTSnB1s+FdX2UKGgGR0ClSfpjUd7waAdN6ANoCEdAqlPSQaJhv3V9lChoBkdApFiNf5ULlWgHTegDaAhHQKpcLhOP/711fZQoaAZHQJk0HUtqYZ5oB00eAmgIR0CqYirRKHwgdX2UKGgGR0CmggnE/B3zaAdN6ANoCEdAqmKZj+aScXV9lChoBkdANOp2pyZKF2gHSxNoCEdAqmMYO2AoX3V9lChoBkdApPtcaCL/CWgHTegDaAhHQKpnhwGW2PV1fZQoaAZHQKSx2zBRAKRoB03oA2gIR0CqZ6BOYYzjdX2UKGgGR0CXFbskY4yXaAdNGAJoCEdAqmqTAgxJunV9lChoBkdAphynhVENOWgHTegDaAhHQKp9aA/9pAV1fZQoaAZHQKFjStdRiw1oB03oA2gIR0CqflJa7mMgdX2UKGgGR0CmP0NmlImPaAdN6ANoCEdAqoKnhQ3xWnV9lChoBkdAh1VNzr/sFGgHTegDaAhHQKqCwJ+lTFV1fZQoaAZHQI5e1DYywfRoB03oA2gIR0CqhZiZOSGKdX2UKGgGR0CmLuaiCaqkaAdN6ANoCEdAqpiyZnctXnV9lChoBkdAphyKL0jC52gHTegDaAhHQKqZsRyOrAB1fZQoaAZHQKTPW8cMmWtoB03oA2gIR0CqnntbkfcOdX2UKGgGR0CmNLQhfShKaAdN6ANoCEdAqp6VJz1bq3V9lChoBkdApk73TkQwsWgHTegDaAhHQKqhZYChew91fZQoaAZHQJ2Y1M0xdptoB03jAmgIR0CqroTaCcwydX2UKGgGR0Ck175RKpT/aAdN6ANoCEdAqrVFeD3/P3V9lChoBkdAoRuNLDhtL2gHTVUDaAhHQKq3DrdFfAt1fZQoaAZHQKVaweiBXjloB03oA2gIR0CquuiNKh+OdX2UKGgGR0Cl/Y1cUucuaAdN6ANoCEdAqr4CqABkqnV9lChoBkdApRxJr8BMjGgHTegDaAhHQKrKjKAavRt1ZS4="
52
  },
53
  "ep_success_buffer": {
54
  ":type:": "<class 'collections.deque'>",
55
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
56
  },
57
- "_n_updates": 198000,
58
  "buffer_size": 1000000,
59
  "batch_size": 256,
60
  "learning_starts": 10000,
@@ -68,13 +68,13 @@
68
  "__module__": "stable_baselines3.common.buffers",
69
  "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
70
  "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
71
- "__init__": "<function ReplayBuffer.__init__ at 0x7fdd66760cc0>",
72
- "add": "<function ReplayBuffer.add at 0x7fdd66760e00>",
73
- "sample": "<function ReplayBuffer.sample at 0x7fdd66760ea0>",
74
- "_get_samples": "<function ReplayBuffer._get_samples at 0x7fdd66760f40>",
75
- "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7fdd66760fe0>)>",
76
  "__abstractmethods__": "frozenset()",
77
- "_abc_impl": "<_abc._abc_data object at 0x7fdd66753180>"
78
  },
79
  "replay_buffer_kwargs": {},
80
  "train_freq": {
 
5
  "__module__": "stable_baselines3.sac.policies",
6
  "__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}",
7
  "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
8
+ "__init__": "<function SACPolicy.__init__ at 0x7f64f0cf44a0>",
9
+ "_build": "<function SACPolicy._build at 0x7f64f0cf4ae0>",
10
+ "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7f64f0cf4b80>",
11
+ "reset_noise": "<function SACPolicy.reset_noise at 0x7f64f0cf4c20>",
12
+ "make_actor": "<function SACPolicy.make_actor at 0x7f64f0cf4cc0>",
13
+ "make_critic": "<function SACPolicy.make_critic at 0x7f64f0cf4d60>",
14
+ "forward": "<function SACPolicy.forward at 0x7f64f0cf4e00>",
15
+ "_predict": "<function SACPolicy._predict at 0x7f64f0cf4ea0>",
16
+ "set_training_mode": "<function SACPolicy.set_training_mode at 0x7f64f0cf4f40>",
17
  "__abstractmethods__": "frozenset()",
18
+ "_abc_impl": "<_abc._abc_data object at 0x7f64f0cf8a40>"
19
  },
20
  "verbose": 0,
21
  "policy_kwargs": {
22
  "use_sde": false
23
  },
24
+ "num_timesteps": 10000000,
25
+ "_total_timesteps": 10000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": 0,
28
  "action_noise": null,
29
+ "start_time": 1730910441542966752,
30
  "learning_rate": 0.0003,
31
+ "tensorboard_log": "runs/p2aaafqn",
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWV3RAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZoEAAAAAAAAO6twz7i6Ok/jEU5IXOq7T8/Eg/IWvOhv3beLa4f4ss/BmwfhVlm0z9rCE9nAjW4v8wCrbojz/M/9hWZe3tMyz83czCvz9flv0g1XBVSi9G/0S5UtJGY87+h/2jqLdTgP96k3CsfU+Y/gCgUabq/FUBum9IqHjznPziDbGOpxrC/gxO5mR35EUBMxXy4ki/3P9DQkSw5hwVAqqWUcKPZAcA/6v3LuJwgQF6SL3U7qSHAkTuSoGNIGcB7w74B1acfQPizODcNOZk/Fs6qaemJez88494L+/obQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPC/AAAAAAAA8L8AAAAAAADwvwAAAAAAAPC/AAAAAAAA8L8AAAAAAADwP48IlQED4us/Yh2nMXuw7j8hblPeufGrv1O/5F96RLS/BlPhEVUN0T/C0U2vhG+9P1v34dl2L/M/8KWMfu8W4T/HUnmHdOHpv4JoYMzA2eC/J0fTxusi9L+cjS1dxvjcP8jfb1mNuOA/S8RAHn9AEkDEl04mXevRvxxdnoO+68W/R6k5gKdT9L8XLn/7fQAKQI4LcOU3HeS/TKXm9g0AB0BGTprWAFQQQLMn+MHwwtW/fK0mUHsLCMDTSY98V96qP1jfXLYnht6/cfX0bauZ7L+jt1fp3mKBPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOo0lvap4Ok/JVXnqLZu7j90FnkNHJ/Dv9h+FfRTBro/DtX0Ct/Nzz8kQ1IEEyh7P8UONAFkluw/fYzp377Y3D9v22eOMq/gv6rFmyIcdd+/DkggxODv9L97bsIaYEPhP3a5SP9osOA/tDRyRUFuF0B3VTVrSI3nP0j41eFfwM8/eQjP1+7y9j/sB429z/gGQI5SmwIjfPA/Q21FlWxOBUA1tuTSC5gRQEgUO0yhXQfAuBNnxWkklb/0I1gNHAn1P1ZhlF+EIgPAyw070kgN3L9UD7NI+xaDPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPC/AAAAAAAA8D8AAAAAAADwPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAeZmnRFes/yW5VmuaJ7T9MMA+9w4GCv/FMo9fFOso/LPPdRU3S1D/g1Ntoih3Qvzn3Ky5fFPQ/5CPQVVaUpb+iML4fmMTxv2oeOKEthsI/1NSj+9Ej8r+rCXXmQMvgP6QlkYk8Ve8/p184BO6CDkDuuyErSgnXvzLrPCRB9fM/hK6gXGIhpj+B1zlf9bYFwNdXvqTfVP4/rRA8QBq9JMAcN93lZ2Txvwo2aB9XVCjA0Gr7KCocH8CU5iyOXDgoQEm5k8qlSwxAkGiAFZkofL8rEEKU80AlQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA/AAAAAAAA8L/Pf3Z5uPDuPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwT6XasCK+k/wUh7pW8R7T8U8OmqMxq6P/0hT++GBMi/jazDhiMC1z9dGetneJjev7wTge+m0uE/V89ef5xU4j/9zsjhvqPgv7MmILks29m/dUC6rUi34L9nnS4gb53gP3DbDeiqPN4/gs52T2sxFkCriEwLQ7vgP0CgtL9iO/0/ad7tR2XR4L/R3EwtX0cBQFRJ7P6u9dS/3AMJgcs//T/v1VkIiugGQNwUiRwN5eY/DxXUJC/+BMBDaEf8kIkbwNmbThrMJHw/EOiXA2qlyr/SIDFadmr5PwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBUtphpSMAUOUdJRSlC4="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
 
39
  },
40
  "_last_original_obs": {
41
  ":type:": "<class 'numpy.ndarray'>",
42
+ ":serialized:": "gAWV3RAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZoEAAAAAAAAD6uBniHaOo/6x2noYQn7j+ZtZ+V4v3Cv/bHl2l64sA/E+BWwOE+0T+qnWXVHl+tvxfzLegoEus/bMc6MUu43j9euleHHLngv/ZZ40gj6N+/O560n+2o879U11RgXM/gP9Kq6nb9seA/UzGIyTNfF0BDe/sEio3pP8TbZhDeeNm/sjV2hujiA0BDl3eFh2MDQD6rF0wpR/c/lr1v3FAD5z+6g6+w5r8VQMZCwwlAYvy/HPkttWjjgr9KmzkuDzjwP5J8upAk2sY/cf5vKBt8hz+TTvpN/RVkPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPC/AAAAAAAA8D8AAAAAAADwPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiZ2/QRp+s/v9uuFyA67j8QOHZrC5VqP3pKUuMO7MK/a5sux0HB0j+i9Ly1JVa0v8fdG8GKCPA/PYL8amUU4j8oXl8b3I7lv/kSfvSaHOG/8iIrB2gV8L+mlKnCkPzfP3PeZNK9ruA/zf75HEcUEkBiltZ/g9rav9BKyB0NBdw/yMw2AVGZ+r/dcxLBcsEJQJMtsX6MyvC/9p2lz4msE0Bygi6nh2gOQDV22JT1ZuK/CqgZ/1wdA8DrDiFbHN3WP/07c/riSRjAAnU1TlPN779iH6BIn76oPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHSWs5Qfmek/84MfPke77j8xNwyoUeW2v04jIsFiiI0/SJeMg0ff0D8KeQ6I/QzAv4zEGqKrWug/J/waknTm4D86y/+xjZrgv/8JG+qz9eC/H3B2moGx678Pgo5sxTHgP6ISiGoNpuA/E+/fjP23F0DquNJmXt3pP4KCHFAly9g/cJ60Mk0DAMAsyaqt15sQQDlw3mMr1+m/qhj8NFluBUBT66pb3EvsPx8b2mE+TsW/RsOcqOdftr8EzK5xOzHMP8RO5KBcWB/AK8hmQ1KoBUCs1HzqvmupPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG4fYBJo8uk/b7Zcs/3q7T8yBYM5aeuwvx0xrX+p+sc/hXeOp8vQ0j/+ChFdx2m/P4oZ25CGlfI/GYYMD64p2T8ZVniHzVPsv8DHaUBx/NO/lvZ+YkyS87+7zpnc+dPgPxUr9JdQu+M/FnBOIvAZE0AIGArHe/rCvxWxnhZMjMC/+LtBkPMmE0Bx65DIsHsFQFJgbDrDpP8/wln8rEA+EsA/Ng4aDY0cQDrJwMkgxxTALvBQj9rF8r9KJeGgRG4YQAoEdKPFNp0/HsQa+E3Up79OiEIwPh4OQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIP3NSbwxOY/MHLxdTZS7D8coJoR55e+PxC6T4Kf3Mu/kk0DhWwz2T9jjrqEUMngv+RNtXmq8OE/srdmsb+1xj+MHTDvQdfcv4xnRgKDB8K/hq2nrEi44L/JcwvT8dzgPxo1VUTnhd4/+UW/B1IrE0DkBFdcLqjXPyCnqm2eEpQ/iP7agI3+3T/8FIteuPrpv5BT+N7bqgTAacCaKEMzhj+dbxleX2wIwHyX2i+36yVAWGwYWXTz9T9MhGvhaTAPwN2VqMwAYqC/C5X0P5dft78KZFbeQjUiwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPC/AAAAAAAA8L+/IA/EiWTVv8KdjSTMm+E/AAAAAAAA8L8AAAAAAADwPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBUtphpSMAUOUdJRSlC4="
43
  },
44
+ "_episode_num": 12558,
45
  "use_sde": false,
46
  "sde_sample_freq": -1,
47
  "_current_progress_remaining": 0.0,
48
  "_stats_window_size": 100,
49
  "ep_info_buffer": {
50
  ":type:": "<class 'collections.deque'>",
51
+ ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIzdE5wOvuCMAWyUS/mMAXSUR0Dbvq+BqbjMdX2UKGgGR0CxtmVZ9uxbaAdN6ANoCEdA2771KtPpIXV9lChoBkdAsjfVuP3i72gHTegDaAhHQNu/FngHeJp1fZQoaAZHQLIp9LMs6JZoB03oA2gIR0Dbv6IigTRIdX2UKGgGR0CPqhJVbRnfaAdL1GgIR0Dbv8xjBl+WdX2UKGgGR0CzmSU9QoCuaAdN6ANoCEdA28A8djXnQ3V9lChoBkdAmzRxwdbPhWgHTZABaAhHQNvBlF3EAHV1fZQoaAZHQLKxEMfRu0loB03oA2gIR0DbwgCN+9amdX2UKGgGR0Cyha0xASnMaAdN6ANoCEdA28JNhpxm03V9lChoBkdAsM+vz6JqI2gHTegDaAhHQNvDD708NhF1fZQoaAZHQLGrRHAh0QtoB03oA2gIR0DbwzvQWvbHdX2UKGgGR0CyonQaBI4EaAdN6ANoCEdA28Tgclw97nV9lChoBkdAsdfg7LdN4GgHTegDaAhHQNvFU4cvM8p1fZQoaAZHQLKXQLWI42loB03oA2gIR0DbxZ1KAavSdX2UKGgGR0Cyh5o2XLNfaAdN6ANoCEdA28ZiaPjn3nV9lChoBkdAshcWMZP2wmgHTegDaAhHQNvGk1jZtel1fZQoaAZHQLI5WWBBiTdoB03oA2gIR0DbyE+sRxtIdX2UKGgGR0Cw5ZtNJvpAaAdNwwNoCEdA28in2Ifr8nV9lChoBkdAscGa2lVLjGgHTegDaAhHQNvJC7Ysd1d1fZQoaAZHQLLGXjrRjSZoB03oA2gIR0DbyaxcbBGhdX2UKGgGR0CyADwjps42aAdN6ANoCEdA28nVaCcwxnV9lChoBkdAsb9cWj4592gHTegDaAhHQNvLr4nfEXN1fZQoaAZHQLGYKUdq+JxoB03oA2gIR0Dby/rOkcjrdX2UKGgGR0CohNqx1PnCaAdN0gJoCEdA28xWFEiMYXV9lChoBkdAsn8uq+8Gs2gHTegDaAhHQNvMaDSLIgh1fZQoaAZHQLHuiJ9RaX9oB03oA2gIR0DbzRxVrAP/dX2UKGgGR0Co2i6rvLHNaAdNxwJoCEdA287gY+0PYnV9lChoBkdAsfSP/tICl2gHTegDaAhHQNvPJjkhib51fZQoaAZHQLHHByDIzWRoB03oA2gIR0Dbz3Fx1gYxdX2UKGgGR0CxxCwaNuLraAdN6ANoCEdA28/Sz544ZXV9lChoBkdAsg1DrOZ9eGgHTegDaAhHQNvQmr4N7Sl1fZQoaAZHQLJoyHWjGkxoB03oA2gIR0Db0nCiKziTdX2UKGgGR0Cx9QgfEGaAaAdN6ANoCEdA29KsOzposnV9lChoBkdAsi+F86V+qmgHTegDaAhHQNvS+SuU2UB1fZQoaAZHQLHNr4Oc2BJoB03oA2gIR0Db01UFA3UAdX2UKGgGR0CyZsaRISUUaAdN6ANoCEdA29QcDFId2nV9lChoBkdAkyJtzbN8mmgHTRUBaAhHQNvUTJ0nw5N1fZQoaAZHQLHefGu9vjxoB03oA2gIR0Db1d3pPhybdX2UKGgGR0CxnQ0fozN2aAdN6ANoCEdA29YcFspG4XV9lChoBkdAsnY8AdXDFmgHTegDaAhHQNvWdV/MGHJ1fZQoaAZHQLEdhEUTL4hoB03oA2gIR0Db1588wHqvdX2UKGgGR0CfIceJYT0yaAdN0gFoCEdA29fJNwzch3V9lChoBkdAshruQGOdXmgHTegDaAhHQNvX0J+UhV51fZQoaAZHQJ9ro+LWI45oB03DAWgIR0Db2Qz3XZoPdX2UKGgGR0CzGOm7rcCYaAdN6ANoCEdA29k8HcUM5XV9lChoBkdAeBFN5dGAkWgHTegDaAhHQNvZz8mOU+t1fZQoaAZHQLJue8Z1mrdoB03oA2gIR0Db2yM62fCidX2UKGgGR0Cyas1W8yvcaAdN6ANoCEdA29sqyTpxFXV9lChoBkdAsuEp2wFC9mgHTegDaAhHQNvcl68Hv+h1fZQoaAZHQLI6SHnEETxoB03oA2gIR0Db3McCxNZedX2UKGgGR0BKEuuJUHY6aAdLGmgIR0Db3N/El3QldX2UKGgGR0CynTnbEgnuaAdN6ANoCEdA291aZof0VnV9lChoBkdAsWIrNpudgGgHTegDaAhHQNvewZaA4GV1fZQoaAZHQLKR6AtFrmBoB03oA2gIR0Db3skZUDMedX2UKGgGR0Bj6hL9MsYmaAdLMmgIR0Db3uwWnCO4dX2UKGgGR0CfotydFvycaAdNwAFoCEdA297/Q4CIUXV9lChoBkdAsiizxaxHG2gHTegDaAhHQNvgLGpAD7t1fZQoaAZHQLLS6Rv3rUtoB03oA2gIR0Db4HgjZ+QVdX2UKGgGR0Cx6d2Jzkp7aAdN6ANoCEdA2+JHt4zJp3V9lChoBkdAsdWsFfReC2gHTegDaAhHQNvibakuYhN1fZQoaAZHQLJBR/EfkmxoB03oA2gIR0Db4n/0se4kdX2UKGgGR0CyvKbBO58SaAdN6ANoCEdA2+OUfhuO0nV9lChoBkdAsTPkyhzvJGgHTegDaAhHQNvj31me18d1fZQoaAZHQLJVlnF5v99oB03oA2gIR0Db5XzR4QjEdX2UKGgGR0CykCOERJ2/aAdN6ANoCEdA2+Weona37XV9lChoBkdAsnSOg5BC2WgHTegDaAhHQNvlsJGe+VV1fZQoaAZHQLFjp/L1VYJoB03oA2gIR0Db5r1If8uSdX2UKGgGR0Cw/+nWattAaAdN6ANoCEdA2+cEFtbcGnV9lChoBkdArt+rRBu4w2gHTV4DaAhHQNvoW1TNt651fZQoaAZHQLNuJc5Ke05oB03oA2gIR0Db6LGx3V0+dX2UKGgGR0CycvUKeCkHaAdN6ANoCEdA2+jxVEd/8XV9lChoBkdAshhtXXAdn2gHTegDaAhHQNvqA/MSsbN1fZQoaAZHQLGfpJ0GNaRoB03oA2gIR0Db6kLw/gR9dX2UKGgGR0CyUWouGsV+aAdN6ANoCEdA2+uqfNA1N3V9lChoBkdAszcHDEWIoGgHTegDaAhHQNvsAW6oVEd1fZQoaAZHQLIoTfPHDJloB03oA2gIR0Db7DuYAsCldX2UKGgGR0Cya1sEA5q/aAdN6ANoCEdA2+1hkqtoz3V9lChoBkdAssaAyqMm4WgHTegDaAhHQNvtqT4cm0F1fZQoaAZHQLJTESh8IAxoB03oA2gIR0Db7ycAfdRBdX2UKGgGR0Cx8U6EBbOeaAdN6ANoCEdA2+9+7O3UhHV9lChoBkdAst+uMo+fRWgHTegDaAhHQNvvu1bNbC91fZQoaAZHQEhge6qbSZ1oB0skaAhHQNvv30fYBeZ1fZQoaAZHQLGqsKohpxpoB03oA2gIR0Db8PMVWS2ZdX2UKGgGR0CyQuPEGZ/kaAdN6ANoCEdA2/FBrWAf+3V9lChoBkdAsv7x1LamGmgHTegDaAhHQNvysQhfShJ1fZQoaAZHQLL3Wz9CNS9oB03oA2gIR0Db8wWJsO5KdX2UKGgGR0CyRJSuyNXHaAdN6ANoCEdA2/Nd9Sde6nV9lChoBkdAsvKeMERramgHTegDaAhHQNv0WItxuKp1fZQoaAZHQLCCz3LFGXpoB02eA2gIR0Db9GAV45cUdX2UKGgGR0CyHoFb/wRXaAdN6ANoCEdA2/Y1ELH+63V9lChoBkdAsymQ/eLvTmgHTegDaAhHQNv2kGS2Yv51fZQoaAZHQLI+s7YChexoB03oA2gIR0Db9uFxwQ18dX2UKGgGR0CzFkV2V3UyaAdN6ANoCEdA2/fdDZ13dXV9lChoBkdAsnHm8zyjHmgHTegDaAhHQNv35HRw6yV1fZQoaAZHQKtdZQ5WBBloB03jAmgIR0Db+V1blijMdX2UKGgGR0CytvHt0FKTaAdN6ANoCEdA2/mSZML4OHV9lChoBkdAsjgyFCb+cmgHTegDaAhHQNv51lUQ0411fZQoaAZHQHpGm8/UvwpoB0tvaAhHQNv6MusDGLl1fZQoaAZHQK15VlI3BHloB00BA2gIR0Db+mOQo1DTdX2UKGgGR0Cy8KB7Z39raAdN6ANoCEdA2/tDQUpNK3VlLg=="
52
  },
53
  "ep_success_buffer": {
54
  ":type:": "<class 'collections.deque'>",
55
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
56
  },
57
+ "_n_updates": 1998000,
58
  "buffer_size": 1000000,
59
  "batch_size": 256,
60
  "learning_starts": 10000,
 
68
  "__module__": "stable_baselines3.common.buffers",
69
  "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
70
  "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
71
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f64fbad4cc0>",
72
+ "add": "<function ReplayBuffer.add at 0x7f64fbad4e00>",
73
+ "sample": "<function ReplayBuffer.sample at 0x7f64fbad4ea0>",
74
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f64fbad4f40>",
75
+ "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7f64fbad4fe0>)>",
76
  "__abstractmethods__": "frozenset()",
77
+ "_abc_impl": "<_abc._abc_data object at 0x7f64fbac9f00>"
78
  },
79
  "replay_buffer_kwargs": {},
80
  "train_freq": {
ant-v5-sac-medium/ent_coef_optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:292520da61c1bcfe37737c37387895138c576058c459c568be7a354c95b9201f
3
  size 1940
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9f9f97b341d76377d3fe4167d7fe331c48c5da8daba80a15e6532214b320315
3
  size 1940
ant-v5-sac-medium/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d7f9aed5adf55016946152a35cccf39f8ac3ded562f749ac7a3e0357dc56bb2f
3
  size 1923254
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:982b77e33c641ff4b668b90926d4fba41c95aaea4117020e41ecf19ef0728317
3
  size 1923254
ant-v5-sac-medium/pytorch_variables.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a5ffe38844eb158460d066114de60cfe39c058a62483dc861443d3284564eb16
3
  size 1180
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:feb58e132f12fd587edb31ad26d8b0038437dddcdf2b29156dcdc028cd995502
3
  size 1180
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=", "__module__": "stable_baselines3.sac.policies", "__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function SACPolicy.__init__ at 0x7fdd5b9584a0>", "_build": "<function SACPolicy._build at 0x7fdd5b958ae0>", "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7fdd5b958b80>", "reset_noise": "<function SACPolicy.reset_noise at 0x7fdd5b958c20>", "make_actor": "<function SACPolicy.make_actor at 0x7fdd5b958cc0>", "make_critic": "<function SACPolicy.make_critic at 0x7fdd5b958d60>", "forward": "<function SACPolicy.forward at 0x7fdd5b958e00>", "_predict": "<function SACPolicy._predict at 0x7fdd5b958ea0>", "set_training_mode": "<function SACPolicy.set_training_mode at 0x7fdd5b958f40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdd5b95d540>"}, "verbose": 0, "policy_kwargs": {"use_sde": false}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": 0, "action_noise": null, "start_time": 1730901255514565729, "learning_rate": 0.0003, "tensorboard_log": "runs/r09bii4z", "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV3RAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZoEAAAAAAAAMfqdR3XjuY/55bk89Cb7z9v+iKm52eRv8VOdJpyN78/+KOJpkV9uD+bXL/+5GjXPwdWy/wHO+8/VwUhSA3l4L9gu3biEkzlv5n9P8cUDts/WHym4aOd8L/wxbM+ZMzgP9rOyPZMKe4/mfXOJCyN/j/aAspO0/3CPw+mgoJlEdQ/9EmU9tLnxb93ypFeODkRwFUpTIXhL9e/t2Mc5vN3GcAbs+hR+bLvvz4VYy/Up7g/aXpgeHfIFsCu8lgSPgEdQLiC1HVAthtALLk3XrDyUL9/nBC87pciQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPC/AAAAAAAA8L/oc/R21i7gPwAAAAAAAPA/AAAAAAAA8L8AAAAAAADwP8VD2zKiIOk/vmpdN+pR7j/fpT5wrVWRP6WIvoer2L+/1BAzzDTS0j+SBsoSamDRv0ejNlWewvI/0sAIOJED47+jlySZTMnnvwh+BaDzK9m/4SfhUc+U378+e3KYp8bgP80b5/TyVvE/cgU9CeoOAEDai4d+iN/AP2Bfb6NfAfU/D3C7kQPn+L8vyNeVP5f2vwQPftvDAte/6znxxTCPHsDswD7GIRsAwLJMv3k1dwfAoNvfDFNk0b9Tfyep9OMUQMcSnbeVR+O/vE3IDffvOD8bBJGQYKEHwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOAPf6DVNec/HSzcHN9r7D93RWMPwbmtP7DrgvFem8e/d0CGLtmt2j9XHkk7vNzfv//3lQUlivE/v/tDDsdJ4L8gx2cYfLngvzJHMb5I7ps/GD+HkCGF3r9dNK4oFdDgP/CWu83sgfA/W6OqXURKAUBY4KWBu2biP5sWur0Kts2/7+KUW/759r90ZLlcaST7v/hkn8NP3ca/DZZ10+W3CMCdzNkCYZH6vw2s6eSlNOM/HVL3N5MfWz+bHbhiSlcIQGsgXoLQPvy/2X9qysvGQr/1fMQCPPUKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACLe7UzI7uc/Tpp3mmqQ7j/whiHLmPe1P9GBtu1P8Ma/mT8QcMEdzD/DEA/VFFXgv6iTequ82vE/il9id3Ml2z8sz5LLzrzjv5IsZP+Wl8G/t84eBdWv4L+4Y9qlm9HgPxhjPpXGfNo/RPDDYLGNEUBSK+TyBDLvP8COKnw9qPQ/ojNdorJzAsD59OLVEHTdP6EIpLI79uA/EyDzRYUn4r8EYg2l37EAwKt5qwsazBVAP3XrqffACkCs3k1ixcwewB5k2roQlpm/pTPNePAMhj+E4qVeG8rrPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANsl/KPi/eQ/tiXrL79d7j+KHP7iSCGjv7Jhb/PjKr2/g49HGVOs0j9OGnq4Mv7gP6HBaAxikvM//7S+R71D2z/OvUGDfKTgv/ScDjTyq8y/3UdqhCtW5L/hjNOfPt3gP6tOMJLEYN8/hVOvhS4QC0A7rslpprrKvzd5G+pcaey/6dxuk0SeCUBRd2X5dg7EvwkJNV926wFA/hiNzIYcy79e33McHF+Nv+PmJ30bvxTANnYctoh+n7+1ZsboPvsgwA/ifCDWKe+/XnMPiDQ9tL8nEqfrIMPxPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBUtphpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVeAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYFAAAAAAAAAAEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksFhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV3RAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZoEAAAAAAAADKzWRa1WuY/q3Kb5md97z/a61o/2c6kv1hPdjubZ8I/y8IvWguxuD8dmNW2bOHgP8g6cG5fHvA/zVOMI/hW4b/bTC12UbXgv/iZc6DoSMY/9vegiHvS879GCJw8W83gP/2p80DFuOM/0CimEJ/zA0BQNFjrjFi8P64wBfEwA82/UWCcevWPAEAqtshIDQ0DQDca79Y8Dek/FajPkToDrL8M6WwuXJXQv7r/rz9bOuI/iemaYB2GdT8t74gE+CEFQILvRNfaqfA/jM9IihvcXj8IK1V3eXwNQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFHBDHzkmuY/huqp9/+t7j9Wg3LDXDikP/Dp25DwMrS/Fdgonq5L0T9iANzAYcPCP1ybCzpilfM/uNUKIgR8wL8PlL37JCfkvwwBzh3sy+C/AwYSz5BV47/w1SksrMjgP0DAu4lq1/M/Xtpkdqo2AUAw3wjZqTzMv/qJRfq9K/4/ag2j3h4k6L+m4lvMiMr7vxYT+qiefPk/rEKffyEjIsC609gfycGTvyeg4wexvB/AdvTvW945EcB6CNUAb3qiPwVt3OxFYBNAhjh5EbS3iL+8csCpzGgKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDbrksnQuc/8o1cq5WL7D+8IDrvDmOuP/Jv9LmtJcC/QmGNYsmD2z9YxlEHzTXSv8mQ3u3/3/I/2ZtB+3zI4L/C6YshYLvgv/vvrUMANMi/osXzoPVM4r/ssufkOtDgP8FhlxWQcvI/OUwgLU3u/z96/ecFCELkP084Pg57XsA/ocv9UHRx4L9vCKeZTlsGwCX+vHR3ytK/NZOgLAfbFcD6Eq68mcD6v8EfWWxQ8o8/U6KmxeETZD8Zi1EDo4oWQJxlEMNn8SBAmYMKeqgfVD/OGT3K4GX3vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFLiY/KD1+U/CurYg2Rb7j8puSoyGn+7P7Ic/ekdFMm/WpNwuHuozD/jfJJTsUDdv3Quv8DV2vI/1XjRJHjitj8GrnkDx9zqv9ragDJJKso/4se3usaY4L+CS+g+EMzgPxTVesewVuk/zpAr0UUND0CJGTSIcpXvP9WdM/2vVtU/VDagH0OCA0B+LPGUbzH4v94EinApOfi/FSXZ6jAh+b8EPu21A0fYv7tOkVOrgSBAfMS1mCAgFkC0tlp51j0ZwPeqL4j6Obm/qJKRPBz3cb//wq+VNQUiwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA/AAAAAAAA8D8AAAAAAADwvwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPC/AAAAAAAA8L8AAAAAAADwPwAAAAAAAPA/AAAAAAAA8L8AAAAAAADwPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFoAfHvcR+Y/j61Y9gKI7j/hvk10AHa4v1kloR4Cw8G/9s1Txh+xzz87MvLqIaLhP0+CHyF4mvM/pzUZ/93K4T/Os7J1o3rgv1ElnsOoNMM/fy3uRxIl4r/I6Qt2UjThP439Px3bjOA/U2+aN+FBDUC198iX+2TnP1aXxE7WuPS/GKoicAUJ8T/XqMB2lZ/vPxQ9vyAfAcs/stQWWk4/27/Uqqt8fJa2vyAanroGs6s/cDt3Snrwzb8UtbYY2L0ZwHtYkMbMd/y/TBc/20nu2b+m/fQ90RIfwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBUtphpSMAUOUdJRSlC4="}, "_episode_num": 1283, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJfPB58jRlaMAWyUTTsCjAF0lEdAqNtHk3juKHV9lChoBkdApR7mp2ll9WgHTegDaAhHQKjgTXo1UER1fZQoaAZHQKVGoLHdXT5oB03oA2gIR0Co5tf+bVjJdX2UKGgGR0CDhYdkJ8fFaAdN6ANoCEdAqOgvpD/lyXV9lChoBkdAivbLHuJDV2gHTTkBaAhHQKjwEYpDu0F1fZQoaAZHQKC9aziS7oVoB00dA2gIR0Co8V3ocJdCdX2UKGgGR0ClXwOy/sVtaAdN6ANoCEdAqPf6FPBSDXV9lChoBkdAmf5uKjzqbGgHTegDaAhHQKj9EsCDEm91fZQoaAZHQJmT4HLRrrRoB03oA2gIR0CpBUCoS+QEdX2UKGgGR0CkZx7nPmgbaAdN6ANoCEdAqQ11K28Zk3V9lChoBkdApMmosXizcGgHTegDaAhHQKkOzThHbyp1fZQoaAZHQKcON9YwIt1oB03oA2gIR0CpFebKzRhMdX2UKGgGR0CkuKCyY5T7aAdN6ANoCEdAqRsmJ79hqnV9lChoBkdApfoz7655JWgHTegDaAhHQKki0b961LJ1fZQoaAZHQKXZ7uyeI2xoB03oA2gIR0CpKePP1L8KdX2UKGgGR0CljLzM7lq8aAdN6ANoCEdAqSsXkvK2a3V9lChoBkdAnEo5DE3sHGgHTZgCaAhHQKks1WjGkvd1fZQoaAZHQKbrF8iwB5poB03oA2gIR0CpMQhQm/nGdX2UKGgGR0ChYN+jdpIuaAdN6ANoCEdAqT1P642CNHV9lChoBkdApUUs7GNrCWgHTegDaAhHQKlEl8Q7LdN1fZQoaAZHQKX6wv+wTuhoB03oA2gIR0CpRc1J17pndX2UKGgGR0Cf5Wjvd/KAaAdN6ANoCEdAqUeMd92HL3V9lChoBkdApk0eN5t3wGgHTegDaAhHQKlL3VBlcyF1fZQoaAZHQKG3bQrtmcxoB00tA2gIR0CpU0gz544ZdX2UKGgGR0CYfSAJb+tKaAdNIgJoCEdAqVNWcz67/XV9lChoBkdApX3/bmEGq2gHTegDaAhHQKlhJnJT2nN1fZQoaAZHQKXHIJwbVBloB03oA2gIR0CpYtzuv2XcdX2UKGgGR0ClbEf/echDaAdN6ANoCEdAqWdRv99+gHV9lChoBkdApNukTcqOLmgHTegDaAhHQKlum9Iwudx1fZQoaAZHQKV91PUKArhoB03oA2gIR0CpbqsvRJEqdX2UKGgGR0CYA3xnnMdMaAdNRgJoCEdAqXDaNsFdLXV9lChoBkdALmRBE8aGYmgHSxJoCEdAqXFPqZ+hG3V9lChoBkdAjmaIeYD1XmgHTV0BaAhHQKl7B433pOh1fZQoaAZHQKW0kX3xnWdoB03oA2gIR0CpfgFXJYDDdX2UKGgGR0ClPnS5iExqaAdN6ANoCEdAqYJuBFuvU3V9lChoBkdApfqqyD7Ik2gHTegDaAhHQKmKzRceKbd1fZQoaAZHQKUIvzmOlwdoB03oA2gIR0Cpit5PM0P6dX2UKGgGR0BeG1mWdEsraAdLO2gIR0CpjIlUADJVdX2UKGgGR0ClDus5fdAPaAdN6ANoCEdAqZdwQz1scnV9lChoBkdApQv6hUR3/2gHTegDaAhHQKmahrIHTql1fZQoaAZHQJx+1SLqD9RoB03oA2gIR0Cpnt+dCmdidX2UKGgGR0Cloa6I3zczaAdN6ANoCEdAqaYPoHLRr3V9lChoBkdApS4wRIz3y2gHTegDaAhHQKmnw8vEjxF1fZQoaAZHQKXWhSR8twtoB03oA2gIR0Cpsis0xdpqdX2UKGgGR0BR5j6WPcSHaAdLOWgIR0Cps7vxYq5LdX2UKGgGR0CludyvC/GmaAdN6ANoCEdAqbVNaW5Yo3V9lChoBkdAphLJuIhyKmgHTegDaAhHQKm6j6iTMaF1fZQoaAZHQKPRzOO801toB03oA2gIR0Cpw0FdcB2fdX2UKGgGR0CjuO8ynDR/aAdN6ANoCEdAqcUNW6shgXV9lChoBkdAdzufOUt7KWgHS6hoCEdAqchod+5OJ3V9lChoBkdAkpKWhmGucWgHTaoBaAhHQKnR0kadc0N1fZQoaAZHQKNCG9g4OtpoB03oA2gIR0Cp0owUQCjldX2UKGgGR0Cl2vGg8KXwaAdN6ANoCEdAqdQzF2mpEXV9lChoBkdAjQdRRVIZqGgHTegDaAhHQKnZTFa0Qbx1fZQoaAZHQJI83aTOgQJoB02ZAWgIR0Cp3zIhIOH4dX2UKGgGR0CKf76cAimmaAdN6ANoCEdAqecKb8WKuXV9lChoBkdAkZAKgM+eOGgHTegDaAhHQKnxDYoy9El1fZQoaAZHQKWBWdI5HVhoB03oA2gIR0Cp8w+Zw4sFdX2UKGgGR0ClRkBaTwDvaAdN6ANoCEdAqfdnYL9deXV9lChoBkdApsCSDh99dGgHTegDaAhHQKn8qk8A7xN1fZQoaAZHQKX+VeANG3FoB03oA2gIR0CqA0TjFQ2udX2UKGgGR0ClOhLeqJdjaAdN6ANoCEdAqgvEpd8iOnV9lChoBkdApZOevOhTO2gHTegDaAhHQKoNvg75mAd1fZQoaAZHQKUNy7ihnJ1oB03oA2gIR0CqEhCbtqpMdX2UKGgGR0ClzmP1tfoiaAdN6ANoCEdAqhdFlAeJYXV9lChoBkdAkvSH2dupCWgHTegDaAhHQKoeAgRK6Fx1fZQoaAZHQKagn5AyEctoB03oA2gIR0CqJqNpVS4wdX2UKGgGR0CkUxeyzHCGaAdN6ANoCEdAqii5TqB3A3V9lChoBkdApXJ0C1Z1WGgHTegDaAhHQKotEBQvYe11fZQoaAZHQKXXlCeEqUhoB03oA2gIR0CqMg/u1F6SdX2UKGgGR0Cly5NdRiw0aAdN6ANoCEdAqjju9tdiUnV9lChoBkdApL8vH1e0HGgHTegDaAhHQKpBWF+uvEF1fZQoaAZHQKW0FKkEcKhoB03oA2gIR0CqQ1/u1F6SdX2UKGgGR0ChBeMJQcghaAdN6ANoCEdAqkfkr08NhHV9lChoBkdAjuYuM2m52GgHTV4BaAhHQKpND70nPVx1fZQoaAZHQKUgRqgRK6FoB03oA2gIR0CqTSnB1s+FdX2UKGgGR0ClSfpjUd7waAdN6ANoCEdAqlPSQaJhv3V9lChoBkdApFiNf5ULlWgHTegDaAhHQKpcLhOP/711fZQoaAZHQJk0HUtqYZ5oB00eAmgIR0CqYirRKHwgdX2UKGgGR0CmggnE/B3zaAdN6ANoCEdAqmKZj+aScXV9lChoBkdANOp2pyZKF2gHSxNoCEdAqmMYO2AoX3V9lChoBkdApPtcaCL/CWgHTegDaAhHQKpnhwGW2PV1fZQoaAZHQKSx2zBRAKRoB03oA2gIR0CqZ6BOYYzjdX2UKGgGR0CXFbskY4yXaAdNGAJoCEdAqmqTAgxJunV9lChoBkdAphynhVENOWgHTegDaAhHQKp9aA/9pAV1fZQoaAZHQKFjStdRiw1oB03oA2gIR0CqflJa7mMgdX2UKGgGR0CmP0NmlImPaAdN6ANoCEdAqoKnhQ3xWnV9lChoBkdAh1VNzr/sFGgHTegDaAhHQKqCwJ+lTFV1fZQoaAZHQI5e1DYywfRoB03oA2gIR0CqhZiZOSGKdX2UKGgGR0CmLuaiCaqkaAdN6ANoCEdAqpiyZnctXnV9lChoBkdAphyKL0jC52gHTegDaAhHQKqZsRyOrAB1fZQoaAZHQKTPW8cMmWtoB03oA2gIR0CqnntbkfcOdX2UKGgGR0CmNLQhfShKaAdN6ANoCEdAqp6VJz1bq3V9lChoBkdApk73TkQwsWgHTegDaAhHQKqhZYChew91fZQoaAZHQJ2Y1M0xdptoB03jAmgIR0CqroTaCcwydX2UKGgGR0Ck175RKpT/aAdN6ANoCEdAqrVFeD3/P3V9lChoBkdAoRuNLDhtL2gHTVUDaAhHQKq3DrdFfAt1fZQoaAZHQKVaweiBXjloB03oA2gIR0CquuiNKh+OdX2UKGgGR0Cl/Y1cUucuaAdN6ANoCEdAqr4CqABkqnV9lChoBkdApRxJr8BMjGgHTegDaAhHQKrKjKAavRt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 198000, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 10000, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7fdd66760cc0>", "add": "<function ReplayBuffer.add at 0x7fdd66760e00>", "sample": "<function ReplayBuffer.sample at 0x7fdd66760ea0>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7fdd66760f40>", "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7fdd66760fe0>)>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdd66753180>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -8.0, "ent_coef": "auto", "target_update_interval": 1, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWV4QgAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLaYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWSAMAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P+UaAtLaYWUjAFDlHSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolmkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS2mFlGgWdJRSlIwEaGlnaJRoEyiWSAMAAAAAAAAAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaAtLaYWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJZpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoHUtphZRoFnSUUpSMCGxvd19yZXBylIwELWluZpSMCWhpZ2hfcmVwcpSMA2luZpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float64", "_shape": [105], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVkgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFnSUUpSMBGhpZ2iUaBMoliAAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UaAtLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgdSwiFlGgWdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaDKMFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaD2KEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "bounded_below": "[ True True True True True True True True]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_above": "[ True True True True True True True True]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 5, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVHgQAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBUsTQyaVAZcAdAEAAAAAAAAAAAIAiQF8AKsBAAAAAAAAqwEAAAAAAABTAJROhZSMBWZsb2F0lIWUjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMVC9ob21lL21hc3Rlci1hbmRyZWFzL2dlbl9kYXRhc2V0L3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMCDxsYW1iZGE+lIwhZ2V0X3NjaGVkdWxlX2ZuLjxsb2NhbHM+LjxsYW1iZGE+lEthQxD4gACkZalO0DtN0yxO1CZPlEMAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxUL2hvbWUvbWFzdGVyLWFuZHJlYXMvZ2VuX2RhdGFzZXQvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGowIPGxhbWJkYT6UjAxfX3F1YWxuYW1lX1+UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgbjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJRoCSmMAV+UhZRoDowEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4VDCPiAANgPEogKlGgSjAN2YWyUhZQpdJRSlGgXTk5oHylSlIWUdJRSlGglaEF9lH2UKGgajARmdW5jlGgpjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgrfZRoLU5oLk5oL2gbaDBOaDFoM0c/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaEpdlGhMfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-6.6.59-1-MANJARO-x86_64-with-glibc2.40 # 1 SMP PREEMPT_DYNAMIC Fri Nov 1 05:33:52 UTC 2024", "Python": "3.12.7", "Stable-Baselines3": "2.4.0a10", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "1.0.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=", "__module__": "stable_baselines3.sac.policies", "__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function SACPolicy.__init__ at 0x7f64f0cf44a0>", "_build": "<function SACPolicy._build at 0x7f64f0cf4ae0>", "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7f64f0cf4b80>", "reset_noise": "<function SACPolicy.reset_noise at 0x7f64f0cf4c20>", "make_actor": "<function SACPolicy.make_actor at 0x7f64f0cf4cc0>", "make_critic": "<function SACPolicy.make_critic at 0x7f64f0cf4d60>", "forward": "<function SACPolicy.forward at 0x7f64f0cf4e00>", "_predict": "<function SACPolicy._predict at 0x7f64f0cf4ea0>", "set_training_mode": "<function SACPolicy.set_training_mode at 0x7f64f0cf4f40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f64f0cf8a40>"}, "verbose": 0, "policy_kwargs": {"use_sde": false}, "num_timesteps": 10000000, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": 0, "action_noise": null, "start_time": 1730910441542966752, "learning_rate": 0.0003, "tensorboard_log": "runs/p2aaafqn", "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV3RAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZoEAAAAAAAAO6twz7i6Ok/jEU5IXOq7T8/Eg/IWvOhv3beLa4f4ss/BmwfhVlm0z9rCE9nAjW4v8wCrbojz/M/9hWZe3tMyz83czCvz9flv0g1XBVSi9G/0S5UtJGY87+h/2jqLdTgP96k3CsfU+Y/gCgUabq/FUBum9IqHjznPziDbGOpxrC/gxO5mR35EUBMxXy4ki/3P9DQkSw5hwVAqqWUcKPZAcA/6v3LuJwgQF6SL3U7qSHAkTuSoGNIGcB7w74B1acfQPizODcNOZk/Fs6qaemJez88494L+/obQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPC/AAAAAAAA8L8AAAAAAADwvwAAAAAAAPC/AAAAAAAA8L8AAAAAAADwP48IlQED4us/Yh2nMXuw7j8hblPeufGrv1O/5F96RLS/BlPhEVUN0T/C0U2vhG+9P1v34dl2L/M/8KWMfu8W4T/HUnmHdOHpv4JoYMzA2eC/J0fTxusi9L+cjS1dxvjcP8jfb1mNuOA/S8RAHn9AEkDEl04mXevRvxxdnoO+68W/R6k5gKdT9L8XLn/7fQAKQI4LcOU3HeS/TKXm9g0AB0BGTprWAFQQQLMn+MHwwtW/fK0mUHsLCMDTSY98V96qP1jfXLYnht6/cfX0bauZ7L+jt1fp3mKBPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOo0lvap4Ok/JVXnqLZu7j90FnkNHJ/Dv9h+FfRTBro/DtX0Ct/Nzz8kQ1IEEyh7P8UONAFkluw/fYzp377Y3D9v22eOMq/gv6rFmyIcdd+/DkggxODv9L97bsIaYEPhP3a5SP9osOA/tDRyRUFuF0B3VTVrSI3nP0j41eFfwM8/eQjP1+7y9j/sB429z/gGQI5SmwIjfPA/Q21FlWxOBUA1tuTSC5gRQEgUO0yhXQfAuBNnxWkklb/0I1gNHAn1P1ZhlF+EIgPAyw070kgN3L9UD7NI+xaDPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPC/AAAAAAAA8D8AAAAAAADwPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAeZmnRFes/yW5VmuaJ7T9MMA+9w4GCv/FMo9fFOso/LPPdRU3S1D/g1Ntoih3Qvzn3Ky5fFPQ/5CPQVVaUpb+iML4fmMTxv2oeOKEthsI/1NSj+9Ej8r+rCXXmQMvgP6QlkYk8Ve8/p184BO6CDkDuuyErSgnXvzLrPCRB9fM/hK6gXGIhpj+B1zlf9bYFwNdXvqTfVP4/rRA8QBq9JMAcN93lZ2Txvwo2aB9XVCjA0Gr7KCocH8CU5iyOXDgoQEm5k8qlSwxAkGiAFZkofL8rEEKU80AlQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA/AAAAAAAA8L/Pf3Z5uPDuPwAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwT6XasCK+k/wUh7pW8R7T8U8OmqMxq6P/0hT++GBMi/jazDhiMC1z9dGetneJjev7wTge+m0uE/V89ef5xU4j/9zsjhvqPgv7MmILks29m/dUC6rUi34L9nnS4gb53gP3DbDeiqPN4/gs52T2sxFkCriEwLQ7vgP0CgtL9iO/0/ad7tR2XR4L/R3EwtX0cBQFRJ7P6u9dS/3AMJgcs//T/v1VkIiugGQNwUiRwN5eY/DxXUJC/+BMBDaEf8kIkbwNmbThrMJHw/EOiXA2qlyr/SIDFadmr5PwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBUtphpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVeAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYFAAAAAAAAAAEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksFhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV3RAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZoEAAAAAAAAD6uBniHaOo/6x2noYQn7j+ZtZ+V4v3Cv/bHl2l64sA/E+BWwOE+0T+qnWXVHl+tvxfzLegoEus/bMc6MUu43j9euleHHLngv/ZZ40gj6N+/O560n+2o879U11RgXM/gP9Kq6nb9seA/UzGIyTNfF0BDe/sEio3pP8TbZhDeeNm/sjV2hujiA0BDl3eFh2MDQD6rF0wpR/c/lr1v3FAD5z+6g6+w5r8VQMZCwwlAYvy/HPkttWjjgr9KmzkuDzjwP5J8upAk2sY/cf5vKBt8hz+TTvpN/RVkPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPC/AAAAAAAA8D8AAAAAAADwPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGiZ2/QRp+s/v9uuFyA67j8QOHZrC5VqP3pKUuMO7MK/a5sux0HB0j+i9Ly1JVa0v8fdG8GKCPA/PYL8amUU4j8oXl8b3I7lv/kSfvSaHOG/8iIrB2gV8L+mlKnCkPzfP3PeZNK9ruA/zf75HEcUEkBiltZ/g9rav9BKyB0NBdw/yMw2AVGZ+r/dcxLBcsEJQJMtsX6MyvC/9p2lz4msE0Bygi6nh2gOQDV22JT1ZuK/CqgZ/1wdA8DrDiFbHN3WP/07c/riSRjAAnU1TlPN779iH6BIn76oPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHSWs5Qfmek/84MfPke77j8xNwyoUeW2v04jIsFiiI0/SJeMg0ff0D8KeQ6I/QzAv4zEGqKrWug/J/waknTm4D86y/+xjZrgv/8JG+qz9eC/H3B2moGx678Pgo5sxTHgP6ISiGoNpuA/E+/fjP23F0DquNJmXt3pP4KCHFAly9g/cJ60Mk0DAMAsyaqt15sQQDlw3mMr1+m/qhj8NFluBUBT66pb3EvsPx8b2mE+TsW/RsOcqOdftr8EzK5xOzHMP8RO5KBcWB/AK8hmQ1KoBUCs1HzqvmupPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG4fYBJo8uk/b7Zcs/3q7T8yBYM5aeuwvx0xrX+p+sc/hXeOp8vQ0j/+ChFdx2m/P4oZ25CGlfI/GYYMD64p2T8ZVniHzVPsv8DHaUBx/NO/lvZ+YkyS87+7zpnc+dPgPxUr9JdQu+M/FnBOIvAZE0AIGArHe/rCvxWxnhZMjMC/+LtBkPMmE0Bx65DIsHsFQFJgbDrDpP8/wln8rEA+EsA/Ng4aDY0cQDrJwMkgxxTALvBQj9rF8r9KJeGgRG4YQAoEdKPFNp0/HsQa+E3Up79OiEIwPh4OQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIP3NSbwxOY/MHLxdTZS7D8coJoR55e+PxC6T4Kf3Mu/kk0DhWwz2T9jjrqEUMngv+RNtXmq8OE/srdmsb+1xj+MHTDvQdfcv4xnRgKDB8K/hq2nrEi44L/JcwvT8dzgPxo1VUTnhd4/+UW/B1IrE0DkBFdcLqjXPyCnqm2eEpQ/iP7agI3+3T/8FIteuPrpv5BT+N7bqgTAacCaKEMzhj+dbxleX2wIwHyX2i+36yVAWGwYWXTz9T9MhGvhaTAPwN2VqMwAYqC/C5X0P5dft78KZFbeQjUiwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPC/AAAAAAAA8L+/IA/EiWTVv8KdjSTMm+E/AAAAAAAA8L8AAAAAAADwPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBUtphpSMAUOUdJRSlC4="}, "_episode_num": 12558, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIzdE5wOvuCMAWyUS/mMAXSUR0Dbvq+BqbjMdX2UKGgGR0CxtmVZ9uxbaAdN6ANoCEdA2771KtPpIXV9lChoBkdAsjfVuP3i72gHTegDaAhHQNu/FngHeJp1fZQoaAZHQLIp9LMs6JZoB03oA2gIR0Dbv6IigTRIdX2UKGgGR0CPqhJVbRnfaAdL1GgIR0Dbv8xjBl+WdX2UKGgGR0CzmSU9QoCuaAdN6ANoCEdA28A8djXnQ3V9lChoBkdAmzRxwdbPhWgHTZABaAhHQNvBlF3EAHV1fZQoaAZHQLKxEMfRu0loB03oA2gIR0DbwgCN+9amdX2UKGgGR0Cyha0xASnMaAdN6ANoCEdA28JNhpxm03V9lChoBkdAsM+vz6JqI2gHTegDaAhHQNvDD708NhF1fZQoaAZHQLGrRHAh0QtoB03oA2gIR0DbwzvQWvbHdX2UKGgGR0CyonQaBI4EaAdN6ANoCEdA28Tgclw97nV9lChoBkdAsdfg7LdN4GgHTegDaAhHQNvFU4cvM8p1fZQoaAZHQLKXQLWI42loB03oA2gIR0DbxZ1KAavSdX2UKGgGR0Cyh5o2XLNfaAdN6ANoCEdA28ZiaPjn3nV9lChoBkdAshcWMZP2wmgHTegDaAhHQNvGk1jZtel1fZQoaAZHQLI5WWBBiTdoB03oA2gIR0DbyE+sRxtIdX2UKGgGR0Cw5ZtNJvpAaAdNwwNoCEdA28in2Ifr8nV9lChoBkdAscGa2lVLjGgHTegDaAhHQNvJC7Ysd1d1fZQoaAZHQLLGXjrRjSZoB03oA2gIR0DbyaxcbBGhdX2UKGgGR0CyADwjps42aAdN6ANoCEdA28nVaCcwxnV9lChoBkdAsb9cWj4592gHTegDaAhHQNvLr4nfEXN1fZQoaAZHQLGYKUdq+JxoB03oA2gIR0Dby/rOkcjrdX2UKGgGR0CohNqx1PnCaAdN0gJoCEdA28xWFEiMYXV9lChoBkdAsn8uq+8Gs2gHTegDaAhHQNvMaDSLIgh1fZQoaAZHQLHuiJ9RaX9oB03oA2gIR0DbzRxVrAP/dX2UKGgGR0Co2i6rvLHNaAdNxwJoCEdA287gY+0PYnV9lChoBkdAsfSP/tICl2gHTegDaAhHQNvPJjkhib51fZQoaAZHQLHHByDIzWRoB03oA2gIR0Dbz3Fx1gYxdX2UKGgGR0CxxCwaNuLraAdN6ANoCEdA28/Sz544ZXV9lChoBkdAsg1DrOZ9eGgHTegDaAhHQNvQmr4N7Sl1fZQoaAZHQLJoyHWjGkxoB03oA2gIR0Db0nCiKziTdX2UKGgGR0Cx9QgfEGaAaAdN6ANoCEdA29KsOzposnV9lChoBkdAsi+F86V+qmgHTegDaAhHQNvS+SuU2UB1fZQoaAZHQLHNr4Oc2BJoB03oA2gIR0Db01UFA3UAdX2UKGgGR0CyZsaRISUUaAdN6ANoCEdA29QcDFId2nV9lChoBkdAkyJtzbN8mmgHTRUBaAhHQNvUTJ0nw5N1fZQoaAZHQLHefGu9vjxoB03oA2gIR0Db1d3pPhybdX2UKGgGR0CxnQ0fozN2aAdN6ANoCEdA29YcFspG4XV9lChoBkdAsnY8AdXDFmgHTegDaAhHQNvWdV/MGHJ1fZQoaAZHQLEdhEUTL4hoB03oA2gIR0Db1588wHqvdX2UKGgGR0CfIceJYT0yaAdN0gFoCEdA29fJNwzch3V9lChoBkdAshruQGOdXmgHTegDaAhHQNvX0J+UhV51fZQoaAZHQJ9ro+LWI45oB03DAWgIR0Db2Qz3XZoPdX2UKGgGR0CzGOm7rcCYaAdN6ANoCEdA29k8HcUM5XV9lChoBkdAeBFN5dGAkWgHTegDaAhHQNvZz8mOU+t1fZQoaAZHQLJue8Z1mrdoB03oA2gIR0Db2yM62fCidX2UKGgGR0Cyas1W8yvcaAdN6ANoCEdA29sqyTpxFXV9lChoBkdAsuEp2wFC9mgHTegDaAhHQNvcl68Hv+h1fZQoaAZHQLI6SHnEETxoB03oA2gIR0Db3McCxNZedX2UKGgGR0BKEuuJUHY6aAdLGmgIR0Db3N/El3QldX2UKGgGR0CynTnbEgnuaAdN6ANoCEdA291aZof0VnV9lChoBkdAsWIrNpudgGgHTegDaAhHQNvewZaA4GV1fZQoaAZHQLKR6AtFrmBoB03oA2gIR0Db3skZUDMedX2UKGgGR0Bj6hL9MsYmaAdLMmgIR0Db3uwWnCO4dX2UKGgGR0CfotydFvycaAdNwAFoCEdA297/Q4CIUXV9lChoBkdAsiizxaxHG2gHTegDaAhHQNvgLGpAD7t1fZQoaAZHQLLS6Rv3rUtoB03oA2gIR0Db4HgjZ+QVdX2UKGgGR0Cx6d2Jzkp7aAdN6ANoCEdA2+JHt4zJp3V9lChoBkdAsdWsFfReC2gHTegDaAhHQNvibakuYhN1fZQoaAZHQLJBR/EfkmxoB03oA2gIR0Db4n/0se4kdX2UKGgGR0CyvKbBO58SaAdN6ANoCEdA2+OUfhuO0nV9lChoBkdAsTPkyhzvJGgHTegDaAhHQNvj31me18d1fZQoaAZHQLJVlnF5v99oB03oA2gIR0Db5XzR4QjEdX2UKGgGR0CykCOERJ2/aAdN6ANoCEdA2+Weona37XV9lChoBkdAsnSOg5BC2WgHTegDaAhHQNvlsJGe+VV1fZQoaAZHQLFjp/L1VYJoB03oA2gIR0Db5r1If8uSdX2UKGgGR0Cw/+nWattAaAdN6ANoCEdA2+cEFtbcGnV9lChoBkdArt+rRBu4w2gHTV4DaAhHQNvoW1TNt651fZQoaAZHQLNuJc5Ke05oB03oA2gIR0Db6LGx3V0+dX2UKGgGR0CycvUKeCkHaAdN6ANoCEdA2+jxVEd/8XV9lChoBkdAshhtXXAdn2gHTegDaAhHQNvqA/MSsbN1fZQoaAZHQLGfpJ0GNaRoB03oA2gIR0Db6kLw/gR9dX2UKGgGR0CyUWouGsV+aAdN6ANoCEdA2+uqfNA1N3V9lChoBkdAszcHDEWIoGgHTegDaAhHQNvsAW6oVEd1fZQoaAZHQLIoTfPHDJloB03oA2gIR0Db7DuYAsCldX2UKGgGR0Cya1sEA5q/aAdN6ANoCEdA2+1hkqtoz3V9lChoBkdAssaAyqMm4WgHTegDaAhHQNvtqT4cm0F1fZQoaAZHQLJTESh8IAxoB03oA2gIR0Db7ycAfdRBdX2UKGgGR0Cx8U6EBbOeaAdN6ANoCEdA2+9+7O3UhHV9lChoBkdAst+uMo+fRWgHTegDaAhHQNvvu1bNbC91fZQoaAZHQEhge6qbSZ1oB0skaAhHQNvv30fYBeZ1fZQoaAZHQLGqsKohpxpoB03oA2gIR0Db8PMVWS2ZdX2UKGgGR0CyQuPEGZ/kaAdN6ANoCEdA2/FBrWAf+3V9lChoBkdAsv7x1LamGmgHTegDaAhHQNvysQhfShJ1fZQoaAZHQLL3Wz9CNS9oB03oA2gIR0Db8wWJsO5KdX2UKGgGR0CyRJSuyNXHaAdN6ANoCEdA2/Nd9Sde6nV9lChoBkdAsvKeMERramgHTegDaAhHQNv0WItxuKp1fZQoaAZHQLCCz3LFGXpoB02eA2gIR0Db9GAV45cUdX2UKGgGR0CyHoFb/wRXaAdN6ANoCEdA2/Y1ELH+63V9lChoBkdAsymQ/eLvTmgHTegDaAhHQNv2kGS2Yv51fZQoaAZHQLI+s7YChexoB03oA2gIR0Db9uFxwQ18dX2UKGgGR0CzFkV2V3UyaAdN6ANoCEdA2/fdDZ13dXV9lChoBkdAsnHm8zyjHmgHTegDaAhHQNv35HRw6yV1fZQoaAZHQKtdZQ5WBBloB03jAmgIR0Db+V1blijMdX2UKGgGR0CytvHt0FKTaAdN6ANoCEdA2/mSZML4OHV9lChoBkdAsjgyFCb+cmgHTegDaAhHQNv51lUQ0411fZQoaAZHQHpGm8/UvwpoB0tvaAhHQNv6MusDGLl1fZQoaAZHQK15VlI3BHloB00BA2gIR0Db+mOQo1DTdX2UKGgGR0Cy8KB7Z39raAdN6ANoCEdA2/tDQUpNK3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1998000, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 10000, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f64fbad4cc0>", "add": "<function ReplayBuffer.add at 0x7f64fbad4e00>", "sample": "<function ReplayBuffer.sample at 0x7f64fbad4ea0>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f64fbad4f40>", "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7f64fbad4fe0>)>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f64fbac9f00>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -8.0, "ent_coef": "auto", "target_update_interval": 1, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWV4QgAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLaYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWSAMAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P+UaAtLaYWUjAFDlHSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolmkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS2mFlGgWdJRSlIwEaGlnaJRoEyiWSAMAAAAAAAAAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaAtLaYWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJZpAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoHUtphZRoFnSUUpSMCGxvd19yZXBylIwELWluZpSMCWhpZ2hfcmVwcpSMA2luZpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float64", "_shape": [105], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVkgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZRoFnSUUpSMBGhpZ2iUaBMoliAAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UaAtLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgdSwiFlGgWdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaDKMFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaD2KEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "bounded_below": "[ True True True True True True True True]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_above": "[ True True True True True True True True]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 5, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVHgQAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBUsTQyaVAZcAdAEAAAAAAAAAAAIAiQF8AKsBAAAAAAAAqwEAAAAAAABTAJROhZSMBWZsb2F0lIWUjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMVC9ob21lL21hc3Rlci1hbmRyZWFzL2dlbl9kYXRhc2V0L3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMCDxsYW1iZGE+lIwhZ2V0X3NjaGVkdWxlX2ZuLjxsb2NhbHM+LjxsYW1iZGE+lEthQxD4gACkZalO0DtN0yxO1CZPlEMAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxUL2hvbWUvbWFzdGVyLWFuZHJlYXMvZ2VuX2RhdGFzZXQvc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGowIPGxhbWJkYT6UjAxfX3F1YWxuYW1lX1+UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgbjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJRoCSmMAV+UhZRoDowEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4VDCPiAANgPEogKlGgSjAN2YWyUhZQpdJRSlGgXTk5oHylSlIWUdJRSlGglaEF9lH2UKGgajARmdW5jlGgpjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlGgrfZRoLU5oLk5oL2gbaDBOaDFoM0c/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwhZRSlIWUaEpdlGhMfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-6.6.59-1-MANJARO-x86_64-with-glibc2.40 # 1 SMP PREEMPT_DYNAMIC Fri Nov 1 05:33:52 UTC 2024", "Python": "3.12.7", "Stable-Baselines3": "2.4.0a10", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "1.0.0"}}
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9c1a5945f43ad07544fc259505545be43356d32d42aa3a99121405ca4cd33cbf
3
- size 2315134
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a91627bc5afa20cdc01e4e0cabf1d616b4d398534377e4321a07c789272f10d
3
+ size 1899723
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 1677.8408050000003, "std_reward": 848.5544021514623, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-11-06T16:51:40.105220"}
 
1
+ {"mean_reward": 4473.161804699999, "std_reward": 1392.0392420724402, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-11-07T02:25:11.733288"}