Commit
·
0c7820d
1
Parent(s):
a48a601
model
Browse files- .gitattributes +1 -0
- README.md +1 -1
- ant-v5-sac-medium.zip +2 -2
- ant-v5-sac-medium/actor.optimizer.pth +1 -1
- ant-v5-sac-medium/critic.optimizer.pth +1 -1
- ant-v5-sac-medium/data +27 -27
- ant-v5-sac-medium/ent_coef_optimizer.pth +1 -1
- ant-v5-sac-medium/policy.pth +1 -1
- ant-v5-sac-medium/pytorch_variables.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: Ant-v5
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: Ant-v5
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 5710.94 +/- 262.54
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
ant-v5-sac-medium.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c81ea84567f7f9f8b8012849b79a84e722e0afd746e70e2957e4d4e03da5f2b5
|
3 |
+
size 4273089
|
ant-v5-sac-medium/actor.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 782749
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55f570d5b53376b215d3ed8410198730ee6b04f707cd9ee16cf6718e6fc88147
|
3 |
size 782749
|
ant-v5-sac-medium/critic.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1533433
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad2b9f178c63f832ad691085883d5eddeb123364b128056c82a8c025ca9f4a1a
|
3 |
size 1533433
|
ant-v5-sac-medium/data
CHANGED
@@ -5,33 +5,33 @@
|
|
5 |
"__module__": "stable_baselines3.sac.policies",
|
6 |
"__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}",
|
7 |
"__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
8 |
-
"__init__": "<function SACPolicy.__init__ at
|
9 |
-
"_build": "<function SACPolicy._build at
|
10 |
-
"_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at
|
11 |
-
"reset_noise": "<function SACPolicy.reset_noise at
|
12 |
-
"make_actor": "<function SACPolicy.make_actor at
|
13 |
-
"make_critic": "<function SACPolicy.make_critic at
|
14 |
-
"forward": "<function SACPolicy.forward at
|
15 |
-
"_predict": "<function SACPolicy._predict at
|
16 |
-
"set_training_mode": "<function SACPolicy.set_training_mode at
|
17 |
"__abstractmethods__": "frozenset()",
|
18 |
-
"_abc_impl": "<_abc._abc_data object at
|
19 |
},
|
20 |
"verbose": 0,
|
21 |
"policy_kwargs": {
|
22 |
"use_sde": false
|
23 |
},
|
24 |
-
"num_timesteps":
|
25 |
"_total_timesteps": 3000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
-
"seed":
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
-
"tensorboard_log": "runs/
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -39,22 +39,22 @@
|
|
39 |
},
|
40 |
"_last_original_obs": {
|
41 |
":type:": "<class 'numpy.ndarray'>",
|
42 |
-
":serialized:": "
|
43 |
},
|
44 |
-
"_episode_num":
|
45 |
"use_sde": false,
|
46 |
"sde_sample_freq": -1,
|
47 |
-
"_current_progress_remaining": 0.
|
48 |
"_stats_window_size": 100,
|
49 |
"ep_info_buffer": {
|
50 |
":type:": "<class 'collections.deque'>",
|
51 |
-
":serialized:": "
|
52 |
},
|
53 |
"ep_success_buffer": {
|
54 |
":type:": "<class 'collections.deque'>",
|
55 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
56 |
},
|
57 |
-
"_n_updates":
|
58 |
"buffer_size": 1000000,
|
59 |
"batch_size": 256,
|
60 |
"learning_starts": 10000,
|
@@ -67,13 +67,13 @@
|
|
67 |
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
68 |
"__module__": "stable_baselines3.common.buffers",
|
69 |
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
70 |
-
"__init__": "<function ReplayBuffer.__init__ at
|
71 |
-
"add": "<function ReplayBuffer.add at
|
72 |
-
"sample": "<function ReplayBuffer.sample at
|
73 |
-
"_get_samples": "<function ReplayBuffer._get_samples at
|
74 |
-
"_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at
|
75 |
"__abstractmethods__": "frozenset()",
|
76 |
-
"_abc_impl": "<_abc._abc_data object at
|
77 |
},
|
78 |
"replay_buffer_kwargs": {},
|
79 |
"train_freq": {
|
@@ -101,7 +101,7 @@
|
|
101 |
},
|
102 |
"action_space": {
|
103 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
104 |
-
":serialized:": "
|
105 |
"dtype": "float32",
|
106 |
"bounded_below": "[ True True True True True True True True]",
|
107 |
"bounded_above": "[ True True True True True True True True]",
|
|
|
5 |
"__module__": "stable_baselines3.sac.policies",
|
6 |
"__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}",
|
7 |
"__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
8 |
+
"__init__": "<function SACPolicy.__init__ at 0x7f6b5fd62f80>",
|
9 |
+
"_build": "<function SACPolicy._build at 0x7f6b5fd63010>",
|
10 |
+
"_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7f6b5fd630a0>",
|
11 |
+
"reset_noise": "<function SACPolicy.reset_noise at 0x7f6b5fd63130>",
|
12 |
+
"make_actor": "<function SACPolicy.make_actor at 0x7f6b5fd631c0>",
|
13 |
+
"make_critic": "<function SACPolicy.make_critic at 0x7f6b5fd63250>",
|
14 |
+
"forward": "<function SACPolicy.forward at 0x7f6b5fd632e0>",
|
15 |
+
"_predict": "<function SACPolicy._predict at 0x7f6b5fd63370>",
|
16 |
+
"set_training_mode": "<function SACPolicy.set_training_mode at 0x7f6b5fd63400>",
|
17 |
"__abstractmethods__": "frozenset()",
|
18 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f6b5fd66ac0>"
|
19 |
},
|
20 |
"verbose": 0,
|
21 |
"policy_kwargs": {
|
22 |
"use_sde": false
|
23 |
},
|
24 |
+
"num_timesteps": 3000000,
|
25 |
"_total_timesteps": 3000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": 0,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1699235878180773774,
|
30 |
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": "runs/7mlhu3nu",
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWV3RAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZoEAAAAAAAAC2S0cBUquE/3rrmHPR57D8lACmndRKwPzdXwVe41Kw/xdrhTj2x3L8Z2P3hL8ngvztiR7f7puA/mQBM/kDO4L9m+GZ5xZbgvzwpUtrJx+C/yzFQmlK34L9KVka5AsrgP0EpCq53u+A/vcAOMXZ6GUArLEFEXa3rv1AsMqZoAPy/QEBDHXqRsT+gIBPs9UDgP15S57bcL9I/JJHBqfsFbb/+TNqVQxGlP5raKvZZCI8/kutHwRJmv7/P4OvBoz1oP5zBK9CiBWI/Utm59o9Hgr9/lqMa7RyAPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABERz1jrZ+A/qeVXzUfE7T/5Spj/Zkq2P8ZdMmeGZI6/wYuQsKXM1r+55+mRRe7gvxwPM02wr+A/0Df6DL3G379V6XFWd7Tgv+y1CY+9VuC/HPPzP3O04L/Rr9gx1YnYP1M2TVIOvuA/HP8zohOmG0Dr38S66T7yPxhMItSipPC/LNbrKcSRAMC/UjcdZOr6v2Ryeq7eDOy/ZHvRf4ko+b9elIO41uuPv3I9qlaPLPw/w0NMS8Ttcj/89aZCF5LuPwuHAOhdo0o/qhDlvoFh5D8SwcRpni9cPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMWNNn81UuA/ZfID9N5m7T8/gM5Z50KwP/b4BcUEUKC/+8TPMjDZ2L+OupryrZHevzXMGs2RMeQ/bPF6mH1uuL95doBvn6vgv8s4oSHPyOC/YiJMZGe44L/CIZhqL3PgP90UhtUp5+A/V3fLkY2DFkDEdm17oMrsP8gEyPHS9+e/ymQ22MZI0r96hWlK3j/vP+t6KfqM1dm/dF2JE3yF0j/s9Lmnwy34v29G5N/vnCDAq/iks7Zrt79YOnSdM04vP4Sm6gKoJXg/DqbDWt2VIkDebuUlZD3UPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACvXyheNY+E/r8UP0TQJ7D9civcR4AN6vwxH+QMmzLG/wbs9zz6H3r8A7fKuVnfev1pgh+00uOA/G0S4UeLfxT+BtiuL6OPfv/9UEU9jvOC/A3A6xMC14L8MKVHeX8/Sv57V8M0PVuA/8wHAQg9PFkCQXsUJikHtv1g4s1/845M/PNL6Jec09L+TGz4loETcP2SuDRI1f9s/t8rx7QBH2D+mlym8si6MPxmsDLcS1yDApE60yXG43j+4GUTFhsO3P+jt7MinZoC/fJ2CKcqxHkBwC9cA1WTcPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALQ1hK2ijd4/2BP1bNH57D8OBM41y9igPyRqRE0seqe/cpIF/uLq2r/lhn8c36TgvyOZCWZOoeA/6cI7vfwB3T+4L7BwU2DnvwxOXoAVy+C/duFib4qv4L+MEa5At+bjvx+hcKJ23eE/mHd1ZktMHkDTU30zh6bTvxd5Xp9rIPI/EWIeGuOAA0BIcf+H/XDXv7ghBAvGofe/z48idOvuyj8e5qY9icqvP+ckahLFKy9AmOGK5jae9z+wJqi0pJUrv9CAvAcVbXG/4ETyIpv4FcAu/3Ix1x4TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBUtphpSMAUOUdJRSlC4="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
39 |
},
|
40 |
"_last_original_obs": {
|
41 |
":type:": "<class 'numpy.ndarray'>",
|
42 |
+
":serialized:": "gAWV3RAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZoEAAAAAAAACHcVxWVEeQ/f/2oT1Rm7D+lNyrIFQCsP4IdHvBE5Kc/LugIUbQh3b+mukM2bcfgv+M/UB76beA/znwJALvd4L/QpZsoSEDgvwUoEt7eyeC/kWU992G44L+WO5dE8dHgP2I6wOBxteA/F5xxUal8GUDCuu2yT8jrv3bMa7I3FfS/woXVv8fHuT8HBk/wv6neP6wOn4W/tNE/HrT8migAjT8eCkhhVcLUP1oSOj3Y67A/zvlEKKZyxL/nMh0zOnlDvyiDmREyrl6/kzvQbScdnL+i4Z2bTJSDPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMrccp4lSuI/clnI2wTh7T/UP7jnrza8P58WeELxPoG/RSRuiBHL1b8fMOYiPQngv7bPml3Jt+A/44yPIUA+4r9mjspcGLfgv+/wqBgW9OC/dldwNNi14L+cKkA7QHDUP5r0UvhIueA/zWaXCeWoHECY40M7W+XbP7sirTsp2/S/iW7alV9w3D/YzicS0jzYP2JD29FCe9q/5oAd6OXJ7T+0CYpHDk58P83Qs0Lg5/I/PoxNBKUKWr84+hN1XoXPv0BrCYkWVYI/4H+Oxm///j+WKfYs2KmdPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGmI/dXUJuE/IgJYfNeM7T8jettXwL+uPyhh8cjjUq2/WcNkMVv6178K2vGTDsbevzuLojFlYuU/aFmr9Hpv0z+VdtUEwBTgv+UywHb1yuC/OmO1mju74L9gVaScSHlyvwc9CzNXKOA/5WNDFEUrFkA5UmfL3ODtP8bOLsEF6tG/wAqn2lTNw7/0ItLJBmzuP3i9aYmOF+y/rfu6HJJqxb9QU8BmBHCiPw5Rojdemh7ApZ3ETp8e7r+WvvelRh2TPxNrGkToF5O/tjVTRbnuJkCqmDcfiMvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEdjzbXDCeE/6Sq/L7PQ6z/f66QFR5+XP9Pn78KEI7W/5OJoucUp379fOyB6pUfdv2vlrPCIr+A/R+n4WAR24D/8+BWeXW7kv1i6JfOu0+C/tq3p+ruw4L9lg4i6IaHivw0CpW6N3d4/ovj0ov4SGECZ7q4Z8orwv8BctKQ93tk/XLy7+JCo5L+HcvJSRgTwv7J/HFfK6ek/M5CG1B818r946dTYhzaCPyuDQMwILRXAiX606rCUDUDC+OvFG0GFP/66SQEM44G/MCrkm5qNDkDAHxWGrjDLvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGxE0uKx+No/Oowpqdv07D9eObkdLM5ev/2tnKjK7pK/3blhAyE3279DyhzD0cngv6BLe4pGWOA/7KJV+5qZxL8LA5pOCp3lv37wxEulyeC/0LL+SHWu4L+416QjEQmPP7mz4R3oLeU/0Wo4ajCDHEBwYHlt5iu2P6iSi3udMuE/IHn5LGXQ0z+BCCCjuGnhP+gMPM62W9k/5AHcByIEhT9G1nCIrP7WP/OUHve9CSJARheBOMwPDsD59sGXWxpxv7d0/SaatoM/e/4KJatgJsByBjPgQ2/pPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA/AAAAAAAA8L8AAAAAAADwv3DmJMmwVu+/AAAAAAAA8L8AAAAAAADwPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPC/AAAAAAAA8D+UsgZzPd3aP6K2qENTN+2/AAAAAAAA8L8AAAAAAADwP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBUtphpSMAUOUdJRSlC4="
|
43 |
},
|
44 |
+
"_episode_num": 3562,
|
45 |
"use_sde": false,
|
46 |
"sde_sample_freq": -1,
|
47 |
+
"_current_progress_remaining": 0.0,
|
48 |
"_stats_window_size": 100,
|
49 |
"ep_info_buffer": {
|
50 |
":type:": "<class 'collections.deque'>",
|
51 |
+
":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJFetaLXL/2MAWyUS96MAXSUR0DBsdd+y7f6dX2UKGgGR0C0Z7FghKUWaAdN6ANoCEdAwbOPQv6CUXV9lChoBkdAtYuK7QLNOmgHTegDaAhHQMG0xt7KJVN1fZQoaAZHQLU5LXrt3OhoB03oA2gIR0DBt04DV6NVdX2UKGgGR0C1vOkYGdI5aAdN5wNoCEdAwbefo7FKkHV9lChoBkdAtiFQ1k1/D2gHTegDaAhHQMG5LyGrS3N1fZQoaAZHQLYPiFx4pttoB03oA2gIR0DBut26oVEedX2UKGgGR0C2jAhT4tYkaAdN6ANoCEdAwbwCVRDTjXV9lChoBkdAtqZZekYXPGgHTegDaAhHQMG+dLy1/lR1fZQoaAZHQLVCsxJ/XoVoB03oA2gIR0DBvsaPCEYgdX2UKGgGR0C1s4KvFFUiaAdN6ANoCEdAwcBcSB9TgnV9lChoBkdAtnSgACGN72gHTegDaAhHQMHCEay8jA11fZQoaAZHQLW1d47ihnJoB03oA2gIR0DBwzgRsdkrdX2UKGgGR0C2WTSLl3hXaAdN6ANoCEdAwcWcABDG+HV9lChoBkdAs83xVvMr3GgHTegDaAhHQMHF7CXpnpV1fZQoaAZHQLY5aR/ViF1oB03oA2gIR0DBx3q0pmVadX2UKGgGR0C2JR2VeKKpaAdN6ANoCEdAwck1WMCLdnV9lChoBkdAtc4PAO8TSWgHTegDaAhHQMHKWewTufF1fZQoaAZHQLXuXMdcSoRoB03oA2gIR0DBzMvueBhAdX2UKGgGR8CCqYOFxn3+aAdN6ANoCEdAwc0dFUADJXV9lChoBkdAtgskyVObiWgHTegDaAhHQMHOoeF10T11fZQoaAZHQLX8QMl1KXhoB03oA2gIR0DB0FPE87p3dX2UKGgGR0C0v0ZqVQhwaAdN6ANoCEdAwdF2Xxe9jHV9lChoBkdAtQ7hVxS5y2gHTegDaAhHQMHUE1xCIDZ1fZQoaAZHQLWYYMAFPi1oB03oA2gIR0DB1GOJSBK+dX2UKGgGR0C10whwMpgDaAdN6ANoCEdAwdXoJb+tKnV9lChoBkdAo/mFCeEqUmgHTckBaAhHQMHXVhScbzd1fZQoaAZHQLUwdZKnNxFoB03XA2gIR0DB14Oy7f52dX2UKGgGR0C2Tczx5LRKaAdN6ANoCEdAwdjL06HTJHV9lChoBkdAtTL07cO9WmgHTegDaAhHQMHbk8cENfB1fZQoaAZHQLUBnPHT7VJoB03oA2gIR0DB3Ti+QEIPdX2UKGgGR0C2HkrQgLZ0aAdN6ANoCEdAwd6git7rs3V9lChoBkdAteEcUAT7EmgHTegDaAhHQMHezNCZ4Od1fZQoaAZHQLUU7Cr92oxoB03oA2gIR0DB4A7vTgEVdX2UKGgGR0C08f7YwqRVaAdN6ANoCEdAweLHCsOoYXV9lChoBkdAtcQCPp6hQGgHTegDaAhHQMHkTnKGL1p1fZQoaAZHQLTmCcXWOIZoB03oA2gIR0DB5bPMMZxadX2UKGgGR0C2GufGACnxaAdN6ANoCEdAweXfT2nKn3V9lChoBkdAtKOB9ZzPr2gHTegDaAhHQMHnI8a4tpV1fZQoaAZHQLYO3SNfgJloB03oA2gIR0DB6dUgMc6vdX2UKGgGR0C0wo8OPNmlaAdN6ANoCEdAwetcLPUrkXV9lChoBkdAthCWrfcesGgHTegDaAhHQMHsxqoybhF1fZQoaAZHQLWLDUPxx1hoB03oA2gIR0DB7PQX/HYIdX2UKGgGR0C2R7oubqhUaAdN6ANoCEdAwe47z3AVPHV9lChoBkdAtgCb0PH1e2gHTegDaAhHQMHxFiLVFx51fZQoaAZHQLZN+N0NjLBoB03oA2gIR0DB8phStNi6dX2UKGgGR0C2mDSvcJt0aAdN6ANoCEdAwfP7Kq4pdHV9lChoBkdAtRfxg5R0l2gHTegDaAhHQMH0JmpuMuR1fZQoaAZHQLVj6exfOUtoB03oA2gIR0DB9W+KIi1RdX2UKGgGR0C1ihyhnJ1aaAdN6ANoCEdAwfgeqbSZ0HV9lChoBkdAtmWF5jYqXmgHTegDaAhHQMH5nnVwxWV1fZQoaAZHQLTW4vw3HaNoB03oA2gIR0DB+wVS/CZXdX2UKGgGR0C2bqcvugHvaAdN6ANoCEdAwfsyNd7fHnV9lChoBkdAtTZmTfR/mWgHTegDaAhHQMH8fDKgZjx1fZQoaAZHQLZZUzJZGKBoB03oA2gIR0DB/zX779AHdX2UKGgGR0C2TimIj4YaaAdN6ANoCEdAwgC6HO8kEHV9lChoBkdAtV5vHwPRRmgHTegDaAhHQMICHMBZIQR1fZQoaAZHQLaZ3vybx3FoB03oA2gIR0DCAkiJIlMRdX2UKGgGR0C1O7Lb5/LDaAdN6ANoCEdAwgOJMINVinV9lChoBkdAtsLkyTINmWgHTegDaAhHQMIGROlXRw91fZQoaAZHQLZtY4ZuQ6poB03oA2gIR0DCB9WueSSvdX2UKGgGR0C1+K3LzPKMaAdN6ANoCEdAwgk5sWO6unV9lChoBkdAteU44p+c6WgHTegDaAhHQMIJaUtRNyp1fZQoaAZHQLVBLC/oJRhoB03oA2gIR0DCCrb+m3vydX2UKGgGR0B6xAlC1JDmaAdLcWgIR0DCC4+melKsdX2UKGgGR0C2UyoAbQ1KaAdN6ANoCEdAwg1zWdVebHV9lChoBkdAtWWMTviLl2gHTegDaAhHQMIPQ1uJk5J1fZQoaAZHQLZg8EB8x9JoB03iA2gIR0DCEKMRYigTdX2UKGgGR0C19dECFK02aAdN6ANoCEdAwhDbA44p+nV9lChoBkdAteutabF0gmgHTegDaAhHQMIS7rHdXT51fZQoaAZHQLWawHdoFmpoB03oA2gIR0DCFNK0IC2ddX2UKGgGR0C1BQK+ajN7aAdN6ANoCEdAwhZX6vaDf3V9lChoBkdAtoJ9XXAdn2gHTegDaAhHQMIXsSsCDEp1fZQoaAZHQLXqZ/IbOu9oB03oA2gIR0DCF+d6Vt4zdX2UKGgGR0C13yCnxaxHaAdN6ANoCEdAwhn11cMVlHV9lChoBkdAtbXb8AJb+2gHTegDaAhHQMIb7rD63y91fZQoaAZHQLa+8hs67uloB03oA2gIR0DCHXyBAfMfdX2UKGgGR0B4Jc8V58jSaAdLW2gIR0DCHh6DbrTqdX2UKGgGR0C2QDcSf16FaAdN6ANoCEdAwh7kt/4Ir3V9lChoBkdAtLTQL4N7SmgHTegDaAhHQMIfH+WOZLJ1fZQoaAZHQLX4wSVW0Z5oB03oA2gIR0DCITqAQQMAdX2UKGgGR0C1z7LGFSKnaAdN6ANoCEdAwiMkXhwVCXV9lChoBkdAtify23KB/mgHTegDaAhHQMIlTXT/hl11fZQoaAZHQLWwC1jiGWVoB03oA2gIR0DCJgge1a4ddX2UKGgGR0C2S2uzdDYzaAdN6ANoCEdAwiZBjKgZj3V9lChoBkdAthojvPTodWgHTegDaAhHQMIoSxg7YCh1fZQoaAZHQLWVJWPcSGtoB03oA2gIR0DCKjkZJkGzdX2UKGgGR0CyOkYvBacJaAdNaQNoCEdAwixKsnRb8nV9lChoBkdAtdYFHjIaLmgHTegDaAhHQMIsfc63iJh1fZQoaAZHQLZq6c580DVoB03oA2gIR0DCLXla6jFidX2UKGgGR0C2Q7KoIfKZaAdN6ANoCEdAwi+JulXRxHV9lChoBkdAtPjWRaHKwWgHTegDaAhHQMIxaktdzGR1fZQoaAZHQLX+DdH2AXloB03oA2gIR0DCM2BTKkmAdX2UKGgGR0C16vF81Gb1aAdN6ANoCEdAwjOORW912nV9lChoBkdAta82b6P8ymgHTegDaAhHQMI0f5I6Kcd1fZQoaAZHQLZGcXK8tf5oB03oA2gIR0DCNqO5c1O1dX2UKGgGR0ClRcO7QLNOaAdN9AFoCEdAwjgdOGj9GnV9lChoBkdAtgwrU+cH4WgHTegDaAhHQMI4jnDJlrd1fZQoaAZHQLVKU3FUADJoB03oA2gIR0DCOpBXIU8FdX2UKGgGR0C2jnMDwH7haAdN6ANoCEdAwjq+uK4x13VlLg=="
|
52 |
},
|
53 |
"ep_success_buffer": {
|
54 |
":type:": "<class 'collections.deque'>",
|
55 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
56 |
},
|
57 |
+
"_n_updates": 598000,
|
58 |
"buffer_size": 1000000,
|
59 |
"batch_size": 256,
|
60 |
"learning_starts": 10000,
|
|
|
67 |
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
68 |
"__module__": "stable_baselines3.common.buffers",
|
69 |
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
70 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7f6b5fd51cf0>",
|
71 |
+
"add": "<function ReplayBuffer.add at 0x7f6b5fd51d80>",
|
72 |
+
"sample": "<function ReplayBuffer.sample at 0x7f6b5fd51e10>",
|
73 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f6b5fd51ea0>",
|
74 |
+
"_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7f6b5fd51f30>)>",
|
75 |
"__abstractmethods__": "frozenset()",
|
76 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f6b5feca900>"
|
77 |
},
|
78 |
"replay_buffer_kwargs": {},
|
79 |
"train_freq": {
|
|
|
101 |
},
|
102 |
"action_space": {
|
103 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
104 |
+
":serialized:": "gAWVkgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaDKMFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaD2KEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
|
105 |
"dtype": "float32",
|
106 |
"bounded_below": "[ True True True True True True True True]",
|
107 |
"bounded_above": "[ True True True True True True True True]",
|
ant-v5-sac-medium/ent_coef_optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1507
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad25cf7a4b8370332d456a6018179a70cd56143988956003dea1791800b74912
|
3 |
size 1507
|
ant-v5-sac-medium/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1922821
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a542686a39d000e21b15055c8d0ec00727d2d240f9459344fe85589bfe6ac2bf
|
3 |
size 1922821
|
ant-v5-sac-medium/pytorch_variables.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 747
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4d43a86670b5246f2eca9e90149abff895ed3cad2e361db27f751e45965b047
|
3 |
size 747
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=", "__module__": "stable_baselines3.sac.policies", "__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function SACPolicy.__init__ at 0x7f3ba5a62f80>", "_build": "<function SACPolicy._build at 0x7f3ba5a63010>", "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7f3ba5a630a0>", "reset_noise": "<function SACPolicy.reset_noise at 0x7f3ba5a63130>", "make_actor": "<function SACPolicy.make_actor at 0x7f3ba5a631c0>", "make_critic": "<function SACPolicy.make_critic at 0x7f3ba5a63250>", "forward": "<function SACPolicy.forward at 0x7f3ba5a632e0>", "_predict": "<function SACPolicy._predict at 0x7f3ba5a63370>", "set_training_mode": "<function SACPolicy.set_training_mode at 0x7f3ba5a63400>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3ba5a66b80>"}, "verbose": 0, "policy_kwargs": {"use_sde": false}, "num_timesteps": 200000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": 1, "action_noise": null, "start_time": 1699245229878610852, "learning_rate": 0.0003, "tensorboard_log": "runs/lgx87l56", "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV3RAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZoEAAAAAAAAN5kACp5aOI/V/PCC7Zp5T91Y5k/GqyQP7TOIpNCnba/AD+GOQib57+y4AD44M3gv02lm/1u6fQ/sJg22JE7vb+LsGDDIKDkv0s1R+h7rNY/lU9e5gxO4r/zb9ktCoXQv+reP0qGnOE/rHhruzsH8T9iUam1wYTxv1JOoKWMjeW/SCgZAI2m2j/B8jFDnrYQwLyvryQB3Ow/g0YjXtD3h79oUMZd36bXP3IXu7R0fBfAgWqSG8EhIkDyRgIOFI8TwJTYw6oG4QhA+AjLEPpABkCaeTF6k0LxPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA/AAAAAAAA8D8AAAAAAADwPwAAAAAAAPC/AAAAAAAA8L8AAAAAAADwPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABNQMkRn9A/h7mPOZG9vj9dlPGhn5HvP/OpJpNaeK2/CQ7zpOFUuD8eJHVB9cngP2LjoYlSkPM/ZsZN+rnH4D8A7MM8k2Dzv2NlyBC84Ms/TMaX5jaO879F0J68J8XgvxXy0tm9kvM/rx8RzPeBnT+1fBzWCtOBP9jX1caRklG/0BDz2Oj0sr9ovnKb2RnBv7VLQaH0/Lg/SGbQnxLiVz/vOuWfCE93v7Ljot+Wu1y/8stWIobv2z+MgAdngRnPv6rVR2O7aGM/JuQGtLi7ZD9eN9vbgm6jvzcGUXeAZMe/M5HiwAQ13L+6aKHsvrCgPwj9BZ8c9dE/qG27Fxc23j8AAAAAAADwPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAORXE+Bsi8I/YSkQMAwe0D9xs9Y4ZNnLP4gnMa3CntS/GVN9h16X1r+dxzqEmvDjP0cpQT9j9K8/yPBHNdUzvj/nNvpr2SS7P78MGYG618W/MxIhHmYCw7/y727lDQHRPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACnINT1MpNA/AoiqnrUsqD+Zpxm2iF/QPx6fio1uX+4/ue43IeOxxj8NBIybUcPgv0MDljgKkfM/WC7MMOzM4D9OOwlH2uTwv1O7lHn3Lt8/Cej3Kz3C8L9O1WAX+CPgv/pchE6dd/M/Loj0IvEZrz/cVdWgM4WXv8/sk2dVJKC/FYU49gXJrj8A3jfsYNenv4q5QjDkAeS/9UCZwFVeU78yX3/EU7dTP/CWPuf0IW0/nNIZEyvgAkAOTy4gRxH5P/VFQJ+nvfq/ayWLdU2a6T8QEmqfyrrOPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALPfGJEiqeI/W97CaKCz7z9AndoLaqxxv5/5eYyJNby/NhZVkRV6tD8uy2/SOCLgv1qNE/DRYfA/e530rVyks79RGTBw7qfgv3MlSN/rJ+O/Gt2oHFm94L83/AGjcpHfvyNtaxpApOk/tdFtGzRI9T/kk0GKjRncP7dVfrxOGOa/TOqWhJVS8r/AN3Wd58DYP6jztlBQ4wBA4kC2tLbZ6T/u3IvxNpoeQK0dC0BAziPAWpiur9n1nb/KfNzHM3oNwALan2a/MHW/zdfRONYl7r/vk3GiNSsQwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJWAGd+LntA/zkaLEnQhp79JUlxIqOfbv097LWhA4es/PayKAjZFzD/ZNFrIv8/gv7vqBk9CjvM/4AjrksnI4D+gwh/m/4/zv+7BfqsFxeA/7qO0jPo887+nSR6pmsfgP0tl7e9Tj/M/qkS89aXXUj8d4sSTjgBNv+4ljDtUYCk/jkMtyTScTr/AoOpZ9w1iv9L7BvEef2M/MNZvQ2JSaT/LDIiXKVEhP65rhtXGyne/Q8H4wG+7Wr/tPjai80xgv2ZhQ4E5INw/WxJpqxiaJL+QK3o5bq5hP2rv1uduaNw/gGgWdmAapD88N3u/fWucv/BHeBchkN8/oB+JEpHcqr8AAAAAAADwPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABUqHXOcXdS/Zm8gzQKruj8W7FnhHcChvzYORmRIprG/dkm+H1YKnz8ijQrWHyrnP/gKagZWnMK/xzcbjyRhqD8UuupRmz+Qv3X0tb0Wj6C/sOtb3VUGhj+b7RM2HQjVP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBUtphpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVeAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYFAAAAAAAAAAEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksFhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV3RAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZoEAAAAAAAAFJD1stjz+I/2kqywifP5T+OtxJJ0V60P+BaEd37s4I/2RuWqsBG57/ChZQ+DsfgvzhdVgKMHO0/xMIXto6OqT8hgXn3GyPwv3hiqEJx9to/sSRk05uR47+A+rG93wLZv7UUoaRsueA/c+Io+TuQ9D93/DWJCRvyv5gg49XtI7o/9uM3vzRf8T+Uf9F3pjoNwOiTL26fl/O/Dmr+WK/YgD9iBZuyaSAgQO5r5gY4cuW/217NgjbYFUBt6ehmk2ACQACkOOp3J/m/4rRmSbgyBEAIjcza8MyWPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPC/AAAAAAAA8L9kKkw/2bnTvwAAAAAAAPA/AAAAAAAA8L8AAAAAAADwPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeQAYjxndA/itLaT6Ykvj/gsp8vO5PvP1Hv5LYSM6y/G7tYIzTtuD/2ZIwPy8ngP2GKFGZBkvM/iQ1zpSbJ4D+kKosz5Y3zv5G886lB4s4/FvHnMS+P878QDMozKMfgv22Xrm7lqfM/DmnFLyW2hz9mibmgX8+jP7xcZPs6zCy/CZXK0289xL8stw9y/TmWv6q+B0F1hJm/4C8nhBe6eb/kqCq/Mxx5v4qpj8QpIDc/PplJWv8UYj+lTGjKyZjmv8WNi6BJx1i/SnQ0e2msTL9KK8iXqoXOv5YLZHJ5IMq/nUa5OUG/yL+gjsQPpqlmv/isBzFZgeO/gBHrc7SK4D8AAAAAAADwPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxcIv8Fn9A/Uif+2G9ZqD/akzkCrrnQP5Z8TX2jU+4/dr/OnUekxj+rVwD6hcPgv5+Y81KHkPM/JTCrhGnL4D+i+oHrF3Lyv5QqPsTDsN0/L0ot1UFM8L8GQuc4oNHgv3Qri5T1dfM/CA8zlCJsYz+ihRmHw5Riv/jh2BXS8VA/0DJQ+QAxiD/S21Tq87Kgv8xKhBQaJLk/M/YcqyUIgT9scisnm+hsPy8TfkugrHO/cGK9fiA7+D8Bx7e9khnlvwJAShj6VeE/i5nFvCcHqD8W9D13syPNvwAAAAAAAPA/6hoazqce1r98SgiH2SCjP7QEekB6o9s/AAAAAAAA8D8AAAAAAADwPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEEVLmM9lOK/61lx6y4w1D+S9cobphTkPwAAAAAAAPA/AAAAAAAA8L8AAAAAAADwP4ycQnX6K9q/6CXzpXJW3D98bYg7/GHUP0CiWu7R/4M/yUV4OiHL578AAAAAAADwPyTVg3cmYOM/FnAenLjC7z9GMlnd0eyiP9vhDLZvHr2/atf3rR8XmT97xD6hzsfgvxqpppDQ5eY/P8f0Piui1D9sb7JR64Lgv5RljI2/5Mm/TdM1Cku54L/R7Zazwh/fv28v7V3eH/A/KfpqgkDs9j/QgcI5e2XdPyqQ+2gef8y/MMpFoP869b+H+d0hD+zIP2zJ2lrl0/o/mckhR5XyhD/QbECzD6MSQDQsUjUX9hfA6nF2MIxJyb+yOL1LOnsWwNhVLJ7K+la/KkARR2uP5j8f4ovdh+YQwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADT99uGcntA/94pm1Mwjp798ajUkiOnbvzmUSPm64Os/IAHhxOlFzD8Ep0VknbHgv8j/NRsejvM/7e/Ho/DL4D9i95ORQI/zv0+DgSNjxuA/O+Mi7B18879sclpYxcfgP02naaxljfM/CoyH/mYkVD+85Z7x4Lgvv6qgTax61yS/rH/lCgxPY78dq/XlobFRPy7BO5SsXWA/5iKRTKQkuD/aU7u2gXpNP3o8hocajWE/q0U/d8RkSD/+xyc/RHJnPxbsDN6BX8Y/69DZXt4POD8B72eK0htnv6Cf94Vwptw/7NEwnfmJrj8Q9uiEcGGYv+T1jTXoKts/YKxpzz/fp78AAAAAAADwPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOZ9yuDPrtO/dnCqirHJsz+gO+zoUAAJv4TqI20mMWs/UCIV7+/qiz8qFTZBDgnmP9s12gMcgsK//C/Y88fZoj9KIyM61lVHv/zbe2ElenC/AaN9Ovn4g7+P71JAqQHUP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBUtphpSMAUOUdJRSlC4="}, "_episode_num": 380, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.933335, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDQREofCAMGMAWyUSxmMAXSUR0B+16MGX5WSdX2UKGgGR0B2Utul41P4aAdNaQFoCEdAfu2YYzi0fHV9lChoBkdAZ0cwrUb1iGgHS8FoCEdAfwSQg9vCM3V9lChoBkdAPlSBClabF2gHSxZoCEdAfwlvRZ2ZA3V9lChoBkdAiJXpJwsGxGgHTegDaAhHQH9LNAHE/B51fZQoaAZHQIWCZIczZYhoB03oA2gIR0B/VTEP1+RYdX2UKGgGR0CGxUUKzAvdaAdN6ANoCEdAf2CHWBjFynV9lChoBkdARjY7V8Ti82gHSyloCEdAf2m7hNucc3V9lChoBkdAWn7fYSQHRmgHS2JoCEdAf2sxVAAyVXV9lChoBkdAY7ABzV+ZxGgHS7xoCEdAf5SZ0jkdWHV9lChoBkdAe35cDr7fpGgHTdcBaAhHQH+12KQ7tAt1fZQoaAZHQIaeXu/k/8loB03oA2gIR0B/0OC17Y03dX2UKGgGR0CFnnMK1G9YaAdN6ANoCEdAf+wyhzvJBHV9lChoBkdAizOEleF+NWgHTegDaAhHQIAn4kzGgjB1fZQoaAZHQIqr3/BFd9loB03oA2gIR0CAZkSRKYiQdX2UKGgGR0CHaYs8xKxtaAdN6ANoCEdAgJgGBOHnEHV9lChoBkdAUQZUWEbo82gHSy9oCEdAgKeqyGBWgnV9lChoBkdAh83QZn+Q2mgHTegDaAhHQIC/D4Fiay91fZQoaAZHQIkW2vdM0xdoB03oA2gIR0CA5hhpg1FZdX2UKGgGR0CMWz88cMmXaAdN6ANoCEdAgZ183l0YCXV9lChoBkdAMufixVyWA2gHSxVoCEdAgZ/+fZmI03V9lChoBkdASylVLi++NGgHSyRoCEdAgaQ2ll9SdnV9lChoBkdAh5zibtqpLmgHTegDaAhHQIGyHD+BH091fZQoaAZHQI0OgRbr1NBoB03oA2gIR0CBySP+4smOdX2UKGgGR0CLsJjdYW+HaAdN6ANoCEdAgdD53kgfVHV9lChoBkdAibiA3DNyHWgHTegDaAhHQIHepLf1pTN1fZQoaAZHQIQWXDk2gnNoB01vAmgIR0CB62RjBl+WdX2UKGgGR0CIWSVnmJWOaAdN6ANoCEdAgiRB37k4m3V9lChoBkdAM+KBRQ79ymgHSxVoCEdAgiaQ2VE/jnV9lChoBkdAY51WLgn+h2gHS4VoCEdAgjVrJ0W/J3V9lChoBkdAhVZZwOvt+mgHTaACaAhHQII3MlXzUZx1fZQoaAZHQIc+0+iaiK1oB03oA2gIR0CCOe1UlzEKdX2UKGgGR0CKLwbEP1+RaAdN6ANoCEdAgkHiCJ40M3V9lChoBkdAhpAkPMB6r2gHTegDaAhHQIJPqNGViWp1fZQoaAZHQFff1gYxcmloB0tVaAhHQIJZlJnQID51fZQoaAZHQIjrVUjs2NxoB03oA2gIR0CDQjFkQPI5dX2UKGgGR0CJdVtEXtSiaAdN6ANoCEdAg0cfseGO/HV9lChoBkdAiBV8Oby6MGgHTegDaAhHQINQKpo9LYh1fZQoaAZHQIbyk94eLehoB03oA2gIR0CDaCujASFodX2UKGgGR0CKZ5pEhJRPaAdN6ANoCEdAg9PPt+kP+XV9lChoBkdAi74y2Yv38GgHTegDaAhHQIQg5hDw6Qx1fZQoaAZHQImp6Ac1fmdoB03oA2gIR0CEIr4KQaJidX2UKGgGR0CKVLzJ6po9aAdN6ANoCEdAhCWePikwe3V9lChoBkdAiiA4vvjOs2gHTegDaAhHQIQts/D+BH11fZQoaAZHQImkbzVc2R9oB03oA2gIR0CERVreqJdjdX2UKGgGR0CJZmltTDO1aAdN6ANoCEdAhJPFfJFLFnV9lChoBkdAiYAxMWXTmWgHTegDaAhHQISVqMm4RVZ1fZQoaAZHQInOv4EfT1FoB03oA2gIR0CEmIS13MY/dX2UKGgGR0CLdcg6ltTDaAdN6ANoCEdAhKChlMAWBXV9lChoBkdAZHM44p+c6WgHS49oCEdAhKQdhiLEUHV9lChoBkdAQFkM1CPZI2gHSyloCEdAhKicR+SbIHV9lChoBkdAi4kWa+evp2gHTegDaAhHQIS31jZteld1fZQoaAZHQIIT2us90RxoB00JAmgIR0CE015ZbILgdX2UKGgGR0CHd8bjtG/faAdN6ANoCEdAhQiVafSQYHV9lChoBkdAiwSF2eQMhGgHTeMDaAhHQIUT1ZHNHH51fZQoaAZHQIpASeNDMNdoB03oA2gIR0CFHLJI1+AmdX2UKGgGR0CMf7WCmMwUaAdN6ANoCEdAhSuxYJVsDXV9lChoBkdAcD70fHPu5WgHS9RoCEdAhTRqXv6TGHV9lChoBkdAiwFDcuanaWgHTegDaAhHQIVG0+zMRpV1fZQoaAZHQIndBsbedkJoB03oA2gIR0CFeg2VE/jbdX2UKGgGR0CJoCosI3R5aAdN6ANoCEdAhYQ+Lehwl3V9lChoBkdAjs3bT+ee4GgHTUgDaAhHQIWSwqy4Wk91fZQoaAZHQI8bChxo7FNoB03oA2gIR0CFnGom5UcXdX2UKGgGR0CM57VfeDWcaAdN6ANoCEdAhbffwZwXInV9lChoBkdAc9zY3eenRGgHS+RoCEdAhdHdnscABHV9lChoBkdAiFJhzFMqSWgHTegDaAhHQIXrxoPCl8B1fZQoaAZHQIlZNog3cYZoB03oA2gIR0CF9ivAXVLBdX2UKGgGR0CIJOF8G9pRaAdN6ANoCEdAhgUSBTXJ5nV9lChoBkdAeli6GgzxgGgHTdYBaAhHQIYHztVrAQB1fZQoaAZHQIcdSkoF3ZBoB03oA2gIR0CGDjw7T2FndX2UKGgGR0B557crRSgoaAdNawFoCEdAhhUgymALA3V9lChoBkdAiu/XbVSXMWgHTegDaAhHQIZoYLmZE2J1fZQoaAZHQIkSBGlQ/HJoB03oA2gIR0CGdxBpHqeLdX2UKGgGR0Bv46jSG8EnaAdN6ANoCEdAhnnbyQPqcHV9lChoBkdAjISPUBnzx2gHTegDaAhHQIaAcB0ZFXt1fZQoaAZHQImovT9bX6JoB03oA2gIR0CGh1ZpztCzdX2UKGgGR0CKNRD+irT6aAdN6ANoCEdAhto9qtYCAHV9lChoBkdAh33iMo+fRWgHTegDaAhHQIbrdNUOuq51fZQoaAZHQIn9ysKb8WNoB03oA2gIR0CG7vQa72+PdX2UKGgGR0CJJztgKF7EaAdN6ANoCEdAhvY4SHuZ1HV9lChoBkdAiq7GReTmn2gHTegDaAhHQIb9N3OfNA11fZQoaAZHQFUbV0Lc9GJoB0tMaAhHQIcF1PN3W4F1fZQoaAZHQHjwwu27Wd5oB00wAWgIR0CHGJL4etCBdX2UKGgGR0BoxRgRbr1NaAdLpGgIR0CHK00G/vfCdX2UKGgGR0CI8ejcmBvraAdN6ANoCEdAh0+WVE/jbXV9lChoBkdAh64DrJKaomgHTegDaAhHQIdeqm65Gz91fZQoaAZHQIvQJL7GecxoB03oA2gIR0CHYaAKfFrEdX2UKGgGR0BpseuPmxMWaAdLqGgIR0CHkcKziS7odX2UKGgGR0CP8/oZhrnDaAdN6ANoCEdAh6K07jkuH3V9lChoBkdAcjuKPn0TUWgHS+ZoCEdAh97TC+De03V9lChoBkdAjFAdfsu3+mgHTegDaAhHQIgSKtcOby91fZQoaAZHQI9JUqBmPHVoB03oA2gIR0CIgKipNsWPdX2UKGgGR0CMSiqBEroXaAdN6ANoCEdAiNo/JmuklHV9lChoBkdAbyvUWl/H52gHS9VoCEdAiOFNcGC7LHV9lChoBkdAkX2UXk5p8GgHTegDaAhHQIkPAEhaC+V1fZQoaAZHQHEKmrwOOKhoB0vwaAhHQIk8CuOjqOd1fZQoaAZHQIh1BZGKAJ9oB03oA2gIR0CJRKZccENfdX2UKGgGR0CIs/eyiVSoaAdN6ANoCEdAiVYYsVclgXV9lChoBkdAXvK9ugpSaWgHS1VoCEdAiV/kYXO4X3V9lChoBkdAg4ffdAPd22gHTTsCaAhHQIlxSoESuhd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 37999, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 10000, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f3ba5a51cf0>", "add": "<function ReplayBuffer.add at 0x7f3ba5a51d80>", "sample": "<function ReplayBuffer.sample at 0x7f3ba5a51e10>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f3ba5a51ea0>", "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7f3ba5a51f30>)>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3ba5bbab40>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -8.0, "ent_coef": "auto", "target_update_interval": 1, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWV4QgAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWaQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLaYWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolmkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgVS2mFlGgZdJRSlIwGX3NoYXBllEtphZSMA2xvd5RoESiWSAMAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P+UaAtLaYWUaBl0lFKUjARoaWdolGgRKJZIAwAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoC0tphZRoGXSUUpSMCGxvd19yZXBylIwELWluZpSMCWhpZ2hfcmVwcpSMA2luZpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float64", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False]", "_shape": [105], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVlAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaDKMFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaD2KEX68DzJvfW4qbHXb/ktIW5wAjANpbmOUihF7k0BXuVeYoZX4RSba8iqSAHWMCmhhc191aW50MzKUSwCMCHVpbnRlZ2VylEsAdWJ1Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 5, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYC9ob21lL3JvZHJpL2FuYWNvbmRhMy9lbnZzL21pbmFyaS9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYC9ob21lL3JvZHJpL2FuYWNvbmRhMy9lbnZzL21pbmFyaS9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-6.2.0-35-generic-x86_64-with-glibc2.35 # 35~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Oct 6 10:23:26 UTC 2", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.26.1", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.0", "OpenAI Gym": "0.23.1"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=", "__module__": "stable_baselines3.sac.policies", "__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function SACPolicy.__init__ at 0x7f6b5fd62f80>", "_build": "<function SACPolicy._build at 0x7f6b5fd63010>", "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7f6b5fd630a0>", "reset_noise": "<function SACPolicy.reset_noise at 0x7f6b5fd63130>", "make_actor": "<function SACPolicy.make_actor at 0x7f6b5fd631c0>", "make_critic": "<function SACPolicy.make_critic at 0x7f6b5fd63250>", "forward": "<function SACPolicy.forward at 0x7f6b5fd632e0>", "_predict": "<function SACPolicy._predict at 0x7f6b5fd63370>", "set_training_mode": "<function SACPolicy.set_training_mode at 0x7f6b5fd63400>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6b5fd66ac0>"}, "verbose": 0, "policy_kwargs": {"use_sde": false}, "num_timesteps": 3000000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": 0, "action_noise": null, "start_time": 1699235878180773774, "learning_rate": 0.0003, "tensorboard_log": "runs/7mlhu3nu", "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV3RAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZoEAAAAAAAAC2S0cBUquE/3rrmHPR57D8lACmndRKwPzdXwVe41Kw/xdrhTj2x3L8Z2P3hL8ngvztiR7f7puA/mQBM/kDO4L9m+GZ5xZbgvzwpUtrJx+C/yzFQmlK34L9KVka5AsrgP0EpCq53u+A/vcAOMXZ6GUArLEFEXa3rv1AsMqZoAPy/QEBDHXqRsT+gIBPs9UDgP15S57bcL9I/JJHBqfsFbb/+TNqVQxGlP5raKvZZCI8/kutHwRJmv7/P4OvBoz1oP5zBK9CiBWI/Utm59o9Hgr9/lqMa7RyAPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABERz1jrZ+A/qeVXzUfE7T/5Spj/Zkq2P8ZdMmeGZI6/wYuQsKXM1r+55+mRRe7gvxwPM02wr+A/0Df6DL3G379V6XFWd7Tgv+y1CY+9VuC/HPPzP3O04L/Rr9gx1YnYP1M2TVIOvuA/HP8zohOmG0Dr38S66T7yPxhMItSipPC/LNbrKcSRAMC/UjcdZOr6v2Ryeq7eDOy/ZHvRf4ko+b9elIO41uuPv3I9qlaPLPw/w0NMS8Ttcj/89aZCF5LuPwuHAOhdo0o/qhDlvoFh5D8SwcRpni9cPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMWNNn81UuA/ZfID9N5m7T8/gM5Z50KwP/b4BcUEUKC/+8TPMjDZ2L+OupryrZHevzXMGs2RMeQ/bPF6mH1uuL95doBvn6vgv8s4oSHPyOC/YiJMZGe44L/CIZhqL3PgP90UhtUp5+A/V3fLkY2DFkDEdm17oMrsP8gEyPHS9+e/ymQ22MZI0r96hWlK3j/vP+t6KfqM1dm/dF2JE3yF0j/s9Lmnwy34v29G5N/vnCDAq/iks7Zrt79YOnSdM04vP4Sm6gKoJXg/DqbDWt2VIkDebuUlZD3UPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACvXyheNY+E/r8UP0TQJ7D9civcR4AN6vwxH+QMmzLG/wbs9zz6H3r8A7fKuVnfev1pgh+00uOA/G0S4UeLfxT+BtiuL6OPfv/9UEU9jvOC/A3A6xMC14L8MKVHeX8/Sv57V8M0PVuA/8wHAQg9PFkCQXsUJikHtv1g4s1/845M/PNL6Jec09L+TGz4loETcP2SuDRI1f9s/t8rx7QBH2D+mlym8si6MPxmsDLcS1yDApE60yXG43j+4GUTFhsO3P+jt7MinZoC/fJ2CKcqxHkBwC9cA1WTcPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALQ1hK2ijd4/2BP1bNH57D8OBM41y9igPyRqRE0seqe/cpIF/uLq2r/lhn8c36TgvyOZCWZOoeA/6cI7vfwB3T+4L7BwU2DnvwxOXoAVy+C/duFib4qv4L+MEa5At+bjvx+hcKJ23eE/mHd1ZktMHkDTU30zh6bTvxd5Xp9rIPI/EWIeGuOAA0BIcf+H/XDXv7ghBAvGofe/z48idOvuyj8e5qY9icqvP+ckahLFKy9AmOGK5jae9z+wJqi0pJUrv9CAvAcVbXG/4ETyIpv4FcAu/3Ix1x4TwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBUtphpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVeAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYFAAAAAAAAAAEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksFhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV3RAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZoEAAAAAAAACHcVxWVEeQ/f/2oT1Rm7D+lNyrIFQCsP4IdHvBE5Kc/LugIUbQh3b+mukM2bcfgv+M/UB76beA/znwJALvd4L/QpZsoSEDgvwUoEt7eyeC/kWU992G44L+WO5dE8dHgP2I6wOBxteA/F5xxUal8GUDCuu2yT8jrv3bMa7I3FfS/woXVv8fHuT8HBk/wv6neP6wOn4W/tNE/HrT8migAjT8eCkhhVcLUP1oSOj3Y67A/zvlEKKZyxL/nMh0zOnlDvyiDmREyrl6/kzvQbScdnL+i4Z2bTJSDPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMrccp4lSuI/clnI2wTh7T/UP7jnrza8P58WeELxPoG/RSRuiBHL1b8fMOYiPQngv7bPml3Jt+A/44yPIUA+4r9mjspcGLfgv+/wqBgW9OC/dldwNNi14L+cKkA7QHDUP5r0UvhIueA/zWaXCeWoHECY40M7W+XbP7sirTsp2/S/iW7alV9w3D/YzicS0jzYP2JD29FCe9q/5oAd6OXJ7T+0CYpHDk58P83Qs0Lg5/I/PoxNBKUKWr84+hN1XoXPv0BrCYkWVYI/4H+Oxm///j+WKfYs2KmdPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGmI/dXUJuE/IgJYfNeM7T8jettXwL+uPyhh8cjjUq2/WcNkMVv6178K2vGTDsbevzuLojFlYuU/aFmr9Hpv0z+VdtUEwBTgv+UywHb1yuC/OmO1mju74L9gVaScSHlyvwc9CzNXKOA/5WNDFEUrFkA5UmfL3ODtP8bOLsEF6tG/wAqn2lTNw7/0ItLJBmzuP3i9aYmOF+y/rfu6HJJqxb9QU8BmBHCiPw5Rojdemh7ApZ3ETp8e7r+WvvelRh2TPxNrGkToF5O/tjVTRbnuJkCqmDcfiMvjPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEdjzbXDCeE/6Sq/L7PQ6z/f66QFR5+XP9Pn78KEI7W/5OJoucUp379fOyB6pUfdv2vlrPCIr+A/R+n4WAR24D/8+BWeXW7kv1i6JfOu0+C/tq3p+ruw4L9lg4i6IaHivw0CpW6N3d4/ovj0ov4SGECZ7q4Z8orwv8BctKQ93tk/XLy7+JCo5L+HcvJSRgTwv7J/HFfK6ek/M5CG1B818r946dTYhzaCPyuDQMwILRXAiX606rCUDUDC+OvFG0GFP/66SQEM44G/MCrkm5qNDkDAHxWGrjDLvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGxE0uKx+No/Oowpqdv07D9eObkdLM5ev/2tnKjK7pK/3blhAyE3279DyhzD0cngv6BLe4pGWOA/7KJV+5qZxL8LA5pOCp3lv37wxEulyeC/0LL+SHWu4L+416QjEQmPP7mz4R3oLeU/0Wo4ajCDHEBwYHlt5iu2P6iSi3udMuE/IHn5LGXQ0z+BCCCjuGnhP+gMPM62W9k/5AHcByIEhT9G1nCIrP7WP/OUHve9CSJARheBOMwPDsD59sGXWxpxv7d0/SaatoM/e/4KJatgJsByBjPgQ2/pPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPA/AAAAAAAA8L8AAAAAAADwv3DmJMmwVu+/AAAAAAAA8L8AAAAAAADwPwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPC/AAAAAAAA8D+UsgZzPd3aP6K2qENTN+2/AAAAAAAA8L8AAAAAAADwP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBUtphpSMAUOUdJRSlC4="}, "_episode_num": 3562, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJFetaLXL/2MAWyUS96MAXSUR0DBsdd+y7f6dX2UKGgGR0C0Z7FghKUWaAdN6ANoCEdAwbOPQv6CUXV9lChoBkdAtYuK7QLNOmgHTegDaAhHQMG0xt7KJVN1fZQoaAZHQLU5LXrt3OhoB03oA2gIR0DBt04DV6NVdX2UKGgGR0C1vOkYGdI5aAdN5wNoCEdAwbefo7FKkHV9lChoBkdAtiFQ1k1/D2gHTegDaAhHQMG5LyGrS3N1fZQoaAZHQLYPiFx4pttoB03oA2gIR0DBut26oVEedX2UKGgGR0C2jAhT4tYkaAdN6ANoCEdAwbwCVRDTjXV9lChoBkdAtqZZekYXPGgHTegDaAhHQMG+dLy1/lR1fZQoaAZHQLVCsxJ/XoVoB03oA2gIR0DBvsaPCEYgdX2UKGgGR0C1s4KvFFUiaAdN6ANoCEdAwcBcSB9TgnV9lChoBkdAtnSgACGN72gHTegDaAhHQMHCEay8jA11fZQoaAZHQLW1d47ihnJoB03oA2gIR0DBwzgRsdkrdX2UKGgGR0C2WTSLl3hXaAdN6ANoCEdAwcWcABDG+HV9lChoBkdAs83xVvMr3GgHTegDaAhHQMHF7CXpnpV1fZQoaAZHQLY5aR/ViF1oB03oA2gIR0DBx3q0pmVadX2UKGgGR0C2JR2VeKKpaAdN6ANoCEdAwck1WMCLdnV9lChoBkdAtc4PAO8TSWgHTegDaAhHQMHKWewTufF1fZQoaAZHQLXuXMdcSoRoB03oA2gIR0DBzMvueBhAdX2UKGgGR8CCqYOFxn3+aAdN6ANoCEdAwc0dFUADJXV9lChoBkdAtgskyVObiWgHTegDaAhHQMHOoeF10T11fZQoaAZHQLX8QMl1KXhoB03oA2gIR0DB0FPE87p3dX2UKGgGR0C0v0ZqVQhwaAdN6ANoCEdAwdF2Xxe9jHV9lChoBkdAtQ7hVxS5y2gHTegDaAhHQMHUE1xCIDZ1fZQoaAZHQLWYYMAFPi1oB03oA2gIR0DB1GOJSBK+dX2UKGgGR0C10whwMpgDaAdN6ANoCEdAwdXoJb+tKnV9lChoBkdAo/mFCeEqUmgHTckBaAhHQMHXVhScbzd1fZQoaAZHQLUwdZKnNxFoB03XA2gIR0DB14Oy7f52dX2UKGgGR0C2Tczx5LRKaAdN6ANoCEdAwdjL06HTJHV9lChoBkdAtTL07cO9WmgHTegDaAhHQMHbk8cENfB1fZQoaAZHQLUBnPHT7VJoB03oA2gIR0DB3Ti+QEIPdX2UKGgGR0C2HkrQgLZ0aAdN6ANoCEdAwd6git7rs3V9lChoBkdAteEcUAT7EmgHTegDaAhHQMHezNCZ4Od1fZQoaAZHQLUU7Cr92oxoB03oA2gIR0DB4A7vTgEVdX2UKGgGR0C08f7YwqRVaAdN6ANoCEdAweLHCsOoYXV9lChoBkdAtcQCPp6hQGgHTegDaAhHQMHkTnKGL1p1fZQoaAZHQLTmCcXWOIZoB03oA2gIR0DB5bPMMZxadX2UKGgGR0C2GufGACnxaAdN6ANoCEdAweXfT2nKn3V9lChoBkdAtKOB9ZzPr2gHTegDaAhHQMHnI8a4tpV1fZQoaAZHQLYO3SNfgJloB03oA2gIR0DB6dUgMc6vdX2UKGgGR0C0wo8OPNmlaAdN6ANoCEdAwetcLPUrkXV9lChoBkdAthCWrfcesGgHTegDaAhHQMHsxqoybhF1fZQoaAZHQLWLDUPxx1hoB03oA2gIR0DB7PQX/HYIdX2UKGgGR0C2R7oubqhUaAdN6ANoCEdAwe47z3AVPHV9lChoBkdAtgCb0PH1e2gHTegDaAhHQMHxFiLVFx51fZQoaAZHQLZN+N0NjLBoB03oA2gIR0DB8phStNi6dX2UKGgGR0C2mDSvcJt0aAdN6ANoCEdAwfP7Kq4pdHV9lChoBkdAtRfxg5R0l2gHTegDaAhHQMH0JmpuMuR1fZQoaAZHQLVj6exfOUtoB03oA2gIR0DB9W+KIi1RdX2UKGgGR0C1ihyhnJ1aaAdN6ANoCEdAwfgeqbSZ0HV9lChoBkdAtmWF5jYqXmgHTegDaAhHQMH5nnVwxWV1fZQoaAZHQLTW4vw3HaNoB03oA2gIR0DB+wVS/CZXdX2UKGgGR0C2bqcvugHvaAdN6ANoCEdAwfsyNd7fHnV9lChoBkdAtTZmTfR/mWgHTegDaAhHQMH8fDKgZjx1fZQoaAZHQLZZUzJZGKBoB03oA2gIR0DB/zX779AHdX2UKGgGR0C2TimIj4YaaAdN6ANoCEdAwgC6HO8kEHV9lChoBkdAtV5vHwPRRmgHTegDaAhHQMICHMBZIQR1fZQoaAZHQLaZ3vybx3FoB03oA2gIR0DCAkiJIlMRdX2UKGgGR0C1O7Lb5/LDaAdN6ANoCEdAwgOJMINVinV9lChoBkdAtsLkyTINmWgHTegDaAhHQMIGROlXRw91fZQoaAZHQLZtY4ZuQ6poB03oA2gIR0DCB9WueSSvdX2UKGgGR0C1+K3LzPKMaAdN6ANoCEdAwgk5sWO6unV9lChoBkdAteU44p+c6WgHTegDaAhHQMIJaUtRNyp1fZQoaAZHQLVBLC/oJRhoB03oA2gIR0DCCrb+m3vydX2UKGgGR0B6xAlC1JDmaAdLcWgIR0DCC4+melKsdX2UKGgGR0C2UyoAbQ1KaAdN6ANoCEdAwg1zWdVebHV9lChoBkdAtWWMTviLl2gHTegDaAhHQMIPQ1uJk5J1fZQoaAZHQLZg8EB8x9JoB03iA2gIR0DCEKMRYigTdX2UKGgGR0C19dECFK02aAdN6ANoCEdAwhDbA44p+nV9lChoBkdAteutabF0gmgHTegDaAhHQMIS7rHdXT51fZQoaAZHQLWawHdoFmpoB03oA2gIR0DCFNK0IC2ddX2UKGgGR0C1BQK+ajN7aAdN6ANoCEdAwhZX6vaDf3V9lChoBkdAtoJ9XXAdn2gHTegDaAhHQMIXsSsCDEp1fZQoaAZHQLXqZ/IbOu9oB03oA2gIR0DCF+d6Vt4zdX2UKGgGR0C13yCnxaxHaAdN6ANoCEdAwhn11cMVlHV9lChoBkdAtbXb8AJb+2gHTegDaAhHQMIb7rD63y91fZQoaAZHQLa+8hs67uloB03oA2gIR0DCHXyBAfMfdX2UKGgGR0B4Jc8V58jSaAdLW2gIR0DCHh6DbrTqdX2UKGgGR0C2QDcSf16FaAdN6ANoCEdAwh7kt/4Ir3V9lChoBkdAtLTQL4N7SmgHTegDaAhHQMIfH+WOZLJ1fZQoaAZHQLX4wSVW0Z5oB03oA2gIR0DCITqAQQMAdX2UKGgGR0C1z7LGFSKnaAdN6ANoCEdAwiMkXhwVCXV9lChoBkdAtify23KB/mgHTegDaAhHQMIlTXT/hl11fZQoaAZHQLWwC1jiGWVoB03oA2gIR0DCJgge1a4ddX2UKGgGR0C2S2uzdDYzaAdN6ANoCEdAwiZBjKgZj3V9lChoBkdAthojvPTodWgHTegDaAhHQMIoSxg7YCh1fZQoaAZHQLWVJWPcSGtoB03oA2gIR0DCKjkZJkGzdX2UKGgGR0CyOkYvBacJaAdNaQNoCEdAwixKsnRb8nV9lChoBkdAtdYFHjIaLmgHTegDaAhHQMIsfc63iJh1fZQoaAZHQLZq6c580DVoB03oA2gIR0DCLXla6jFidX2UKGgGR0C2Q7KoIfKZaAdN6ANoCEdAwi+JulXRxHV9lChoBkdAtPjWRaHKwWgHTegDaAhHQMIxaktdzGR1fZQoaAZHQLX+DdH2AXloB03oA2gIR0DCM2BTKkmAdX2UKGgGR0C16vF81Gb1aAdN6ANoCEdAwjOORW912nV9lChoBkdAta82b6P8ymgHTegDaAhHQMI0f5I6Kcd1fZQoaAZHQLZGcXK8tf5oB03oA2gIR0DCNqO5c1O1dX2UKGgGR0ClRcO7QLNOaAdN9AFoCEdAwjgdOGj9GnV9lChoBkdAtgwrU+cH4WgHTegDaAhHQMI4jnDJlrd1fZQoaAZHQLVKU3FUADJoB03oA2gIR0DCOpBXIU8FdX2UKGgGR0C2jnMDwH7haAdN6ANoCEdAwjq+uK4x13VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 598000, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 10000, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f6b5fd51cf0>", "add": "<function ReplayBuffer.add at 0x7f6b5fd51d80>", "sample": "<function ReplayBuffer.sample at 0x7f6b5fd51e10>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f6b5fd51ea0>", "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7f6b5fd51f30>)>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6b5feca900>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -8.0, "ent_coef": "auto", "target_update_interval": 1, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWV4QgAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWaQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLaYWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolmkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgVS2mFlGgZdJRSlIwGX3NoYXBllEtphZSMA2xvd5RoESiWSAMAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P+UaAtLaYWUaBl0lFKUjARoaWdolGgRKJZIAwAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoC0tphZRoGXSUUpSMCGxvd19yZXBylIwELWluZpSMCWhpZ2hfcmVwcpSMA2luZpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float64", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False False False False False False]", "_shape": [105], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVkgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaDKMFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaD2KEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 5, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYC9ob21lL3JvZHJpL2FuYWNvbmRhMy9lbnZzL21pbmFyaS9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMYC9ob21lL3JvZHJpL2FuYWNvbmRhMy9lbnZzL21pbmFyaS9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-6.2.0-35-generic-x86_64-with-glibc2.35 # 35~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Oct 6 10:23:26 UTC 2", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.26.1", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.0", "OpenAI Gym": "0.23.1"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 5710.9351887, "std_reward": 262.53855313286243, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-06T19:26:20.350254"}
|