fapont commited on
Commit
a74c277
·
1 Parent(s): 45eb139

Upload lunar lander model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: ppo
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 252.98 +/- 15.69
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **ppo** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **ppo** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4e8e16ae50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4e8e16aee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4e8e16af70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4e8e0ef040>", "_build": "<function ActorCriticPolicy._build at 0x7f4e8e0ef0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f4e8e0ef160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4e8e0ef1f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4e8e0ef280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4e8e0ef310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4e8e0ef3a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4e8e0ef430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4e8e14bde0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673202403045883679, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIychZ2NNXcECUhpRSlIwBbJRNQgKMAXSUR0CftGzVtoBadX2UKGgGaAloD0MI9+Y3TDQ1aECUhpRSlGgVTegDaBZHQJ+0v6k69011fZQoaAZoCWgPQwjfv3lx4u1wQJSGlFKUaBVNdANoFkdAn8592LYPG3V9lChoBmgJaA9DCOuQm+EGyEZAlIaUUpRoFUvJaBZHQJ/OiiAUcn51fZQoaAZoCWgPQwge3nNgOSBFQJSGlFKUaBVL02gWR0Cfz6bTtsvadX2UKGgGaAloD0MI/KpcqPxnYkCUhpRSlGgVTegDaBZHQJ/Qh6Tnq3V1fZQoaAZoCWgPQwiNYrmlVddsQJSGlFKUaBVNMwFoFkdAn9CVk6Lfk3V9lChoBmgJaA9DCD4hO29jT2pAlIaUUpRoFU1HAWgWR0Cf0ZweNkvsdX2UKGgGaAloD0MI7FG4HkUNcUCUhpRSlGgVTRkDaBZHQJ/R7IzWPLh1fZQoaAZoCWgPQwhrLcxC+3BwQJSGlFKUaBVNiAJoFkdAn9JUjkdWAHV9lChoBmgJaA9DCLvTnSeeEnBAlIaUUpRoFU2bAWgWR0Cf0oNB4UvgdX2UKGgGaAloD0MIyt3n+KgmcECUhpRSlGgVTV8BaBZHQJ/S0/2TPjZ1fZQoaAZoCWgPQwiQ+YBApy1yQJSGlFKUaBVNagFoFkdAn9Ok9ECvHXV9lChoBmgJaA9DCF67tOEw0HBAlIaUUpRoFU0QAWgWR0Cf1wF2V3UydX2UKGgGaAloD0MIGFqdnKEOb0CUhpRSlGgVTTUBaBZHQJ/YtN0vGqB1fZQoaAZoCWgPQwhky/J1md9vQJSGlFKUaBVNRwFoFkdAn9jWTot+TnV9lChoBmgJaA9DCPoK0oxF7XBAlIaUUpRoFU1MAWgWR0Cf2h4aP0ZndX2UKGgGaAloD0MIzvxqDlA6cUCUhpRSlGgVTSUBaBZHQJ/bFgYxcml1fZQoaAZoCWgPQwh4CrlSzw5KQJSGlFKUaBVL8WgWR0Cf2/+so2GZdX2UKGgGaAloD0MIrwW9N4aBbkCUhpRSlGgVTUQBaBZHQJ/cnAYYR/V1fZQoaAZoCWgPQwjKwtfXuvxOQJSGlFKUaBVLzGgWR0Cf3KdMTN+tdX2UKGgGaAloD0MIza0QVmNdQUCUhpRSlGgVS/ZoFkdAn9y7tiQT23V9lChoBmgJaA9DCOgWuhKBWm9AlIaUUpRoFU06AWgWR0Cf3S4y44IbdX2UKGgGaAloD0MIM/0S8VambUCUhpRSlGgVTT4BaBZHQJ/eDn4fwJB1fZQoaAZoCWgPQwjVBbzMcKJxQJSGlFKUaBVNQgFoFkdAn94kojOcD3V9lChoBmgJaA9DCE1qaAPwcHFAlIaUUpRoFU1fAWgWR0Cf4BGAkLQYdX2UKGgGaAloD0MIqoHmc26BakCUhpRSlGgVTaICaBZHQJ/hwU0vXbx1fZQoaAZoCWgPQwg8SiU84VpwQJSGlFKUaBVNlwFoFkdAn+NgRwqAjXV9lChoBmgJaA9DCBUb8zrigm9AlIaUUpRoFU05AWgWR0Cf5IPgvUSadX2UKGgGaAloD0MIgpGXNbEkPkCUhpRSlGgVS9VoFkdAn+VUMTewcHV9lChoBmgJaA9DCJHvUuqSnW5AlIaUUpRoFU0pAWgWR0Cf5Y+wC8vmdX2UKGgGaAloD0MIidNJtvotckCUhpRSlGgVTc8BaBZHQJ/mIRL9MsZ1fZQoaAZoCWgPQwj/zCA+sCc3QJSGlFKUaBVL7WgWR0Cf5kGorFwUdX2UKGgGaAloD0MIFvcfmY41cUCUhpRSlGgVTSEBaBZHQJ/n4sbvPTp1fZQoaAZoCWgPQwjjOPBquZFwQJSGlFKUaBVNUwFoFkdAn+hRPbfxc3V9lChoBmgJaA9DCMBcixYgR25AlIaUUpRoFU06AWgWR0Cf6t9Zid8RdX2UKGgGaAloD0MIeVxUi0gTckCUhpRSlGgVTVABaBZHQJ/uWAVfu1F1fZQoaAZoCWgPQwjzO01mvK9HQJSGlFKUaBVL6WgWR0Cf72Huqm0mdX2UKGgGaAloD0MIBwySPq3ccUCUhpRSlGgVTbMBaBZHQJ/vYxyn1nN1fZQoaAZoCWgPQwg5tMh2vhFxQJSGlFKUaBVN7gFoFkdAn/AagyuZC3V9lChoBmgJaA9DCAPtDikGsExAlIaUUpRoFUu9aBZHQJ/wtuTA31l1fZQoaAZoCWgPQwizlZf8D5lxQJSGlFKUaBVN6wFoFkdAn/Fkr08NhHV9lChoBmgJaA9DCK/PnPUpUG5AlIaUUpRoFU1PAWgWR0Cf8fVMEidKdX2UKGgGaAloD0MIUbtfBfitbkCUhpRSlGgVTYgBaBZHQJ/y/fyf+S91fZQoaAZoCWgPQwhTPZl/tNtwQJSGlFKUaBVN/AFoFkdAn/QGu5jH43V9lChoBmgJaA9DCMA+OnWlw3BAlIaUUpRoFU2BAmgWR0Cf9JdeIEbHdX2UKGgGaAloD0MIkbQbfQwfcUCUhpRSlGgVTTABaBZHQJ/1g20iQkp1fZQoaAZoCWgPQwhB1lOrr9pvQJSGlFKUaBVNcQFoFkdAn/aJGnXNDHV9lChoBmgJaA9DCIzc09Xdx3FAlIaUUpRoFU2TAWgWR0Cf9098qnWKdX2UKGgGaAloD0MI9UvEWydXcUCUhpRSlGgVTbsBaBZHQJ/390+1Sfl1fZQoaAZoCWgPQwjIXu/+eLlJQJSGlFKUaBVNAAFoFkdAoAjS7ROUMXV9lChoBmgJaA9DCBHlC1pIUBtAlIaUUpRoFUv7aBZHQKAJC3KB/Zx1fZQoaAZoCWgPQwhX68TleDlBQJSGlFKUaBVL9WgWR0CgCToeYD1XdX2UKGgGaAloD0MIWtWSjvKBbkCUhpRSlGgVTQUCaBZHQKAJ0MrEtNB1fZQoaAZoCWgPQwh8SPjen4BxQJSGlFKUaBVNYwFoFkdAoAqIACGN73V9lChoBmgJaA9DCJAV/DYE9XBAlIaUUpRoFU1PAWgWR0CgCo3xWkrPdX2UKGgGaAloD0MIuATgn1KtckCUhpRSlGgVTTIBaBZHQKAK3L39JjF1fZQoaAZoCWgPQwiV88Xei/NtQJSGlFKUaBVNLQFoFkdAoAr7ItDlYHV9lChoBmgJaA9DCN/+XDTklWxAlIaUUpRoFU03AWgWR0CgDBFdTo+wdX2UKGgGaAloD0MIaCPXTSn0cECUhpRSlGgVTXABaBZHQKAM0F10T111fZQoaAZoCWgPQwgVV5V9VzptQJSGlFKUaBVNEgFoFkdAoAzqNlyzX3V9lChoBmgJaA9DCLWLaaa7kXFAlIaUUpRoFU19AWgWR0CgDfHscABDdX2UKGgGaAloD0MIrrfNVMgwcUCUhpRSlGgVTS8BaBZHQKAN9fnfVI91fZQoaAZoCWgPQwj1KjI6ILRxQJSGlFKUaBVNawFoFkdAoA6CL61stXV9lChoBmgJaA9DCFVRvMrabklAlIaUUpRoFUvMaBZHQKAPNVCojwB1fZQoaAZoCWgPQwimSL4SyI9xQJSGlFKUaBVNRwFoFkdAoA/uq1gH/3V9lChoBmgJaA9DCPZhvVHrDXJAlIaUUpRoFU0jAWgWR0CgECxKYiPidX2UKGgGaAloD0MIZKw2/68obECUhpRSlGgVTV0BaBZHQKAQric5Ke11fZQoaAZoCWgPQwjNW3UdKjtwQJSGlFKUaBVNIAFoFkdAoBDdvfj0c3V9lChoBmgJaA9DCMwpATHJsnFAlIaUUpRoFU30AWgWR0CgERMdT5wgdX2UKGgGaAloD0MI2nIuxdWickCUhpRSlGgVTTsBaBZHQKARcjVQQ+V1fZQoaAZoCWgPQwj0pbc/FypwQJSGlFKUaBVNegFoFkdAoBGAgDA8CHV9lChoBmgJaA9DCG77HvXXP0RAlIaUUpRoFUvoaBZHQKATAay8jA11fZQoaAZoCWgPQwgxQKIJFO5tQJSGlFKUaBVNZAFoFkdAoBP2x2SuAHV9lChoBmgJaA9DCP9YiA6BEXBAlIaUUpRoFU1NAWgWR0CgFFAqd6LPdX2UKGgGaAloD0MIsfojDIOYcUCUhpRSlGgVTSUBaBZHQKAUbMwDeTF1fZQoaAZoCWgPQwgwf4XMVfBxQJSGlFKUaBVNcQFoFkdAoBT/q1PWQXV9lChoBmgJaA9DCMYzaOifiDhAlIaUUpRoFUvIaBZHQKAVNfkWAPN1fZQoaAZoCWgPQwj9TpMZb0VQQJSGlFKUaBVL0WgWR0CgFfd1uBMBdX2UKGgGaAloD0MI+YbCZ+sMcECUhpRSlGgVTT0BaBZHQKAWSuFpPAR1fZQoaAZoCWgPQwitaHOcGxpwQJSGlFKUaBVNLgFoFkdAoBaeDzyz5XV9lChoBmgJaA9DCJuNlZhn3S1AlIaUUpRoFUvsaBZHQKAWrUIcBEN1fZQoaAZoCWgPQwgYmBWKdPVxQJSGlFKUaBVNKgFoFkdAoBbBJsfq5nV9lChoBmgJaA9DCDGYv0JmIGBAlIaUUpRoFU3oA2gWR0CgFvhe5WildX2UKGgGaAloD0MI/Z/DfLndcECUhpRSlGgVTZgBaBZHQKAXabKifxt1fZQoaAZoCWgPQwjt9e6P91VrQJSGlFKUaBVNQQFoFkdAoBeHGS6lL3V9lChoBmgJaA9DCH+EYcDSHnJAlIaUUpRoFU1gAmgWR0CgF+4hEBsAdX2UKGgGaAloD0MIGFsIclBNcUCUhpRSlGgVTY0BaBZHQKAZIqGUOd51fZQoaAZoCWgPQwhYU1kUtv1yQJSGlFKUaBVNSgFoFkdAoBqshvBJqnV9lChoBmgJaA9DCMWsF0P5XnFAlIaUUpRoFU2DAWgWR0CgGwyRB/qgdX2UKGgGaAloD0MIUIpW7gXlbECUhpRSlGgVTVYBaBZHQKAbb/Nqxkd1fZQoaAZoCWgPQwiVKHtLefhxQJSGlFKUaBVNYQFoFkdAoBuPl+3H73V9lChoBmgJaA9DCFjiAWVTH29AlIaUUpRoFU0UAWgWR0CgG4/j81n/dX2UKGgGaAloD0MItRX7y65acUCUhpRSlGgVTUgBaBZHQKAbsJKJ2uB1fZQoaAZoCWgPQwi6TiMtlT9xQJSGlFKUaBVNFQFoFkdAoBwcV1wHaHV9lChoBmgJaA9DCK7yBMJOr21AlIaUUpRoFU0yAWgWR0CgHGjV6NVBdX2UKGgGaAloD0MIe8GnOTmfcUCUhpRSlGgVTXkBaBZHQKAc2UaAFxJ1fZQoaAZoCWgPQwhvK702G+tOQJSGlFKUaBVL72gWR0CgHOXdCVrzdX2UKGgGaAloD0MISL99HTjFcUCUhpRSlGgVTUQBaBZHQKAdHnNgSe11fZQoaAZoCWgPQwiuR+F61MZxQJSGlFKUaBVNVAFoFkdAoB1Y3vQWvnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 252, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
lunar_lander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9782443105f0d8d5be62c9493ff426191c3cb5d5195765d0c9732b177a45c984
3
+ size 146394
lunar_lander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
lunar_lander/data ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4e8e16ae50>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4e8e16aee0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4e8e16af70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4e8e0ef040>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f4e8e0ef0d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f4e8e0ef160>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4e8e0ef1f0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f4e8e0ef280>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4e8e0ef310>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4e8e0ef3a0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4e8e0ef430>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f4e8e14bde0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 1,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673202403045883679,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": null,
58
+ "_last_episode_starts": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_original_obs": null,
63
+ "_episode_num": 0,
64
+ "use_sde": false,
65
+ "sde_sample_freq": -1,
66
+ "_current_progress_remaining": -0.015808000000000044,
67
+ "ep_info_buffer": {
68
+ ":type:": "<class 'collections.deque'>",
69
+ ":serialized:": "gAWVcBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIychZ2NNXcECUhpRSlIwBbJRNQgKMAXSUR0CftGzVtoBadX2UKGgGaAloD0MI9+Y3TDQ1aECUhpRSlGgVTegDaBZHQJ+0v6k69011fZQoaAZoCWgPQwjfv3lx4u1wQJSGlFKUaBVNdANoFkdAn8592LYPG3V9lChoBmgJaA9DCOuQm+EGyEZAlIaUUpRoFUvJaBZHQJ/OiiAUcn51fZQoaAZoCWgPQwge3nNgOSBFQJSGlFKUaBVL02gWR0Cfz6bTtsvadX2UKGgGaAloD0MI/KpcqPxnYkCUhpRSlGgVTegDaBZHQJ/Qh6Tnq3V1fZQoaAZoCWgPQwiNYrmlVddsQJSGlFKUaBVNMwFoFkdAn9CVk6Lfk3V9lChoBmgJaA9DCD4hO29jT2pAlIaUUpRoFU1HAWgWR0Cf0ZweNkvsdX2UKGgGaAloD0MI7FG4HkUNcUCUhpRSlGgVTRkDaBZHQJ/R7IzWPLh1fZQoaAZoCWgPQwhrLcxC+3BwQJSGlFKUaBVNiAJoFkdAn9JUjkdWAHV9lChoBmgJaA9DCLvTnSeeEnBAlIaUUpRoFU2bAWgWR0Cf0oNB4UvgdX2UKGgGaAloD0MIyt3n+KgmcECUhpRSlGgVTV8BaBZHQJ/S0/2TPjZ1fZQoaAZoCWgPQwiQ+YBApy1yQJSGlFKUaBVNagFoFkdAn9Ok9ECvHXV9lChoBmgJaA9DCF67tOEw0HBAlIaUUpRoFU0QAWgWR0Cf1wF2V3UydX2UKGgGaAloD0MIGFqdnKEOb0CUhpRSlGgVTTUBaBZHQJ/YtN0vGqB1fZQoaAZoCWgPQwhky/J1md9vQJSGlFKUaBVNRwFoFkdAn9jWTot+TnV9lChoBmgJaA9DCPoK0oxF7XBAlIaUUpRoFU1MAWgWR0Cf2h4aP0ZndX2UKGgGaAloD0MIzvxqDlA6cUCUhpRSlGgVTSUBaBZHQJ/bFgYxcml1fZQoaAZoCWgPQwh4CrlSzw5KQJSGlFKUaBVL8WgWR0Cf2/+so2GZdX2UKGgGaAloD0MIrwW9N4aBbkCUhpRSlGgVTUQBaBZHQJ/cnAYYR/V1fZQoaAZoCWgPQwjKwtfXuvxOQJSGlFKUaBVLzGgWR0Cf3KdMTN+tdX2UKGgGaAloD0MIza0QVmNdQUCUhpRSlGgVS/ZoFkdAn9y7tiQT23V9lChoBmgJaA9DCOgWuhKBWm9AlIaUUpRoFU06AWgWR0Cf3S4y44IbdX2UKGgGaAloD0MIM/0S8VambUCUhpRSlGgVTT4BaBZHQJ/eDn4fwJB1fZQoaAZoCWgPQwjVBbzMcKJxQJSGlFKUaBVNQgFoFkdAn94kojOcD3V9lChoBmgJaA9DCE1qaAPwcHFAlIaUUpRoFU1fAWgWR0Cf4BGAkLQYdX2UKGgGaAloD0MIqoHmc26BakCUhpRSlGgVTaICaBZHQJ/hwU0vXbx1fZQoaAZoCWgPQwg8SiU84VpwQJSGlFKUaBVNlwFoFkdAn+NgRwqAjXV9lChoBmgJaA9DCBUb8zrigm9AlIaUUpRoFU05AWgWR0Cf5IPgvUSadX2UKGgGaAloD0MIgpGXNbEkPkCUhpRSlGgVS9VoFkdAn+VUMTewcHV9lChoBmgJaA9DCJHvUuqSnW5AlIaUUpRoFU0pAWgWR0Cf5Y+wC8vmdX2UKGgGaAloD0MIidNJtvotckCUhpRSlGgVTc8BaBZHQJ/mIRL9MsZ1fZQoaAZoCWgPQwj/zCA+sCc3QJSGlFKUaBVL7WgWR0Cf5kGorFwUdX2UKGgGaAloD0MIFvcfmY41cUCUhpRSlGgVTSEBaBZHQJ/n4sbvPTp1fZQoaAZoCWgPQwjjOPBquZFwQJSGlFKUaBVNUwFoFkdAn+hRPbfxc3V9lChoBmgJaA9DCMBcixYgR25AlIaUUpRoFU06AWgWR0Cf6t9Zid8RdX2UKGgGaAloD0MIeVxUi0gTckCUhpRSlGgVTVABaBZHQJ/uWAVfu1F1fZQoaAZoCWgPQwjzO01mvK9HQJSGlFKUaBVL6WgWR0Cf72Huqm0mdX2UKGgGaAloD0MIBwySPq3ccUCUhpRSlGgVTbMBaBZHQJ/vYxyn1nN1fZQoaAZoCWgPQwg5tMh2vhFxQJSGlFKUaBVN7gFoFkdAn/AagyuZC3V9lChoBmgJaA9DCAPtDikGsExAlIaUUpRoFUu9aBZHQJ/wtuTA31l1fZQoaAZoCWgPQwizlZf8D5lxQJSGlFKUaBVN6wFoFkdAn/Fkr08NhHV9lChoBmgJaA9DCK/PnPUpUG5AlIaUUpRoFU1PAWgWR0Cf8fVMEidKdX2UKGgGaAloD0MIUbtfBfitbkCUhpRSlGgVTYgBaBZHQJ/y/fyf+S91fZQoaAZoCWgPQwhTPZl/tNtwQJSGlFKUaBVN/AFoFkdAn/QGu5jH43V9lChoBmgJaA9DCMA+OnWlw3BAlIaUUpRoFU2BAmgWR0Cf9JdeIEbHdX2UKGgGaAloD0MIkbQbfQwfcUCUhpRSlGgVTTABaBZHQJ/1g20iQkp1fZQoaAZoCWgPQwhB1lOrr9pvQJSGlFKUaBVNcQFoFkdAn/aJGnXNDHV9lChoBmgJaA9DCIzc09Xdx3FAlIaUUpRoFU2TAWgWR0Cf9098qnWKdX2UKGgGaAloD0MI9UvEWydXcUCUhpRSlGgVTbsBaBZHQJ/390+1Sfl1fZQoaAZoCWgPQwjIXu/+eLlJQJSGlFKUaBVNAAFoFkdAoAjS7ROUMXV9lChoBmgJaA9DCBHlC1pIUBtAlIaUUpRoFUv7aBZHQKAJC3KB/Zx1fZQoaAZoCWgPQwhX68TleDlBQJSGlFKUaBVL9WgWR0CgCToeYD1XdX2UKGgGaAloD0MIWtWSjvKBbkCUhpRSlGgVTQUCaBZHQKAJ0MrEtNB1fZQoaAZoCWgPQwh8SPjen4BxQJSGlFKUaBVNYwFoFkdAoAqIACGN73V9lChoBmgJaA9DCJAV/DYE9XBAlIaUUpRoFU1PAWgWR0CgCo3xWkrPdX2UKGgGaAloD0MIuATgn1KtckCUhpRSlGgVTTIBaBZHQKAK3L39JjF1fZQoaAZoCWgPQwiV88Xei/NtQJSGlFKUaBVNLQFoFkdAoAr7ItDlYHV9lChoBmgJaA9DCN/+XDTklWxAlIaUUpRoFU03AWgWR0CgDBFdTo+wdX2UKGgGaAloD0MIaCPXTSn0cECUhpRSlGgVTXABaBZHQKAM0F10T111fZQoaAZoCWgPQwgVV5V9VzptQJSGlFKUaBVNEgFoFkdAoAzqNlyzX3V9lChoBmgJaA9DCLWLaaa7kXFAlIaUUpRoFU19AWgWR0CgDfHscABDdX2UKGgGaAloD0MIrrfNVMgwcUCUhpRSlGgVTS8BaBZHQKAN9fnfVI91fZQoaAZoCWgPQwj1KjI6ILRxQJSGlFKUaBVNawFoFkdAoA6CL61stXV9lChoBmgJaA9DCFVRvMrabklAlIaUUpRoFUvMaBZHQKAPNVCojwB1fZQoaAZoCWgPQwimSL4SyI9xQJSGlFKUaBVNRwFoFkdAoA/uq1gH/3V9lChoBmgJaA9DCPZhvVHrDXJAlIaUUpRoFU0jAWgWR0CgECxKYiPidX2UKGgGaAloD0MIZKw2/68obECUhpRSlGgVTV0BaBZHQKAQric5Ke11fZQoaAZoCWgPQwjNW3UdKjtwQJSGlFKUaBVNIAFoFkdAoBDdvfj0c3V9lChoBmgJaA9DCMwpATHJsnFAlIaUUpRoFU30AWgWR0CgERMdT5wgdX2UKGgGaAloD0MI2nIuxdWickCUhpRSlGgVTTsBaBZHQKARcjVQQ+V1fZQoaAZoCWgPQwj0pbc/FypwQJSGlFKUaBVNegFoFkdAoBGAgDA8CHV9lChoBmgJaA9DCG77HvXXP0RAlIaUUpRoFUvoaBZHQKATAay8jA11fZQoaAZoCWgPQwgxQKIJFO5tQJSGlFKUaBVNZAFoFkdAoBP2x2SuAHV9lChoBmgJaA9DCP9YiA6BEXBAlIaUUpRoFU1NAWgWR0CgFFAqd6LPdX2UKGgGaAloD0MIsfojDIOYcUCUhpRSlGgVTSUBaBZHQKAUbMwDeTF1fZQoaAZoCWgPQwgwf4XMVfBxQJSGlFKUaBVNcQFoFkdAoBT/q1PWQXV9lChoBmgJaA9DCMYzaOifiDhAlIaUUpRoFUvIaBZHQKAVNfkWAPN1fZQoaAZoCWgPQwj9TpMZb0VQQJSGlFKUaBVL0WgWR0CgFfd1uBMBdX2UKGgGaAloD0MI+YbCZ+sMcECUhpRSlGgVTT0BaBZHQKAWSuFpPAR1fZQoaAZoCWgPQwitaHOcGxpwQJSGlFKUaBVNLgFoFkdAoBaeDzyz5XV9lChoBmgJaA9DCJuNlZhn3S1AlIaUUpRoFUvsaBZHQKAWrUIcBEN1fZQoaAZoCWgPQwgYmBWKdPVxQJSGlFKUaBVNKgFoFkdAoBbBJsfq5nV9lChoBmgJaA9DCDGYv0JmIGBAlIaUUpRoFU3oA2gWR0CgFvhe5WildX2UKGgGaAloD0MI/Z/DfLndcECUhpRSlGgVTZgBaBZHQKAXabKifxt1fZQoaAZoCWgPQwjt9e6P91VrQJSGlFKUaBVNQQFoFkdAoBeHGS6lL3V9lChoBmgJaA9DCH+EYcDSHnJAlIaUUpRoFU1gAmgWR0CgF+4hEBsAdX2UKGgGaAloD0MIGFsIclBNcUCUhpRSlGgVTY0BaBZHQKAZIqGUOd51fZQoaAZoCWgPQwhYU1kUtv1yQJSGlFKUaBVNSgFoFkdAoBqshvBJqnV9lChoBmgJaA9DCMWsF0P5XnFAlIaUUpRoFU2DAWgWR0CgGwyRB/qgdX2UKGgGaAloD0MIUIpW7gXlbECUhpRSlGgVTVYBaBZHQKAbb/Nqxkd1fZQoaAZoCWgPQwiVKHtLefhxQJSGlFKUaBVNYQFoFkdAoBuPl+3H73V9lChoBmgJaA9DCFjiAWVTH29AlIaUUpRoFU0UAWgWR0CgG4/j81n/dX2UKGgGaAloD0MItRX7y65acUCUhpRSlGgVTUgBaBZHQKAbsJKJ2uB1fZQoaAZoCWgPQwi6TiMtlT9xQJSGlFKUaBVNFQFoFkdAoBwcV1wHaHV9lChoBmgJaA9DCK7yBMJOr21AlIaUUpRoFU0yAWgWR0CgHGjV6NVBdX2UKGgGaAloD0MIe8GnOTmfcUCUhpRSlGgVTXkBaBZHQKAc2UaAFxJ1fZQoaAZoCWgPQwhvK702G+tOQJSGlFKUaBVL72gWR0CgHOXdCVrzdX2UKGgGaAloD0MISL99HTjFcUCUhpRSlGgVTUQBaBZHQKAdHnNgSe11fZQoaAZoCWgPQwiuR+F61MZxQJSGlFKUaBVNVAFoFkdAoB1Y3vQWvnVlLg=="
70
+ },
71
+ "ep_success_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
74
+ },
75
+ "_n_updates": 252,
76
+ "n_steps": 1024,
77
+ "gamma": 0.999,
78
+ "gae_lambda": 0.98,
79
+ "ent_coef": 0.01,
80
+ "vf_coef": 0.5,
81
+ "max_grad_norm": 0.5,
82
+ "batch_size": 64,
83
+ "n_epochs": 4,
84
+ "clip_range": {
85
+ ":type:": "<class 'function'>",
86
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
87
+ },
88
+ "clip_range_vf": null,
89
+ "normalize_advantage": true,
90
+ "target_kl": null
91
+ }
lunar_lander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0c7468c9c64a1e1bcf9b4e82db9d56e322b247745d4bc06521912e5de218d32
3
+ size 88057
lunar_lander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c77b3a8da3abe3072dd1d6c71c68ae4a0e78a145f774c73fb03735ea2870bfe
3
+ size 43201
lunar_lander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunar_lander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (196 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 252.98482185093926, "std_reward": 15.694728028469306, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-08T19:05:06.929076"}