update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- rouge
|
7 |
+
model-index:
|
8 |
+
- name: t5-small-finetuned-xlsum-with-multi-news-10-epoch
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# t5-small-finetuned-xlsum-with-multi-news-10-epoch
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 2.2332
|
20 |
+
- Rouge1: 31.4802
|
21 |
+
- Rouge2: 9.9475
|
22 |
+
- Rougel: 24.6687
|
23 |
+
- Rougelsum: 24.7013
|
24 |
+
- Gen Len: 18.8025
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 2e-05
|
44 |
+
- train_batch_size: 16
|
45 |
+
- eval_batch_size: 16
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 10
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
55 |
+
|:-------------:|:-----:|:------:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
|
56 |
+
| 2.7314 | 1.0 | 20543 | 2.3867 | 29.3997 | 8.2875 | 22.8406 | 22.8871 | 18.8204 |
|
57 |
+
| 2.6652 | 2.0 | 41086 | 2.3323 | 30.3992 | 8.9058 | 23.6168 | 23.6626 | 18.8447 |
|
58 |
+
| 2.632 | 3.0 | 61629 | 2.3002 | 30.8662 | 9.2869 | 24.0683 | 24.11 | 18.8122 |
|
59 |
+
| 2.6221 | 4.0 | 82172 | 2.2785 | 31.143 | 9.5737 | 24.3473 | 24.381 | 18.7911 |
|
60 |
+
| 2.5925 | 5.0 | 102715 | 2.2631 | 31.2144 | 9.6904 | 24.4419 | 24.4796 | 18.8133 |
|
61 |
+
| 2.5812 | 6.0 | 123258 | 2.2507 | 31.3371 | 9.7959 | 24.5801 | 24.6166 | 18.7836 |
|
62 |
+
| 2.5853 | 7.0 | 143801 | 2.2437 | 31.3593 | 9.8156 | 24.5533 | 24.5852 | 18.8103 |
|
63 |
+
| 2.5467 | 8.0 | 164344 | 2.2377 | 31.368 | 9.8807 | 24.6226 | 24.6518 | 18.799 |
|
64 |
+
| 2.5571 | 9.0 | 184887 | 2.2337 | 31.4356 | 9.9092 | 24.6543 | 24.6891 | 18.8075 |
|
65 |
+
| 2.5563 | 10.0 | 205430 | 2.2332 | 31.4802 | 9.9475 | 24.6687 | 24.7013 | 18.8025 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.13.0
|
71 |
+
- Pytorch 1.13.1+cpu
|
72 |
+
- Datasets 2.8.0
|
73 |
+
- Tokenizers 0.10.3
|