fanzru commited on
Commit
a78c4a6
1 Parent(s): 93ff67f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - rouge
7
+ model-index:
8
+ - name: t5-small-finetuned-xlsum-with-multi-news-10-epoch
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # t5-small-finetuned-xlsum-with-multi-news-10-epoch
16
+
17
+ This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 2.2332
20
+ - Rouge1: 31.4802
21
+ - Rouge2: 9.9475
22
+ - Rougel: 24.6687
23
+ - Rougelsum: 24.7013
24
+ - Gen Len: 18.8025
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 2e-05
44
+ - train_batch_size: 16
45
+ - eval_batch_size: 16
46
+ - seed: 42
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 10
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
55
+ |:-------------:|:-----:|:------:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
56
+ | 2.7314 | 1.0 | 20543 | 2.3867 | 29.3997 | 8.2875 | 22.8406 | 22.8871 | 18.8204 |
57
+ | 2.6652 | 2.0 | 41086 | 2.3323 | 30.3992 | 8.9058 | 23.6168 | 23.6626 | 18.8447 |
58
+ | 2.632 | 3.0 | 61629 | 2.3002 | 30.8662 | 9.2869 | 24.0683 | 24.11 | 18.8122 |
59
+ | 2.6221 | 4.0 | 82172 | 2.2785 | 31.143 | 9.5737 | 24.3473 | 24.381 | 18.7911 |
60
+ | 2.5925 | 5.0 | 102715 | 2.2631 | 31.2144 | 9.6904 | 24.4419 | 24.4796 | 18.8133 |
61
+ | 2.5812 | 6.0 | 123258 | 2.2507 | 31.3371 | 9.7959 | 24.5801 | 24.6166 | 18.7836 |
62
+ | 2.5853 | 7.0 | 143801 | 2.2437 | 31.3593 | 9.8156 | 24.5533 | 24.5852 | 18.8103 |
63
+ | 2.5467 | 8.0 | 164344 | 2.2377 | 31.368 | 9.8807 | 24.6226 | 24.6518 | 18.799 |
64
+ | 2.5571 | 9.0 | 184887 | 2.2337 | 31.4356 | 9.9092 | 24.6543 | 24.6891 | 18.8075 |
65
+ | 2.5563 | 10.0 | 205430 | 2.2332 | 31.4802 | 9.9475 | 24.6687 | 24.7013 | 18.8025 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.13.0
71
+ - Pytorch 1.13.1+cpu
72
+ - Datasets 2.8.0
73
+ - Tokenizers 0.10.3