NekoMikoReimu
commited on
Commit
β’
0ed2cac
1
Parent(s):
1622815
Upload folder using huggingface_hub
Browse files
finetuned_segmentation_model_improved.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d745e069675a76fff20df3875e235b2f4b916a76b207b92ab741dd11a1685deb
|
3 |
+
size 17732680
|
generate_script.bat
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
@echo off
|
2 |
+
setlocal enabledelayedexpansion
|
3 |
+
|
4 |
+
if "%~1"=="" (
|
5 |
+
echo Usage: %0 ^<input_file^>
|
6 |
+
exit /b 1
|
7 |
+
)
|
8 |
+
|
9 |
+
set "input_file=%~1"
|
10 |
+
set "file_extension=%~x1"
|
11 |
+
set "file_name=%~n1"
|
12 |
+
set "file_dir=%~dp1"
|
13 |
+
|
14 |
+
REM Extract audio if input is a video file
|
15 |
+
if /i "%file_extension%"==".avi" (
|
16 |
+
echo Extracting audio from video...
|
17 |
+
ffmpeg -i "%input_file%" -q:a 0 "%file_dir%%file_name%.mp3"
|
18 |
+
set "audio_file=%file_dir%%file_name%.mp3"
|
19 |
+
) else (
|
20 |
+
set "audio_file=%input_file%"
|
21 |
+
)
|
22 |
+
|
23 |
+
REM Run demucs for vocal extraction
|
24 |
+
echo Running Demucs for vocal extraction...
|
25 |
+
demucs -n htdemucs_ft "%audio_file%" --two-stems vocals -o "%file_dir%vocal_extracted" --filename "{track}-{stem}.{ext}"
|
26 |
+
|
27 |
+
REM Process the extracted vocals
|
28 |
+
echo Processing extracted vocals...
|
29 |
+
ffmpeg -i "%file_dir%vocal_extracted\htdemucs_ft\%file_name%-vocals.wav" -ar 16000 -ac 1 -acodec pcm_s16le -af "aresample=resampler=soxr, lowpass=f=7500, acompressor=threshold=-12dB:ratio=2:attack=5:release=50, equalizer=f=1000:width_type=o:width=1:g=2, equalizer=f=3000:width_type=o:width=1:g=3" -b:a 128k "%file_dir%%file_name%_vocals_16k_mono_enhanced.wav"
|
30 |
+
|
31 |
+
REM Run transcription script
|
32 |
+
echo Running transcription...
|
33 |
+
python "%~dp0transcribe_japanese_with_diarization.py" "%file_dir%%file_name%_vocals_16k_mono_enhanced.wav"
|
34 |
+
|
35 |
+
REM Cleanup
|
36 |
+
echo Cleaning up temporary files...
|
37 |
+
if /i "%file_extension%"==".avi" del "%file_dir%%file_name%.mp3"
|
38 |
+
rmdir /s /q "%file_dir%vocal_extracted"
|
39 |
+
del "%file_dir%%file_name%_vocals_16k_mono_enhanced.wav"
|
40 |
+
|
41 |
+
echo Processing complete!
|
transcribe_japanese_with_diarization.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import torch
|
4 |
+
import whisper
|
5 |
+
import re
|
6 |
+
from pyannote.audio import Pipeline, Audio, Model
|
7 |
+
from pyannote.audio.pipelines import SpeakerDiarization
|
8 |
+
|
9 |
+
def should_skip_line(s: str) -> bool:
|
10 |
+
parts = s.split(':', 1)
|
11 |
+
if len(parts) > 1 and parts[1].strip() == '':
|
12 |
+
return True
|
13 |
+
|
14 |
+
phrases_to_skip = ["γθ¦θ΄γγγγ¨γγγγγΎγγ", "by H."]
|
15 |
+
for phrase in phrases_to_skip:
|
16 |
+
if phrase in s:
|
17 |
+
return True
|
18 |
+
|
19 |
+
return False
|
20 |
+
|
21 |
+
def main(audio_file):
|
22 |
+
# Get HuggingFace token from environment variable
|
23 |
+
HF_TOKEN = os.environ.get("HF_TOKEN_NOT_LOGIN")
|
24 |
+
if not HF_TOKEN:
|
25 |
+
print("Error: HF_TOKEN_NOT_LOGIN environment variable is not set.")
|
26 |
+
sys.exit(1)
|
27 |
+
|
28 |
+
# Load pyannote.audio speaker diarization
|
29 |
+
pretrained_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1", use_auth_token=HF_TOKEN)
|
30 |
+
|
31 |
+
# Generate Finetune Pipeline
|
32 |
+
finetuned_model_path = "finetuned_segmentation_model_improved.ckpt"
|
33 |
+
finetuned_model = Model.from_pretrained(finetuned_model_path)
|
34 |
+
best_segmentation_threshold = 0.6455219392347773
|
35 |
+
best_clustering_threshold = 0.6425210602903073
|
36 |
+
|
37 |
+
finetuned_pipeline = SpeakerDiarization(
|
38 |
+
segmentation=finetuned_model,
|
39 |
+
embedding=r"pyannote/wespeaker-voxceleb-resnet34-LM",
|
40 |
+
clustering=pretrained_pipeline.klustering,
|
41 |
+
)
|
42 |
+
|
43 |
+
finetuned_pipeline.instantiate({
|
44 |
+
"segmentation": {
|
45 |
+
"threshold": best_segmentation_threshold,
|
46 |
+
"min_duration_off": 0.0,
|
47 |
+
},
|
48 |
+
"clustering": {
|
49 |
+
"method": "centroid",
|
50 |
+
"min_cluster_size": 15,
|
51 |
+
"threshold": best_clustering_threshold,
|
52 |
+
},
|
53 |
+
})
|
54 |
+
finetuned_pipeline.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
55 |
+
|
56 |
+
# Apply speaker diarization
|
57 |
+
who_speaks_when = finetuned_pipeline(audio_file)
|
58 |
+
|
59 |
+
# Load OpenAI Whisper automatic speech transcription
|
60 |
+
print("Loading whisper model...")
|
61 |
+
model = whisper.load_model("large-v2", device="cuda" if torch.cuda.is_available() else "cpu")
|
62 |
+
print("Whisper model loaded.")
|
63 |
+
|
64 |
+
# Transcribe audio
|
65 |
+
print("Importing Audio!")
|
66 |
+
audio = Audio(sample_rate=16000, mono=True)
|
67 |
+
transcribed_lines = []
|
68 |
+
|
69 |
+
for segment, _, speaker in who_speaks_when.itertracks(yield_label=True):
|
70 |
+
waveform, sample_rate = audio.crop(audio_file, segment)
|
71 |
+
text = model.transcribe(waveform.squeeze().numpy(), language="Japanese")["text"]
|
72 |
+
timed_line = f"{segment.start:06.1f}s {segment.end:06.1f}s {speaker}: {text}"
|
73 |
+
print(timed_line)
|
74 |
+
transcribed_lines.append(timed_line)
|
75 |
+
|
76 |
+
# Write transcription to file
|
77 |
+
output_file = 'timed_script.txt'
|
78 |
+
with open(output_file, 'w', encoding='UTF-8') as f:
|
79 |
+
for line in transcribed_lines:
|
80 |
+
if not should_skip_line(line):
|
81 |
+
f.write(line + '\n')
|
82 |
+
print(f"Transcription completed. Output saved to {output_file}")
|
83 |
+
|
84 |
+
if __name__ == "__main__":
|
85 |
+
if len(sys.argv) != 2:
|
86 |
+
print("Usage: python rich_transcription.py <audio_file>")
|
87 |
+
sys.exit(1)
|
88 |
+
|
89 |
+
audio_file = sys.argv[1]
|
90 |
+
if not os.path.exists(audio_file):
|
91 |
+
print(f"Error: The file '{audio_file}' does not exist.")
|
92 |
+
sys.exit(1)
|
93 |
+
|
94 |
+
main(audio_file)
|