|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ PyTorch Phi model.""" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import math | 
					
						
						|  | from typing import List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | import torch.utils.checkpoint | 
					
						
						|  | from torch import nn | 
					
						
						|  | from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | 
					
						
						|  |  | 
					
						
						|  | from transformers.activations import ACT2FN | 
					
						
						|  | from transformers.cache_utils import Cache, DynamicCache | 
					
						
						|  | from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask | 
					
						
						|  | from transformers.modeling_outputs import ( | 
					
						
						|  | BaseModelOutputWithPast, | 
					
						
						|  | CausalLMOutputWithPast, | 
					
						
						|  | SequenceClassifierOutputWithPast, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.modeling_utils import PreTrainedModel | 
					
						
						|  | from transformers.utils import ( | 
					
						
						|  | is_flash_attn_2_available, | 
					
						
						|  | is_flash_attn_greater_or_equal_2_10, | 
					
						
						|  | logging, | 
					
						
						|  | ) | 
					
						
						|  | from .configuration_moondream import PhiConfig | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | if is_flash_attn_2_available(): | 
					
						
						|  | from flash_attn import flash_attn_func, flash_attn_varlen_func | 
					
						
						|  | from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input | 
					
						
						|  | except ImportError: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pass | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _get_unpad_data(attention_mask): | 
					
						
						|  | seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | 
					
						
						|  | indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | 
					
						
						|  | max_seqlen_in_batch = seqlens_in_batch.max().item() | 
					
						
						|  | cu_seqlens = F.pad( | 
					
						
						|  | torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0) | 
					
						
						|  | ) | 
					
						
						|  | return ( | 
					
						
						|  | indices, | 
					
						
						|  | cu_seqlens, | 
					
						
						|  | max_seqlen_in_batch, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PhiRotaryEmbedding(nn.Module): | 
					
						
						|  | def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.dim = dim | 
					
						
						|  | self.max_position_embeddings = max_position_embeddings | 
					
						
						|  | self.base = base | 
					
						
						|  | inv_freq = 1.0 / ( | 
					
						
						|  | self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim) | 
					
						
						|  | ) | 
					
						
						|  | self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self._set_cos_sin_cache( | 
					
						
						|  | seq_len=max_position_embeddings, | 
					
						
						|  | device=self.inv_freq.device, | 
					
						
						|  | dtype=torch.get_default_dtype(), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _set_cos_sin_cache(self, seq_len, device, dtype): | 
					
						
						|  | self.max_seq_len_cached = seq_len | 
					
						
						|  | t = torch.arange( | 
					
						
						|  | self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | freqs = torch.outer(t, self.inv_freq) | 
					
						
						|  |  | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | 
					
						
						|  | self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, seq_len=None): | 
					
						
						|  |  | 
					
						
						|  | if seq_len > self.max_seq_len_cached: | 
					
						
						|  | self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) | 
					
						
						|  |  | 
					
						
						|  | return ( | 
					
						
						|  | self.cos_cached[:seq_len].to(dtype=x.dtype), | 
					
						
						|  | self.sin_cached[:seq_len].to(dtype=x.dtype), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PhiLinearScalingRotaryEmbedding(PhiRotaryEmbedding): | 
					
						
						|  | """PhiRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | dim, | 
					
						
						|  | max_position_embeddings=2048, | 
					
						
						|  | base=10000, | 
					
						
						|  | device=None, | 
					
						
						|  | scaling_factor=1.0, | 
					
						
						|  | ): | 
					
						
						|  | self.scaling_factor = scaling_factor | 
					
						
						|  | super().__init__(dim, max_position_embeddings, base, device) | 
					
						
						|  |  | 
					
						
						|  | def _set_cos_sin_cache(self, seq_len, device, dtype): | 
					
						
						|  | self.max_seq_len_cached = seq_len | 
					
						
						|  | t = torch.arange( | 
					
						
						|  | self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype | 
					
						
						|  | ) | 
					
						
						|  | t = t / self.scaling_factor | 
					
						
						|  |  | 
					
						
						|  | freqs = torch.outer(t, self.inv_freq) | 
					
						
						|  |  | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | 
					
						
						|  | self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PhiDynamicNTKScalingRotaryEmbedding(PhiRotaryEmbedding): | 
					
						
						|  | """PhiRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | dim, | 
					
						
						|  | max_position_embeddings=2048, | 
					
						
						|  | base=10000, | 
					
						
						|  | device=None, | 
					
						
						|  | scaling_factor=1.0, | 
					
						
						|  | ): | 
					
						
						|  | self.scaling_factor = scaling_factor | 
					
						
						|  | super().__init__(dim, max_position_embeddings, base, device) | 
					
						
						|  |  | 
					
						
						|  | def _set_cos_sin_cache(self, seq_len, device, dtype): | 
					
						
						|  | self.max_seq_len_cached = seq_len | 
					
						
						|  |  | 
					
						
						|  | if seq_len > self.max_position_embeddings: | 
					
						
						|  | base = self.base * ( | 
					
						
						|  | (self.scaling_factor * seq_len / self.max_position_embeddings) | 
					
						
						|  | - (self.scaling_factor - 1) | 
					
						
						|  | ) ** (self.dim / (self.dim - 2)) | 
					
						
						|  | inv_freq = 1.0 / ( | 
					
						
						|  | base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim) | 
					
						
						|  | ) | 
					
						
						|  | self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
						
						|  |  | 
					
						
						|  | t = torch.arange( | 
					
						
						|  | self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | freqs = torch.outer(t, self.inv_freq) | 
					
						
						|  |  | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | 
					
						
						|  | self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rotate_half(x): | 
					
						
						|  | """Rotates half the hidden dims of the input.""" | 
					
						
						|  | x1 = x[..., : x.shape[-1] // 2] | 
					
						
						|  | x2 = x[..., x.shape[-1] // 2 :] | 
					
						
						|  | return torch.cat((-x2, x1), dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): | 
					
						
						|  | """Applies Rotary Position Embedding to the query and key tensors. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | q (`torch.Tensor`): The query tensor. | 
					
						
						|  | k (`torch.Tensor`): The key tensor. | 
					
						
						|  | cos (`torch.Tensor`): The cosine part of the rotary embedding. | 
					
						
						|  | sin (`torch.Tensor`): The sine part of the rotary embedding. | 
					
						
						|  | position_ids (`torch.Tensor`): | 
					
						
						|  | The position indices of the tokens corresponding to the query and key tensors. For example, this can be | 
					
						
						|  | used to pass offsetted position ids when working with a KV-cache. | 
					
						
						|  | unsqueeze_dim (`int`, *optional*, defaults to 1): | 
					
						
						|  | The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | 
					
						
						|  | sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | 
					
						
						|  | that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | 
					
						
						|  | k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | 
					
						
						|  | cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | 
					
						
						|  | the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | 
					
						
						|  | Returns: | 
					
						
						|  | `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | 
					
						
						|  | """ | 
					
						
						|  | cos = cos[position_ids].unsqueeze(unsqueeze_dim) | 
					
						
						|  | sin = sin[position_ids].unsqueeze(unsqueeze_dim) | 
					
						
						|  | q_embed = (q * cos) + (rotate_half(q) * sin) | 
					
						
						|  | k_embed = (k * cos) + (rotate_half(k) * sin) | 
					
						
						|  | return q_embed, k_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PhiMLP(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.activation_fn = ACT2FN[config.hidden_act] | 
					
						
						|  | self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) | 
					
						
						|  | self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | 
					
						
						|  | hidden_states = self.fc1(hidden_states) | 
					
						
						|  | hidden_states = self.activation_fn(hidden_states) | 
					
						
						|  | hidden_states = self.fc2(hidden_states) | 
					
						
						|  | return hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | 
					
						
						|  | num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | 
					
						
						|  | """ | 
					
						
						|  | batch, num_key_value_heads, slen, head_dim = hidden_states.shape | 
					
						
						|  | if n_rep == 1: | 
					
						
						|  | return hidden_states | 
					
						
						|  | hidden_states = hidden_states[:, :, None, :, :].expand( | 
					
						
						|  | batch, num_key_value_heads, n_rep, slen, head_dim | 
					
						
						|  | ) | 
					
						
						|  | return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PhiAttention(nn.Module): | 
					
						
						|  | """Multi-headed attention from 'Attention Is All You Need' paper""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: PhiConfig, layer_idx: Optional[int] = None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.layer_idx = layer_idx | 
					
						
						|  | if layer_idx is None: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " | 
					
						
						|  | "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " | 
					
						
						|  | "when creating this class." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.attention_dropout = config.attention_dropout | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.num_heads = config.num_attention_heads | 
					
						
						|  | self.head_dim = self.hidden_size // self.num_heads | 
					
						
						|  | self.num_key_value_heads = config.num_key_value_heads | 
					
						
						|  | self.num_key_value_groups = self.num_heads // self.num_key_value_heads | 
					
						
						|  | self.max_position_embeddings = config.max_position_embeddings | 
					
						
						|  | self.rope_theta = config.rope_theta | 
					
						
						|  | self.partial_rotary_factor = config.partial_rotary_factor | 
					
						
						|  | self.is_causal = True | 
					
						
						|  |  | 
					
						
						|  | if (self.head_dim * self.num_heads) != self.hidden_size: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" | 
					
						
						|  | f" and `num_heads`: {self.num_heads})." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.Wqkv = nn.Linear( | 
					
						
						|  | self.hidden_size, 3 * self.num_heads * self.head_dim, bias=True | 
					
						
						|  | ) | 
					
						
						|  | self.out_proj = nn.Linear( | 
					
						
						|  | self.num_heads * self.head_dim, self.hidden_size, bias=True | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.qk_layernorm = config.qk_layernorm | 
					
						
						|  | if self.qk_layernorm: | 
					
						
						|  | self.q_layernorm = nn.LayerNorm( | 
					
						
						|  | config.hidden_size // self.num_heads, | 
					
						
						|  | eps=config.layer_norm_eps, | 
					
						
						|  | elementwise_affine=True, | 
					
						
						|  | ) | 
					
						
						|  | self.k_layernorm = nn.LayerNorm( | 
					
						
						|  | config.hidden_size // self.num_heads, | 
					
						
						|  | eps=config.layer_norm_eps, | 
					
						
						|  | elementwise_affine=True, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self._init_rope() | 
					
						
						|  |  | 
					
						
						|  | def _init_rope(self): | 
					
						
						|  | if self.config.rope_scaling is None: | 
					
						
						|  | self.rotary_emb = PhiRotaryEmbedding( | 
					
						
						|  | int(self.partial_rotary_factor * self.head_dim), | 
					
						
						|  | max_position_embeddings=self.max_position_embeddings, | 
					
						
						|  | base=self.rope_theta, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | scaling_type = self.config.rope_scaling["type"] | 
					
						
						|  | scaling_factor = self.config.rope_scaling["factor"] | 
					
						
						|  | if scaling_type == "linear": | 
					
						
						|  | self.rotary_emb = PhiLinearScalingRotaryEmbedding( | 
					
						
						|  | int(self.partial_rotary_factor * self.head_dim), | 
					
						
						|  | max_position_embeddings=self.max_position_embeddings, | 
					
						
						|  | scaling_factor=scaling_factor, | 
					
						
						|  | base=self.rope_theta, | 
					
						
						|  | ) | 
					
						
						|  | elif scaling_type == "dynamic": | 
					
						
						|  | self.rotary_emb = PhiDynamicNTKScalingRotaryEmbedding( | 
					
						
						|  | int(self.partial_rotary_factor * self.head_dim), | 
					
						
						|  | max_position_embeddings=self.max_position_embeddings, | 
					
						
						|  | scaling_factor=scaling_factor, | 
					
						
						|  | base=self.rope_theta, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unknown RoPE scaling type {scaling_type}") | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | query_states, key_states, value_states = self.Wqkv(hidden_states).chunk( | 
					
						
						|  | 3, dim=-1 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self.qk_layernorm: | 
					
						
						|  | query_states = self.q_layernorm(query_states) | 
					
						
						|  | key_states = self.k_layernorm(key_states) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view( | 
					
						
						|  | bsz, q_len, self.num_heads, self.head_dim | 
					
						
						|  | ).transpose(1, 2) | 
					
						
						|  | key_states = key_states.view( | 
					
						
						|  | bsz, q_len, self.num_key_value_heads, self.head_dim | 
					
						
						|  | ).transpose(1, 2) | 
					
						
						|  | value_states = value_states.view( | 
					
						
						|  | bsz, q_len, self.num_key_value_heads, self.head_dim | 
					
						
						|  | ).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | kv_seq_len = key_states.shape[-2] | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | if self.layer_idx is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | 
					
						
						|  | "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | 
					
						
						|  | "with a layer index." | 
					
						
						|  | ) | 
					
						
						|  | kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_rot, query_pass = ( | 
					
						
						|  | query_states[..., : self.rotary_emb.dim], | 
					
						
						|  | query_states[..., self.rotary_emb.dim :], | 
					
						
						|  | ) | 
					
						
						|  | key_rot, key_pass = ( | 
					
						
						|  | key_states[..., : self.rotary_emb.dim], | 
					
						
						|  | key_states[..., self.rotary_emb.dim :], | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | query_rot, key_rot = apply_rotary_pos_emb( | 
					
						
						|  | query_rot, key_rot, cos, sin, position_ids | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_states = torch.cat((query_rot, query_pass), dim=-1) | 
					
						
						|  | key_states = torch.cat((key_rot, key_pass), dim=-1) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | cache_kwargs = { | 
					
						
						|  | "sin": sin, | 
					
						
						|  | "cos": cos, | 
					
						
						|  | "partial_rotation_size": self.rotary_emb.dim, | 
					
						
						|  | } | 
					
						
						|  | key_states, value_states = past_key_value.update( | 
					
						
						|  | key_states, value_states, self.layer_idx, cache_kwargs | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | key_states = repeat_kv(key_states, self.num_key_value_groups) | 
					
						
						|  | value_states = repeat_kv(value_states, self.num_key_value_groups) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_weights = torch.matmul( | 
					
						
						|  | query_states.to(torch.float32), key_states.to(torch.float32).transpose(2, 3) | 
					
						
						|  | ) / math.sqrt(self.head_dim) | 
					
						
						|  |  | 
					
						
						|  | if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" | 
					
						
						|  | f" {attn_weights.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | 
					
						
						|  | ) | 
					
						
						|  | attn_weights = attn_weights + attention_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_weights = nn.functional.softmax( | 
					
						
						|  | attn_weights, dim=-1, dtype=torch.float32 | 
					
						
						|  | ).to(value_states.dtype) | 
					
						
						|  | attn_weights = nn.functional.dropout( | 
					
						
						|  | attn_weights, p=self.attention_dropout, training=self.training | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = torch.matmul(attn_weights, value_states) | 
					
						
						|  |  | 
					
						
						|  | if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" | 
					
						
						|  | f" {attn_output.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.transpose(1, 2).contiguous() | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.out_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | if not output_attentions: | 
					
						
						|  | attn_weights = None | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PhiFlashAttention2(PhiAttention): | 
					
						
						|  | """ | 
					
						
						|  | Phi flash attention module. This module inherits from `PhiAttention` as the weights of the module stays | 
					
						
						|  | untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | 
					
						
						|  | flash attention and deal with padding tokens in case the input contains any of them. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, *args, **kwargs): | 
					
						
						|  | super().__init__(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.LongTensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | output_attentions = False | 
					
						
						|  |  | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | query_states, key_states, value_states = self.Wqkv(hidden_states).chunk( | 
					
						
						|  | 3, dim=-1 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self.qk_layernorm: | 
					
						
						|  | query_states = self.q_layernorm(query_states) | 
					
						
						|  | key_states = self.k_layernorm(key_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.view( | 
					
						
						|  | bsz, q_len, self.num_heads, self.head_dim | 
					
						
						|  | ).transpose(1, 2) | 
					
						
						|  | key_states = key_states.view( | 
					
						
						|  | bsz, q_len, self.num_key_value_heads, self.head_dim | 
					
						
						|  | ).transpose(1, 2) | 
					
						
						|  | value_states = value_states.view( | 
					
						
						|  | bsz, q_len, self.num_key_value_heads, self.head_dim | 
					
						
						|  | ).transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | kv_seq_len = key_states.shape[-2] | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_rot, query_pass = ( | 
					
						
						|  | query_states[..., : self.rotary_emb.dim], | 
					
						
						|  | query_states[..., self.rotary_emb.dim :], | 
					
						
						|  | ) | 
					
						
						|  | key_rot, key_pass = ( | 
					
						
						|  | key_states[..., : self.rotary_emb.dim], | 
					
						
						|  | key_states[..., self.rotary_emb.dim :], | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | query_rot, key_rot = apply_rotary_pos_emb( | 
					
						
						|  | query_rot, key_rot, cos, sin, position_ids | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_states = torch.cat((query_rot, query_pass), dim=-1) | 
					
						
						|  | key_states = torch.cat((key_rot, key_pass), dim=-1) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | cache_kwargs = { | 
					
						
						|  | "sin": sin, | 
					
						
						|  | "cos": cos, | 
					
						
						|  | "partial_rotation_size": self.rotary_emb.dim, | 
					
						
						|  | } | 
					
						
						|  | key_states, value_states = past_key_value.update( | 
					
						
						|  | key_states, value_states, self.layer_idx, cache_kwargs | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.transpose(1, 2) | 
					
						
						|  | key_states = key_states.transpose(1, 2) | 
					
						
						|  | value_states = value_states.transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | attn_dropout = self.attention_dropout if self.training else 0.0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if query_states.dtype == torch.float32: | 
					
						
						|  | if torch.is_autocast_enabled(): | 
					
						
						|  | target_dtype = torch.get_autocast_gpu_dtype() | 
					
						
						|  |  | 
					
						
						|  | elif hasattr(self.config, "_pre_quantization_dtype"): | 
					
						
						|  | target_dtype = self.config._pre_quantization_dtype | 
					
						
						|  | else: | 
					
						
						|  | target_dtype = self.q_proj.weight.dtype | 
					
						
						|  |  | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | f"The input hidden states seems to be silently casted in float32, this might be related to" | 
					
						
						|  | f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | 
					
						
						|  | f" {target_dtype}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.to(target_dtype) | 
					
						
						|  | key_states = key_states.to(target_dtype) | 
					
						
						|  | value_states = value_states.to(target_dtype) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self._flash_attention_forward( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | q_len, | 
					
						
						|  | dropout=attn_dropout, | 
					
						
						|  | softmax_scale=None, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() | 
					
						
						|  | attn_output = self.out_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | if not output_attentions: | 
					
						
						|  | attn_weights = None | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _flash_attention_forward( | 
					
						
						|  | self, | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | query_length, | 
					
						
						|  | dropout=0.0, | 
					
						
						|  | softmax_scale=None, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | 
					
						
						|  | first unpad the input, then computes the attention scores and pad the final attention scores. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | query_states (`torch.Tensor`): | 
					
						
						|  | Input query states to be passed to Flash Attention API | 
					
						
						|  | key_states (`torch.Tensor`): | 
					
						
						|  | Input key states to be passed to Flash Attention API | 
					
						
						|  | value_states (`torch.Tensor`): | 
					
						
						|  | Input value states to be passed to Flash Attention API | 
					
						
						|  | attention_mask (`torch.Tensor`): | 
					
						
						|  | The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | 
					
						
						|  | position of padding tokens and 1 for the position of non-padding tokens. | 
					
						
						|  | dropout (`int`, *optional*): | 
					
						
						|  | Attention dropout | 
					
						
						|  | softmax_scale (`float`, *optional*): | 
					
						
						|  | The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | 
					
						
						|  | """ | 
					
						
						|  | if not self._flash_attn_uses_top_left_mask: | 
					
						
						|  | causal = self.is_causal | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | causal = self.is_causal and query_length != 1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | batch_size = query_states.shape[0] | 
					
						
						|  | ( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | indices_q, | 
					
						
						|  | cu_seq_lens, | 
					
						
						|  | max_seq_lens, | 
					
						
						|  | ) = self._upad_input( | 
					
						
						|  | query_states, key_states, value_states, attention_mask, query_length | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | cu_seqlens_q, cu_seqlens_k = cu_seq_lens | 
					
						
						|  | max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | 
					
						
						|  |  | 
					
						
						|  | attn_output_unpad = flash_attn_varlen_func( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | cu_seqlens_q=cu_seqlens_q, | 
					
						
						|  | cu_seqlens_k=cu_seqlens_k, | 
					
						
						|  | max_seqlen_q=max_seqlen_in_batch_q, | 
					
						
						|  | max_seqlen_k=max_seqlen_in_batch_k, | 
					
						
						|  | dropout_p=dropout, | 
					
						
						|  | softmax_scale=softmax_scale, | 
					
						
						|  | causal=causal, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = pad_input( | 
					
						
						|  | attn_output_unpad, indices_q, batch_size, query_length | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | attn_output = flash_attn_func( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | dropout, | 
					
						
						|  | softmax_scale=softmax_scale, | 
					
						
						|  | causal=causal, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return attn_output | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _upad_input( | 
					
						
						|  | self, query_layer, key_layer, value_layer, attention_mask, query_length | 
					
						
						|  | ): | 
					
						
						|  | indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | 
					
						
						|  | batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | 
					
						
						|  |  | 
					
						
						|  | key_layer = index_first_axis( | 
					
						
						|  | key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), | 
					
						
						|  | indices_k, | 
					
						
						|  | ) | 
					
						
						|  | value_layer = index_first_axis( | 
					
						
						|  | value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), | 
					
						
						|  | indices_k, | 
					
						
						|  | ) | 
					
						
						|  | if query_length == kv_seq_len: | 
					
						
						|  | query_layer = index_first_axis( | 
					
						
						|  | query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), | 
					
						
						|  | indices_k, | 
					
						
						|  | ) | 
					
						
						|  | cu_seqlens_q = cu_seqlens_k | 
					
						
						|  | max_seqlen_in_batch_q = max_seqlen_in_batch_k | 
					
						
						|  | indices_q = indices_k | 
					
						
						|  | elif query_length == 1: | 
					
						
						|  | max_seqlen_in_batch_q = 1 | 
					
						
						|  | cu_seqlens_q = torch.arange( | 
					
						
						|  | batch_size + 1, dtype=torch.int32, device=query_layer.device | 
					
						
						|  | ) | 
					
						
						|  | indices_q = cu_seqlens_q[:-1] | 
					
						
						|  | query_layer = query_layer.squeeze(1) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | attention_mask = attention_mask[:, -query_length:] | 
					
						
						|  | query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( | 
					
						
						|  | query_layer, attention_mask | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return ( | 
					
						
						|  | query_layer, | 
					
						
						|  | key_layer, | 
					
						
						|  | value_layer, | 
					
						
						|  | indices_q, | 
					
						
						|  | (cu_seqlens_q, cu_seqlens_k), | 
					
						
						|  | (max_seqlen_in_batch_q, max_seqlen_in_batch_k), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | PHI_ATTENTION_CLASSES = { | 
					
						
						|  | "eager": PhiAttention, | 
					
						
						|  | "flash_attention_2": PhiFlashAttention2, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PhiDecoderLayer(nn.Module): | 
					
						
						|  | def __init__(self, config: PhiConfig, layer_idx: int): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.mixer = PHI_ATTENTION_CLASSES[config._attn_implementation]( | 
					
						
						|  | config, layer_idx=layer_idx | 
					
						
						|  | ) | 
					
						
						|  | self.mlp = PhiMLP(config) | 
					
						
						|  | self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | 
					
						
						|  | self.resid_dropout = nn.Dropout(config.resid_pdrop) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | use_cache: Optional[bool] = False, | 
					
						
						|  | past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
						
						|  | ) -> Tuple[ | 
					
						
						|  | torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] | 
					
						
						|  | ]: | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | hidden_states (`torch.FloatTensor`): | 
					
						
						|  | input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
						
						|  | attention_mask (`torch.FloatTensor`, *optional*): attention mask of size | 
					
						
						|  | `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. | 
					
						
						|  | position_ids (`torch.LongTensor` of shape `({0})`, *optional*): | 
					
						
						|  | Indices of positions of each input sequence tokens in the position embeddings. Selected in the range | 
					
						
						|  | `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
						
						|  | returned tensors for more detail. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | 
					
						
						|  | (see `past_key_values`). | 
					
						
						|  | past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.ln(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_outputs, self_attn_weights, present_key_value = self.mixer( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | ) | 
					
						
						|  | attn_outputs = self.resid_dropout(attn_outputs) | 
					
						
						|  |  | 
					
						
						|  | feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states)) | 
					
						
						|  | hidden_states = attn_outputs + feed_forward_hidden_states + residual | 
					
						
						|  | outputs = (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | outputs += (self_attn_weights,) | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | outputs += (present_key_value,) | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PhiPreTrainedModel(PreTrainedModel): | 
					
						
						|  | config_class = PhiConfig | 
					
						
						|  | base_model_prefix = "model" | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  | _no_split_modules = ["PhiDecoderLayer"] | 
					
						
						|  | _skip_keys_device_placement = "past_key_values" | 
					
						
						|  | _supports_flash_attn_2 = True | 
					
						
						|  | _supports_cache_class = True | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module): | 
					
						
						|  | std = self.config.initializer_range | 
					
						
						|  | if isinstance(module, nn.Linear): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.bias is not None: | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  | elif isinstance(module, nn.Embedding): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.padding_idx is not None: | 
					
						
						|  | module.weight.data[module.padding_idx].zero_() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Embedding(nn.Module): | 
					
						
						|  | def __init__(self, config: PhiConfig): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.wte = nn.Embedding( | 
					
						
						|  | config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor: | 
					
						
						|  | return self.wte(input_ids) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PhiModel(PhiPreTrainedModel): | 
					
						
						|  | """ | 
					
						
						|  | Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`PhiDecoderLayer`] | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | config: PhiConfig | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: PhiConfig): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.padding_idx = config.pad_token_id | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  |  | 
					
						
						|  | self.embd = Embedding(config) | 
					
						
						|  | self.embed_dropout = nn.Dropout(config.embd_pdrop) | 
					
						
						|  | self.h = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | PhiDecoderLayer(config, layer_idx) | 
					
						
						|  | for layer_idx in range(config.num_hidden_layers) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.embd.wte | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.embd.wte = value | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, BaseModelOutputWithPast]: | 
					
						
						|  | output_attentions = ( | 
					
						
						|  | output_attentions | 
					
						
						|  | if output_attentions is not None | 
					
						
						|  | else self.config.output_attentions | 
					
						
						|  | ) | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states | 
					
						
						|  | if output_hidden_states is not None | 
					
						
						|  | else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
						
						|  |  | 
					
						
						|  | return_dict = ( | 
					
						
						|  | return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None and inputs_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "You cannot specify both input_ids and inputs_embeds at the same time" | 
					
						
						|  | ) | 
					
						
						|  | elif input_ids is not None: | 
					
						
						|  | batch_size, seq_length = input_ids.shape[:2] | 
					
						
						|  | elif inputs_embeds is not None: | 
					
						
						|  | batch_size, seq_length = inputs_embeds.shape[:2] | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError("You have to specify either input_ids or inputs_embeds") | 
					
						
						|  |  | 
					
						
						|  | past_key_values_length = 0 | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | if use_cache: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | 
					
						
						|  | ) | 
					
						
						|  | use_cache = False | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | use_legacy_cache = not isinstance(past_key_values, Cache) | 
					
						
						|  | if use_legacy_cache: | 
					
						
						|  | past_key_values = DynamicCache.from_legacy_cache(past_key_values) | 
					
						
						|  | past_key_values_length = past_key_values.get_usable_length(seq_length) | 
					
						
						|  |  | 
					
						
						|  | if position_ids is None: | 
					
						
						|  | device = input_ids.device if input_ids is not None else inputs_embeds.device | 
					
						
						|  | position_ids = torch.arange( | 
					
						
						|  | past_key_values_length, | 
					
						
						|  | seq_length + past_key_values_length, | 
					
						
						|  | dtype=torch.long, | 
					
						
						|  | device=device, | 
					
						
						|  | ) | 
					
						
						|  | position_ids = position_ids.unsqueeze(0) | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | inputs_embeds = self.embd(input_ids) | 
					
						
						|  |  | 
					
						
						|  | inputs_embeds = self.embed_dropout(inputs_embeds) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self._use_flash_attention_2: | 
					
						
						|  |  | 
					
						
						|  | attention_mask = ( | 
					
						
						|  | attention_mask | 
					
						
						|  | if (attention_mask is not None and 0 in attention_mask) | 
					
						
						|  | else None | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | attention_mask = _prepare_4d_causal_attention_mask( | 
					
						
						|  | attention_mask, | 
					
						
						|  | (batch_size, seq_length), | 
					
						
						|  | inputs_embeds, | 
					
						
						|  | past_key_values_length, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = inputs_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_hidden_states = () if output_hidden_states else None | 
					
						
						|  | all_self_attns = () if output_attentions else None | 
					
						
						|  | next_decoder_cache = None | 
					
						
						|  |  | 
					
						
						|  | for decoder_layer in self.h: | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if self.gradient_checkpointing and self.training: | 
					
						
						|  | layer_outputs = self._gradient_checkpointing_func( | 
					
						
						|  | decoder_layer.__call__, | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | position_ids, | 
					
						
						|  | past_key_values, | 
					
						
						|  | output_attentions, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | layer_outputs = decoder_layer( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_values, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = layer_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | next_decoder_cache = layer_outputs[2 if output_attentions else 1] | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | all_self_attns += (layer_outputs[1],) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | next_cache = None | 
					
						
						|  | if use_cache: | 
					
						
						|  | next_cache = ( | 
					
						
						|  | next_decoder_cache.to_legacy_cache() | 
					
						
						|  | if use_legacy_cache | 
					
						
						|  | else next_decoder_cache | 
					
						
						|  | ) | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return tuple( | 
					
						
						|  | v | 
					
						
						|  | for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] | 
					
						
						|  | if v is not None | 
					
						
						|  | ) | 
					
						
						|  | return BaseModelOutputWithPast( | 
					
						
						|  | last_hidden_state=hidden_states, | 
					
						
						|  | past_key_values=next_cache, | 
					
						
						|  | hidden_states=all_hidden_states, | 
					
						
						|  | attentions=all_self_attns, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class CausalLMHead(nn.Module): | 
					
						
						|  | """Causal Language Modeling head. Simplified version.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | 
					
						
						|  | self.linear = nn.Linear(config.hidden_size, config.vocab_size) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | return self.linear(self.ln(hidden_states)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class PhiForCausalLM(PhiPreTrainedModel): | 
					
						
						|  | _tied_weights_keys = ["lm_head.linear.weight"] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.transformer = PhiModel(config) | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  | self.lm_head = CausalLMHead(config) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.transformer.embd.wte | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.model.embd.wte = value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_output_embeddings(self): | 
					
						
						|  | return self.lm_head.linear | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def set_output_embeddings(self, new_embeddings): | 
					
						
						|  | self.lm_head.linear = new_embeddings | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def set_decoder(self, decoder): | 
					
						
						|  | self.model = decoder | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_decoder(self): | 
					
						
						|  | return self.model | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, CausalLMOutputWithPast]: | 
					
						
						|  | r""" | 
					
						
						|  | Args: | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | 
					
						
						|  | config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | 
					
						
						|  | (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | >>> from transformers import AutoTokenizer, PhiForCausalLM | 
					
						
						|  |  | 
					
						
						|  | >>> model = PhiForCausalLM.from_pretrained("microsoft/phi-1") | 
					
						
						|  | >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-1") | 
					
						
						|  |  | 
					
						
						|  | >>> prompt = "This is an example script ." | 
					
						
						|  | >>> inputs = tokenizer(prompt, return_tensors="pt") | 
					
						
						|  |  | 
					
						
						|  | >>> # Generate | 
					
						
						|  | >>> generate_ids = model.generate(inputs.input_ids, max_length=30) | 
					
						
						|  | >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | 
					
						
						|  | 'This is an example script .\n\n\n\nfrom typing import List\n\ndef find_most_common_letter(words: List[str' | 
					
						
						|  | ```""" | 
					
						
						|  |  | 
					
						
						|  | output_attentions = ( | 
					
						
						|  | output_attentions | 
					
						
						|  | if output_attentions is not None | 
					
						
						|  | else self.config.output_attentions | 
					
						
						|  | ) | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states | 
					
						
						|  | if output_hidden_states is not None | 
					
						
						|  | else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = ( | 
					
						
						|  | return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | outputs = self.transformer( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = outputs[0] | 
					
						
						|  | logits = self.lm_head(hidden_states) | 
					
						
						|  | logits = logits.float() | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  |  | 
					
						
						|  | shift_logits = logits[..., :-1, :].contiguous() | 
					
						
						|  | shift_labels = labels[..., 1:].contiguous() | 
					
						
						|  |  | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | shift_logits = shift_logits.view(-1, self.config.vocab_size) | 
					
						
						|  | shift_labels = shift_labels.view(-1) | 
					
						
						|  |  | 
					
						
						|  | shift_labels = shift_labels.to(shift_logits.device) | 
					
						
						|  | loss = loss_fct(shift_logits, shift_labels) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + outputs[1:] | 
					
						
						|  | return (loss,) + output if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return CausalLMOutputWithPast( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | past_key_values=outputs.past_key_values, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def prepare_inputs_for_generation( | 
					
						
						|  | self, | 
					
						
						|  | input_ids, | 
					
						
						|  | past_key_values=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | if past_key_values is not None: | 
					
						
						|  | if isinstance(past_key_values, Cache): | 
					
						
						|  | cache_length = past_key_values.get_seq_length() | 
					
						
						|  | past_length = past_key_values.seen_tokens | 
					
						
						|  | max_cache_length = past_key_values.get_max_length() | 
					
						
						|  | else: | 
					
						
						|  | cache_length = past_length = past_key_values[0][0].shape[2] | 
					
						
						|  | max_cache_length = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | attention_mask is not None | 
					
						
						|  | and attention_mask.shape[1] > input_ids.shape[1] | 
					
						
						|  | ): | 
					
						
						|  | input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | elif past_length < input_ids.shape[1]: | 
					
						
						|  | input_ids = input_ids[:, past_length:] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | max_cache_length is not None | 
					
						
						|  | and attention_mask is not None | 
					
						
						|  | and cache_length + input_ids.shape[1] > max_cache_length | 
					
						
						|  | ): | 
					
						
						|  | attention_mask = attention_mask[:, -max_cache_length:] | 
					
						
						|  |  | 
					
						
						|  | position_ids = kwargs.get("position_ids", None) | 
					
						
						|  | if attention_mask is not None and position_ids is None: | 
					
						
						|  |  | 
					
						
						|  | position_ids = attention_mask.long().cumsum(-1) - 1 | 
					
						
						|  | position_ids.masked_fill_(attention_mask == 0, 1) | 
					
						
						|  | if past_key_values: | 
					
						
						|  | position_ids = position_ids[:, -input_ids.shape[1] :] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is not None and past_key_values is None: | 
					
						
						|  | model_inputs = {"inputs_embeds": inputs_embeds} | 
					
						
						|  | else: | 
					
						
						|  | model_inputs = {"input_ids": input_ids} | 
					
						
						|  |  | 
					
						
						|  | model_inputs.update( | 
					
						
						|  | { | 
					
						
						|  | "position_ids": position_ids, | 
					
						
						|  | "past_key_values": past_key_values, | 
					
						
						|  | "use_cache": kwargs.get("use_cache"), | 
					
						
						|  | "attention_mask": attention_mask, | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | return model_inputs | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  |  | 
					
						
						|  | def _reorder_cache(past_key_values, beam_idx): | 
					
						
						|  | reordered_past = () | 
					
						
						|  | for layer_past in past_key_values: | 
					
						
						|  | reordered_past += ( | 
					
						
						|  | tuple( | 
					
						
						|  | past_state.index_select(0, beam_idx.to(past_state.device)) | 
					
						
						|  | for past_state in layer_past | 
					
						
						|  | ), | 
					
						
						|  | ) | 
					
						
						|  | return reordered_past | 
					
						
						|  |  |