| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						""" Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition""" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import functools | 
					
					
						
						| 
							 | 
						import json | 
					
					
						
						| 
							 | 
						import logging | 
					
					
						
						| 
							 | 
						import os | 
					
					
						
						| 
							 | 
						import re | 
					
					
						
						| 
							 | 
						import sys | 
					
					
						
						| 
							 | 
						import bitsandbytes as bnb | 
					
					
						
						| 
							 | 
						from dataclasses import dataclass, field | 
					
					
						
						| 
							 | 
						from typing import Dict, List, Optional, Union | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import datasets | 
					
					
						
						| 
							 | 
						import numpy as np | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						from datasets import DatasetDict, load_dataset, load_metric | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						import transformers | 
					
					
						
						| 
							 | 
						from transformers import ( | 
					
					
						
						| 
							 | 
						    AutoConfig, | 
					
					
						
						| 
							 | 
						    AutoFeatureExtractor, | 
					
					
						
						| 
							 | 
						    AutoModelForCTC, | 
					
					
						
						| 
							 | 
						    AutoTokenizer, | 
					
					
						
						| 
							 | 
						    HfArgumentParser, | 
					
					
						
						| 
							 | 
						    Trainer, | 
					
					
						
						| 
							 | 
						    TrainingArguments, | 
					
					
						
						| 
							 | 
						    Wav2Vec2Processor, | 
					
					
						
						| 
							 | 
						    set_seed, | 
					
					
						
						| 
							 | 
						) | 
					
					
						
						| 
							 | 
						from transformers.trainer_utils import get_last_checkpoint, is_main_process | 
					
					
						
						| 
							 | 
						from transformers.utils import check_min_version | 
					
					
						
						| 
							 | 
						from transformers.utils.versions import require_version | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						check_min_version("4.13.0.dev0") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						logger = logging.getLogger(__name__) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def list_field(default=None, metadata=None): | 
					
					
						
						| 
							 | 
						    return field(default_factory=lambda: default, metadata=metadata) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@dataclass | 
					
					
						
						| 
							 | 
						class ModelArguments: | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    model_name_or_path: str = field( | 
					
					
						
						| 
							 | 
						        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    cache_dir: Optional[str] = field( | 
					
					
						
						| 
							 | 
						        default=None, | 
					
					
						
						| 
							 | 
						        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    freeze_feature_extractor: Optional[bool] = field( | 
					
					
						
						| 
							 | 
						        default=True, metadata={"help": "Whether to freeze the feature extractor layers of the model."} | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    attention_dropout: Optional[float] = field( | 
					
					
						
						| 
							 | 
						        default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."} | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    activation_dropout: Optional[float] = field( | 
					
					
						
						| 
							 | 
						        default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."} | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    feat_proj_dropout: Optional[float] = field( | 
					
					
						
						| 
							 | 
						        default=0.0, metadata={"help": "The dropout ratio for the projected features."} | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    hidden_dropout: Optional[float] = field( | 
					
					
						
						| 
							 | 
						        default=0.0, | 
					
					
						
						| 
							 | 
						        metadata={ | 
					
					
						
						| 
							 | 
						            "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler." | 
					
					
						
						| 
							 | 
						        }, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    final_dropout: Optional[float] = field( | 
					
					
						
						| 
							 | 
						        default=0.0, | 
					
					
						
						| 
							 | 
						        metadata={"help": "The dropout probability for the final projection layer."}, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    mask_time_prob: Optional[float] = field( | 
					
					
						
						| 
							 | 
						        default=0.05, | 
					
					
						
						| 
							 | 
						        metadata={ | 
					
					
						
						| 
							 | 
						            "help": "Probability of each feature vector along the time axis to be chosen as the start of the vector" | 
					
					
						
						| 
							 | 
						            "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" | 
					
					
						
						| 
							 | 
						            "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." | 
					
					
						
						| 
							 | 
						        }, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    layerdrop: Optional[float] = field(default=0.0, metadata={"help": "The LayerDrop probability."}) | 
					
					
						
						| 
							 | 
						    ctc_loss_reduction: Optional[str] = field( | 
					
					
						
						| 
							 | 
						        default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."} | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@dataclass | 
					
					
						
						| 
							 | 
						class DataTrainingArguments: | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Arguments pertaining to what data we are going to input our model for training and eval. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						    Using `HfArgumentParser` we can turn this class | 
					
					
						
						| 
							 | 
						    into argparse arguments to be able to specify them on | 
					
					
						
						| 
							 | 
						    the command line. | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    dataset_name: str = field( | 
					
					
						
						| 
							 | 
						        metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    dataset_config_name: Optional[str] = field( | 
					
					
						
						| 
							 | 
						        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    train_split_name: Optional[str] = field( | 
					
					
						
						| 
							 | 
						        default="train+validation", | 
					
					
						
						| 
							 | 
						        metadata={ | 
					
					
						
						| 
							 | 
						            "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" | 
					
					
						
						| 
							 | 
						        }, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    eval_split_name: Optional[str] = field( | 
					
					
						
						| 
							 | 
						        default="test", | 
					
					
						
						| 
							 | 
						        metadata={ | 
					
					
						
						| 
							 | 
						            "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" | 
					
					
						
						| 
							 | 
						        }, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    audio_column_name: Optional[str] = field( | 
					
					
						
						| 
							 | 
						        default="audio", | 
					
					
						
						| 
							 | 
						        metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    text_column_name: Optional[str] = field( | 
					
					
						
						| 
							 | 
						        default="text", | 
					
					
						
						| 
							 | 
						        metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"}, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    overwrite_cache: bool = field( | 
					
					
						
						| 
							 | 
						        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    preprocessing_num_workers: Optional[int] = field( | 
					
					
						
						| 
							 | 
						        default=None, | 
					
					
						
						| 
							 | 
						        metadata={"help": "The number of processes to use for the preprocessing."}, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    max_train_samples: Optional[int] = field( | 
					
					
						
						| 
							 | 
						        default=None, | 
					
					
						
						| 
							 | 
						        metadata={ | 
					
					
						
						| 
							 | 
						            "help": "For debugging purposes or quicker training, truncate the number of training examples to this " | 
					
					
						
						| 
							 | 
						            "value if set." | 
					
					
						
						| 
							 | 
						        }, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    max_eval_samples: Optional[int] = field( | 
					
					
						
						| 
							 | 
						        default=None, | 
					
					
						
						| 
							 | 
						        metadata={ | 
					
					
						
						| 
							 | 
						            "help": "For debugging purposes or quicker training, truncate the number of validation examples to this " | 
					
					
						
						| 
							 | 
						            "value if set." | 
					
					
						
						| 
							 | 
						        }, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    chars_to_ignore: Optional[List[str]] = list_field( | 
					
					
						
						| 
							 | 
						        default=None, | 
					
					
						
						| 
							 | 
						        metadata={"help": "A list of characters to remove from the transcripts."}, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    max_duration_in_seconds: Optional[float] = field( | 
					
					
						
						| 
							 | 
						        default=20.0, | 
					
					
						
						| 
							 | 
						        metadata={ | 
					
					
						
						| 
							 | 
						            "help": "Truncate audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`" | 
					
					
						
						| 
							 | 
						        }, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    min_duration_in_seconds: Optional[float] = field( | 
					
					
						
						| 
							 | 
						        default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"} | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    preprocessing_only: Optional[bool] = field( | 
					
					
						
						| 
							 | 
						        default=False, | 
					
					
						
						| 
							 | 
						        metadata={ | 
					
					
						
						| 
							 | 
						            "help": "Whether to only do data preprocessing and skip training. " | 
					
					
						
						| 
							 | 
						            "This is especially useful when data preprocessing errors out in distributed training due to timeout. " | 
					
					
						
						| 
							 | 
						            "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` " | 
					
					
						
						| 
							 | 
						            "so that the cached datasets can consequently be loaded in distributed training" | 
					
					
						
						| 
							 | 
						        }, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    use_auth_token: Optional[bool] = field( | 
					
					
						
						| 
							 | 
						        default=False, | 
					
					
						
						| 
							 | 
						        metadata={ | 
					
					
						
						| 
							 | 
						            "help": "If :obj:`True`, will use the token generated when running" | 
					
					
						
						| 
							 | 
						            ":obj:`transformers-cli logiin as HTTP bearer authorization for remote files." | 
					
					
						
						| 
							 | 
						        }, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						@dataclass | 
					
					
						
						| 
							 | 
						class DataCollatorCTCWithPadding: | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						    Data collator that will dynamically pad the inputs received. | 
					
					
						
						| 
							 | 
						    Args: | 
					
					
						
						| 
							 | 
						        processor (:class:`~transformers.Wav2Vec2Processor`) | 
					
					
						
						| 
							 | 
						            The processor used for proccessing the data. | 
					
					
						
						| 
							 | 
						        padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): | 
					
					
						
						| 
							 | 
						            Select a strategy to pad the returned sequences (according to the model's padding side and padding index) | 
					
					
						
						| 
							 | 
						            among: | 
					
					
						
						| 
							 | 
						            * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | 
					
					
						
						| 
							 | 
						              sequence if provided). | 
					
					
						
						| 
							 | 
						            * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the | 
					
					
						
						| 
							 | 
						              maximum acceptable input length for the model if that argument is not provided. | 
					
					
						
						| 
							 | 
						            * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of | 
					
					
						
						| 
							 | 
						              different lengths). | 
					
					
						
						| 
							 | 
						        max_length (:obj:`int`, `optional`): | 
					
					
						
						| 
							 | 
						            Maximum length of the ``input_values`` of the returned list and optionally padding length (see above). | 
					
					
						
						| 
							 | 
						        max_length_labels (:obj:`int`, `optional`): | 
					
					
						
						| 
							 | 
						            Maximum length of the ``labels`` returned list and optionally padding length (see above). | 
					
					
						
						| 
							 | 
						        pad_to_multiple_of (:obj:`int`, `optional`): | 
					
					
						
						| 
							 | 
						            If set will pad the sequence to a multiple of the provided value. | 
					
					
						
						| 
							 | 
						            This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= | 
					
					
						
						| 
							 | 
						            7.5 (Volta). | 
					
					
						
						| 
							 | 
						    """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    processor: Wav2Vec2Processor | 
					
					
						
						| 
							 | 
						    padding: Union[bool, str] = "longest" | 
					
					
						
						| 
							 | 
						    pad_to_multiple_of: Optional[int] = None | 
					
					
						
						| 
							 | 
						    pad_to_multiple_of_labels: Optional[int] = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        input_features = [{"input_values": feature["input_values"]} for feature in features] | 
					
					
						
						| 
							 | 
						        label_features = [{"input_ids": feature["labels"]} for feature in features] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        batch = self.processor.pad( | 
					
					
						
						| 
							 | 
						            input_features, | 
					
					
						
						| 
							 | 
						            padding=self.padding, | 
					
					
						
						| 
							 | 
						            pad_to_multiple_of=self.pad_to_multiple_of, | 
					
					
						
						| 
							 | 
						            return_tensors="pt", | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        with self.processor.as_target_processor(): | 
					
					
						
						| 
							 | 
						            labels_batch = self.processor.pad( | 
					
					
						
						| 
							 | 
						                label_features, | 
					
					
						
						| 
							 | 
						                padding=self.padding, | 
					
					
						
						| 
							 | 
						                pad_to_multiple_of=self.pad_to_multiple_of_labels, | 
					
					
						
						| 
							 | 
						                return_tensors="pt", | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        batch["labels"] = labels | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return batch | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def create_vocabulary_from_data(datasets: DatasetDict): | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def extract_all_chars(batch): | 
					
					
						
						| 
							 | 
						        all_text = " ".join(batch["target_text"]) | 
					
					
						
						| 
							 | 
						        vocab = list(set(all_text)) | 
					
					
						
						| 
							 | 
						        return {"vocab": [vocab], "all_text": [all_text]} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    vocabs = datasets.map( | 
					
					
						
						| 
							 | 
						        extract_all_chars, | 
					
					
						
						| 
							 | 
						        batched=True, | 
					
					
						
						| 
							 | 
						        batch_size=-1, | 
					
					
						
						| 
							 | 
						        keep_in_memory=True, | 
					
					
						
						| 
							 | 
						        remove_columns=datasets["train"].column_names, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    vocab_set = functools.reduce( | 
					
					
						
						| 
							 | 
						        lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values() | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    vocab_dict["|"] = vocab_dict[" "] | 
					
					
						
						| 
							 | 
						    del vocab_dict[" "] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    vocab_dict["[UNK]"] = len(vocab_dict) | 
					
					
						
						| 
							 | 
						    vocab_dict["[PAD]"] = len(vocab_dict) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return vocab_dict | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def main(): | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) | 
					
					
						
						| 
							 | 
						    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        model_args, data_args, training_args = parser.parse_args_into_dataclasses() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    last_checkpoint = None | 
					
					
						
						| 
							 | 
						    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: | 
					
					
						
						| 
							 | 
						        last_checkpoint = get_last_checkpoint(training_args.output_dir) | 
					
					
						
						| 
							 | 
						        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: | 
					
					
						
						| 
							 | 
						            raise ValueError( | 
					
					
						
						| 
							 | 
						                f"Output directory ({training_args.output_dir}) already exists and is not empty. " | 
					
					
						
						| 
							 | 
						                "Use --overwrite_output_dir to overcome." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        elif last_checkpoint is not None: | 
					
					
						
						| 
							 | 
						            logger.info( | 
					
					
						
						| 
							 | 
						                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " | 
					
					
						
						| 
							 | 
						                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    logging.basicConfig( | 
					
					
						
						| 
							 | 
						        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | 
					
					
						
						| 
							 | 
						        datefmt="%m/%d/%Y %H:%M:%S", | 
					
					
						
						| 
							 | 
						        handlers=[logging.StreamHandler(sys.stdout)], | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    logger.warning( | 
					
					
						
						| 
							 | 
						        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" | 
					
					
						
						| 
							 | 
						        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if is_main_process(training_args.local_rank): | 
					
					
						
						| 
							 | 
						        transformers.utils.logging.set_verbosity_info() | 
					
					
						
						| 
							 | 
						    logger.info("Training/evaluation parameters %s", training_args) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    set_seed(training_args.seed) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    raw_datasets = DatasetDict() | 
					
					
						
						| 
							 | 
						    raw_datasets["train"] = load_dataset( | 
					
					
						
						| 
							 | 
						        data_args.dataset_name, data_args.dataset_config_name, split=data_args.train_split_name | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    raw_datasets["eval"] = load_dataset( | 
					
					
						
						| 
							 | 
						        data_args.dataset_name, data_args.dataset_config_name, split=data_args.eval_split_name | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if data_args.audio_column_name not in raw_datasets["train"].column_names: | 
					
					
						
						| 
							 | 
						        raise ValueError( | 
					
					
						
						| 
							 | 
						            f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. " | 
					
					
						
						| 
							 | 
						            "Make sure to set `--audio_column_name` to the correct audio column - one of " | 
					
					
						
						| 
							 | 
						            f"{', '.join(raw_datasets['train'].column_names)}." | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if data_args.text_column_name not in raw_datasets["train"].column_names: | 
					
					
						
						| 
							 | 
						        raise ValueError( | 
					
					
						
						| 
							 | 
						            f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. " | 
					
					
						
						| 
							 | 
						            "Make sure to set `--text_column_name` to the correct text column - one of " | 
					
					
						
						| 
							 | 
						            f"{', '.join(raw_datasets['train'].column_names)}." | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if data_args.max_train_samples is not None: | 
					
					
						
						| 
							 | 
						        raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if data_args.max_eval_samples is not None: | 
					
					
						
						| 
							 | 
						        raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    chars_to_ignore_regex = ( | 
					
					
						
						| 
							 | 
						        f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def remove_special_characters(batch): | 
					
					
						
						| 
							 | 
						        if chars_to_ignore_regex is not None: | 
					
					
						
						| 
							 | 
						            batch["target_text"] = re.sub(chars_to_ignore_regex, "", batch[data_args.text_column_name]).lower() + " " | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            batch["target_text"] = batch[data_args.text_column_name].lower() + " " | 
					
					
						
						| 
							 | 
						        return batch | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    with training_args.main_process_first(desc="dataset map special characters removal"): | 
					
					
						
						| 
							 | 
						        raw_datasets = raw_datasets.map( | 
					
					
						
						| 
							 | 
						            remove_special_characters, | 
					
					
						
						| 
							 | 
						            remove_columns=[data_args.text_column_name], | 
					
					
						
						| 
							 | 
						            desc="remove special characters from datasets", | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    vocab_file = os.path.join(training_args.output_dir, "vocab.json") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    with training_args.main_process_first(): | 
					
					
						
						| 
							 | 
						        if training_args.overwrite_output_dir and os.path.isfile(vocab_file): | 
					
					
						
						| 
							 | 
						            os.remove(vocab_file) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    with training_args.main_process_first(desc="dataset map vocabulary creation"): | 
					
					
						
						| 
							 | 
						        if not os.path.isfile(vocab_file): | 
					
					
						
						| 
							 | 
						            os.makedirs(training_args.output_dir, exist_ok=True) | 
					
					
						
						| 
							 | 
						            vocab_dict = create_vocabulary_from_data(raw_datasets) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            with open(vocab_file, "w") as file: | 
					
					
						
						| 
							 | 
						                json.dump(vocab_dict, file) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    config = AutoConfig.from_pretrained( | 
					
					
						
						| 
							 | 
						        model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    config_for_tokenizer = config if config.tokenizer_class is not None else None | 
					
					
						
						| 
							 | 
						    tokenizer_type = config.model_type if config.tokenizer_class is None else None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    tokenizer = AutoTokenizer.from_pretrained( | 
					
					
						
						| 
							 | 
						        training_args.output_dir, | 
					
					
						
						| 
							 | 
						        config=config_for_tokenizer, | 
					
					
						
						| 
							 | 
						        tokenizer_type=tokenizer_type, | 
					
					
						
						| 
							 | 
						        unk_token="[UNK]", | 
					
					
						
						| 
							 | 
						        pad_token="[PAD]", | 
					
					
						
						| 
							 | 
						        word_delimiter_token="|", | 
					
					
						
						| 
							 | 
						        use_auth_token=data_args.use_auth_token, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    feature_extractor = AutoFeatureExtractor.from_pretrained( | 
					
					
						
						| 
							 | 
						        model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						    processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    config.update( | 
					
					
						
						| 
							 | 
						        { | 
					
					
						
						| 
							 | 
						            "feat_proj_dropout": model_args.feat_proj_dropout, | 
					
					
						
						| 
							 | 
						            "attention_dropout": model_args.attention_dropout, | 
					
					
						
						| 
							 | 
						            "hidden_dropout": model_args.hidden_dropout, | 
					
					
						
						| 
							 | 
						            "final_dropout": model_args.final_dropout, | 
					
					
						
						| 
							 | 
						            "mask_time_prob": model_args.mask_time_prob, | 
					
					
						
						| 
							 | 
						            "gradient_checkpointing": training_args.gradient_checkpointing, | 
					
					
						
						| 
							 | 
						            "layerdrop": model_args.layerdrop, | 
					
					
						
						| 
							 | 
						            "ctc_loss_reduction": model_args.ctc_loss_reduction, | 
					
					
						
						| 
							 | 
						            "pad_token_id": processor.tokenizer.pad_token_id, | 
					
					
						
						| 
							 | 
						            "vocab_size": len(processor.tokenizer), | 
					
					
						
						| 
							 | 
						            "activation_dropout": model_args.activation_dropout, | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    model = AutoModelForCTC.from_pretrained( | 
					
					
						
						| 
							 | 
						        model_args.model_name_or_path, | 
					
					
						
						| 
							 | 
						        cache_dir=model_args.cache_dir, | 
					
					
						
						| 
							 | 
						        config=config, | 
					
					
						
						| 
							 | 
						        use_auth_token=data_args.use_auth_token, | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if model_args.freeze_feature_extractor: | 
					
					
						
						| 
							 | 
						        model.freeze_feature_extractor() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    raw_datasets = raw_datasets.cast_column( | 
					
					
						
						| 
							 | 
						        data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate) | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    max_input_length = data_args.max_duration_in_seconds * processor.feature_extractor.sampling_rate | 
					
					
						
						| 
							 | 
						    min_input_length = data_args.min_duration_in_seconds * processor.feature_extractor.sampling_rate | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    def prepare_dataset(batch): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        sample = batch[data_args.audio_column_name] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        batch["input_values"] = processor( | 
					
					
						
						| 
							 | 
						            sample["array"], sampling_rate=sample["sampling_rate"], truncate=True, max_length=max_input_length | 
					
					
						
						| 
							 | 
						        ).input_values[0] | 
					
					
						
						| 
							 | 
						        batch["input_length"] = len(batch["input_values"]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        with processor.as_target_processor(): | 
					
					
						
						| 
							 | 
						            batch["labels"] = processor(batch["target_text"]).input_ids | 
					
					
						
						| 
							 | 
						        return batch | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    with training_args.main_process_first(desc="dataset map preprocessing"): | 
					
					
						
						| 
							 | 
						        vectorized_datasets = raw_datasets.map( | 
					
					
						
						| 
							 | 
						            prepare_dataset, | 
					
					
						
						| 
							 | 
						            remove_columns=raw_datasets["train"].column_names, | 
					
					
						
						| 
							 | 
						            num_proc=data_args.preprocessing_num_workers, | 
					
					
						
						| 
							 | 
						            desc="preprocess datasets", | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if min_input_length > 0.0: | 
					
					
						
						| 
							 | 
						             | 
					
					
						
						| 
							 | 
						            vectorized_datasets = vectorized_datasets.filter( | 
					
					
						
						| 
							 | 
						                lambda x: x > min_input_length, | 
					
					
						
						| 
							 | 
						                num_proc=data_args.preprocessing_num_workers, | 
					
					
						
						| 
							 | 
						                input_columns=["input_length"], | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        vectorized_datasets = vectorized_datasets.remove_columns("input_length") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    wer_metric = load_metric("wer") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if data_args.preprocessing_only: | 
					
					
						
						| 
							 | 
						        logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}") | 
					
					
						
						| 
							 | 
						        return | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def compute_metrics(pred): | 
					
					
						
						| 
							 | 
						        pred_logits = pred.predictions | 
					
					
						
						| 
							 | 
						        pred_ids = np.argmax(pred_logits, axis=-1) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        pred_str = processor.batch_decode(pred_ids) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        label_str = processor.batch_decode(pred.label_ids, group_tokens=False) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        wer = wer_metric.compute(predictions=pred_str, references=label_str) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return {"wer": wer} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    data_collator = DataCollatorCTCWithPadding(processor=processor) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    optimizer = bnb.optim.Adam8bit(model.parameters(), lr=training_args.learning_rate, betas=(training_args.adam_beta1, training_args.adam_beta2)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    trainer = Trainer( | 
					
					
						
						| 
							 | 
						        model=model, | 
					
					
						
						| 
							 | 
						        data_collator=data_collator, | 
					
					
						
						| 
							 | 
						        args=training_args, | 
					
					
						
						| 
							 | 
						        compute_metrics=compute_metrics, | 
					
					
						
						| 
							 | 
						        train_dataset=vectorized_datasets["train"] if training_args.do_train else None, | 
					
					
						
						| 
							 | 
						        eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None, | 
					
					
						
						| 
							 | 
						        tokenizer=processor.feature_extractor, | 
					
					
						
						| 
							 | 
						        optimizers=(optimizer, None),   | 
					
					
						
						| 
							 | 
						    ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    if training_args.do_train: | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if last_checkpoint is not None: | 
					
					
						
						| 
							 | 
						            checkpoint = last_checkpoint | 
					
					
						
						| 
							 | 
						        elif os.path.isdir(model_args.model_name_or_path): | 
					
					
						
						| 
							 | 
						            checkpoint = model_args.model_name_or_path | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            checkpoint = None | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if is_main_process(training_args.local_rank): | 
					
					
						
						| 
							 | 
						            processor.save_pretrained(training_args.output_dir) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        train_result = trainer.train(resume_from_checkpoint=checkpoint) | 
					
					
						
						| 
							 | 
						        trainer.save_model() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        metrics = train_result.metrics | 
					
					
						
						| 
							 | 
						        max_train_samples = ( | 
					
					
						
						| 
							 | 
						            data_args.max_train_samples | 
					
					
						
						| 
							 | 
						            if data_args.max_train_samples is not None | 
					
					
						
						| 
							 | 
						            else len(vectorized_datasets["train"]) | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"])) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        trainer.log_metrics("train", metrics) | 
					
					
						
						| 
							 | 
						        trainer.save_metrics("train", metrics) | 
					
					
						
						| 
							 | 
						        trainer.save_state() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    results = {} | 
					
					
						
						| 
							 | 
						    if training_args.do_eval: | 
					
					
						
						| 
							 | 
						        logger.info("*** Evaluate ***") | 
					
					
						
						| 
							 | 
						        metrics = trainer.evaluate() | 
					
					
						
						| 
							 | 
						        max_eval_samples = ( | 
					
					
						
						| 
							 | 
						            data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"]) | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						        metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"])) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        trainer.log_metrics("eval", metrics) | 
					
					
						
						| 
							 | 
						        trainer.save_metrics("eval", metrics) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na" | 
					
					
						
						| 
							 | 
						    kwargs = { | 
					
					
						
						| 
							 | 
						        "finetuned_from": model_args.model_name_or_path, | 
					
					
						
						| 
							 | 
						        "tasks": "speech-recognition", | 
					
					
						
						| 
							 | 
						        "tags": ["automatic-speech-recognition", data_args.dataset_name], | 
					
					
						
						| 
							 | 
						        "dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}", | 
					
					
						
						| 
							 | 
						        "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}", | 
					
					
						
						| 
							 | 
						    } | 
					
					
						
						| 
							 | 
						    if "common_voice" in data_args.dataset_name: | 
					
					
						
						| 
							 | 
						        kwargs["language"] = config_name | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    if training_args.push_to_hub: | 
					
					
						
						| 
							 | 
						        trainer.push_to_hub(**kwargs) | 
					
					
						
						| 
							 | 
						    else: | 
					
					
						
						| 
							 | 
						        trainer.create_model_card(**kwargs) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    return results | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						if __name__ == "__main__": | 
					
					
						
						| 
							 | 
						    main() | 
					
					
						
						| 
							 | 
						
 |