patrickvonplaten
commited on
Commit
·
8e7d147
1
Parent(s):
976e11d
Update README.md
Browse files
README.md
CHANGED
@@ -47,25 +47,17 @@ To transcribe audio files the model can be used as a standalone acoustic model a
|
|
47 |
```python
|
48 |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
49 |
from datasets import load_dataset
|
50 |
-
import soundfile as sf
|
51 |
import torch
|
52 |
|
53 |
# load model and processor
|
54 |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60")
|
55 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60")
|
56 |
|
57 |
-
# define function to read in sound file
|
58 |
-
def map_to_array(batch):
|
59 |
-
speech, _ = sf.read(batch["file"])
|
60 |
-
batch["speech"] = speech
|
61 |
-
return batch
|
62 |
-
|
63 |
# load dummy dataset and read soundfiles
|
64 |
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
|
65 |
-
ds = ds.map(map_to_array)
|
66 |
|
67 |
# tokenize
|
68 |
-
input_values = processor(ds["
|
69 |
|
70 |
# retrieve logits
|
71 |
logits = model(input_values).logits
|
@@ -82,7 +74,6 @@ This code snippet shows how to evaluate **facebook/wav2vec2-large-960h-lv60** on
|
|
82 |
```python
|
83 |
from datasets import load_dataset
|
84 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
85 |
-
import soundfile as sf
|
86 |
import torch
|
87 |
from jiwer import wer
|
88 |
|
@@ -92,15 +83,8 @@ librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
|
|
92 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60").to("cuda")
|
93 |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60")
|
94 |
|
95 |
-
def map_to_array(batch):
|
96 |
-
speech, _ = sf.read(batch["file"])
|
97 |
-
batch["speech"] = speech
|
98 |
-
return batch
|
99 |
-
|
100 |
-
librispeech_eval = librispeech_eval.map(map_to_array)
|
101 |
-
|
102 |
def map_to_pred(batch):
|
103 |
-
inputs = processor(batch["
|
104 |
input_values = inputs.input_values.to("cuda")
|
105 |
attention_mask = inputs.attention_mask.to("cuda")
|
106 |
|
|
|
47 |
```python
|
48 |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
49 |
from datasets import load_dataset
|
|
|
50 |
import torch
|
51 |
|
52 |
# load model and processor
|
53 |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60")
|
54 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60")
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
# load dummy dataset and read soundfiles
|
57 |
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
|
|
|
58 |
|
59 |
# tokenize
|
60 |
+
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values # Batch size 1
|
61 |
|
62 |
# retrieve logits
|
63 |
logits = model(input_values).logits
|
|
|
74 |
```python
|
75 |
from datasets import load_dataset
|
76 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
|
|
77 |
import torch
|
78 |
from jiwer import wer
|
79 |
|
|
|
83 |
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60").to("cuda")
|
84 |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h-lv60")
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
def map_to_pred(batch):
|
87 |
+
inputs = processor(batch["audio"]["array"], return_tensors="pt", padding="longest")
|
88 |
input_values = inputs.input_values.to("cuda")
|
89 |
attention_mask = inputs.attention_mask.to("cuda")
|
90 |
|