nielsr HF staff commited on
Commit
d7710a9
1 Parent(s): 7e35ddb

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - object-detection
5
+ - vision
6
+ - detic
7
+ datasets:
8
+ - lvis
9
+ widget:
10
+ - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/savanna.jpg
11
+ example_title: Savanna
12
+ - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg
13
+ example_title: Football Match
14
+ - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg
15
+ example_title: Airport
16
+ ---
17
+
18
+ # Deformable DETR model trained on LVIS
19
+
20
+ Deformable DEtection TRansformer (DETR), trained on LVIS (including 1203 classes). It was introduced in the paper [Detecting Twenty-thousand Classes using Image-level Supervision](https://arxiv.org/abs/2201.02605) by Zhou et al. and first released in [this repository](https://github.com/facebookresearch/Detic).
21
+
22
+ This model corresponds to the "Box-Supervised_DeformDETR_R50_4x" checkpoint released in the original repository.
23
+
24
+ Disclaimer: The team releasing Detic did not write a model card for this model so this model card has been written by the Hugging Face team.
25
+
26
+ ## Model description
27
+
28
+ The DETR model is an encoder-decoder transformer with a convolutional backbone. Two heads are added on top of the decoder outputs in order to perform object detection: a linear layer for the class labels and a MLP (multi-layer perceptron) for the bounding boxes. The model uses so-called object queries to detect objects in an image. Each object query looks for a particular object in the image. For COCO, the number of object queries is set to 100.
29
+
30
+ The model is trained using a "bipartite matching loss": one compares the predicted classes + bounding boxes of each of the N = 100 object queries to the ground truth annotations, padded up to the same length N (so if an image only contains 4 objects, 96 annotations will just have a "no object" as class and "no bounding box" as bounding box). The Hungarian matching algorithm is used to create an optimal one-to-one mapping between each of the N queries and each of the N annotations. Next, standard cross-entropy (for the classes) and a linear combination of the L1 and generalized IoU loss (for the bounding boxes) are used to optimize the parameters of the model.
31
+
32
+ ![model image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/deformable_detr_architecture.png)
33
+
34
+ ## Intended uses & limitations
35
+
36
+ You can use the raw model for object detection. See the [model hub](https://huggingface.co/models?search=sensetime/deformable-detr) to look for all available Deformable DETR models.
37
+
38
+ ### How to use
39
+
40
+ Here is how to use this model:
41
+
42
+ ```python
43
+ from transformers import AutoImageProcessor, DeformableDetrForObjectDetection
44
+ import torch
45
+ from PIL import Image
46
+ import requests
47
+
48
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
49
+ image = Image.open(requests.get(url, stream=True).raw)
50
+
51
+ processor = AutoImageProcessor.from_pretrained("facebook/deformable-detr-box-supervised")
52
+ model = DeformableDetrForObjectDetection.from_pretrained("facebook/deformable-detr-box-supervised")
53
+
54
+ inputs = processor(images=image, return_tensors="pt")
55
+ outputs = model(**inputs)
56
+
57
+ # convert outputs (bounding boxes and class logits) to COCO API
58
+ # let's only keep detections with score > 0.7
59
+ target_sizes = torch.tensor([image.size[::-1]])
60
+ results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.7)[0]
61
+
62
+ for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
63
+ box = [round(i, 2) for i in box.tolist()]
64
+ print(
65
+ f"Detected {model.config.id2label[label.item()]} with confidence "
66
+ f"{round(score.item(), 3)} at location {box}"
67
+ )
68
+ ```
69
+
70
+ ## Evaluation results
71
+
72
+ This model achieves 31.7 box mAP and 21.4 mAP (rare classes) on LVIS.
73
+
74
+ ### BibTeX entry and citation info
75
+
76
+ ```bibtex
77
+ @misc{https://doi.org/10.48550/arxiv.2010.04159,
78
+ doi = {10.48550/ARXIV.2010.04159},
79
+ url = {https://arxiv.org/abs/2010.04159},
80
+ author = {Zhu, Xizhou and Su, Weijie and Lu, Lewei and Li, Bin and Wang, Xiaogang and Dai, Jifeng},
81
+ keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
82
+ title = {Deformable DETR: Deformable Transformers for End-to-End Object Detection},
83
+ publisher = {arXiv},
84
+ year = {2020},
85
+ copyright = {arXiv.org perpetual, non-exclusive license}
86
+ }
87
+ ```