julien-c HF staff commited on
Commit
231de06
1 Parent(s): a4deec4

Migrate model card from transformers-repo

Browse files

Read announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/facebook/bart-large-mnli/README.md

Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ thumbnail: https://huggingface.co/front/thumbnails/facebook.png
4
+ pipeline_tag: zero-shot-classification
5
+ datasets:
6
+ - multi_nli
7
+ ---
8
+
9
+ # bart-large-mnli
10
+
11
+ This is the checkpoint for [bart-large](https://huggingface.co/facebook/bart-large) after being trained on the [MultiNLI (MNLI)](https://huggingface.co/datasets/multi_nli) dataset.
12
+
13
+ Additional information about this model:
14
+ - The [bart-large](https://huggingface.co/facebook/bart-large) model page
15
+ - [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension
16
+ ](https://arxiv.org/abs/1910.13461)
17
+ - [BART fairseq implementation](https://github.com/pytorch/fairseq/tree/master/fairseq/models/bart)
18
+
19
+ ## NLI-based Zero Shot Text Classification
20
+
21
+ [Yin et al.](https://arxiv.org/abs/1909.00161) proposed a method for using pre-trained NLI models as a ready-made zero-shot sequence classifiers. The method works by posing the sequence to be classified as the NLI premise and to construct a hypothesis from each candidate label. For example, if we want to evaluate whether a sequence belongs to the class "politics", we could construct a hypothesis of `This text is about politics.`. The probabilities for entailment and contradiction are then converted to label probabilities.
22
+
23
+ This method is surprisingly effective in many cases, particularly when used with larger pre-trained models like BART and Roberta. See [this blog post](https://joeddav.github.io/blog/2020/05/29/ZSL.html) for a more expansive introduction to this and other zero shot methods, and see the code snippets below for examples of using this model for zero-shot classification both with Hugging Face's built-in pipeline and with native Transformers/PyTorch code.
24
+
25
+ #### With the zero-shot classification pipeline
26
+
27
+ The model can be loaded with the `zero-shot-classification` pipeline like so:
28
+
29
+ ```python
30
+ from transformers import pipeline
31
+ classifier = pipeline("zero-shot-classification",
32
+ model="facebook/bart-large-mnli")
33
+ ```
34
+
35
+ You can then use this pipeline to classify sequences into any of the class names you specify.
36
+
37
+ ```python
38
+ sequence_to_classify = "one day I will see the world"
39
+ candidate_labels = ['travel', 'cooking', 'dancing']
40
+ classifier(sequence_to_classify, candidate_labels)
41
+ #{'labels': ['travel', 'dancing', 'cooking'],
42
+ # 'scores': [0.9938651323318481, 0.0032737774308770895, 0.002861034357920289],
43
+ # 'sequence': 'one day I will see the world'}
44
+ ```
45
+
46
+ If more than one candidate label can be correct, pass `multi_class=True` to calculate each class independently:
47
+
48
+ ```python
49
+ candidate_labels = ['travel', 'cooking', 'dancing', 'exploration']
50
+ classifier(sequence_to_classify, candidate_labels, multi_class=True)
51
+ #{'labels': ['travel', 'exploration', 'dancing', 'cooking'],
52
+ # 'scores': [0.9945111274719238,
53
+ # 0.9383890628814697,
54
+ # 0.0057061901316046715,
55
+ # 0.0018193122232332826],
56
+ # 'sequence': 'one day I will see the world'}
57
+ ```
58
+
59
+
60
+ #### With manual PyTorch
61
+
62
+ ```python
63
+ # pose sequence as a NLI premise and label as a hypothesis
64
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
65
+ nli_model = AutoModelForSequenceClassification.from_pretrained('joeddav/xlm-roberta-large-xnli')
66
+ tokenizer = AutoTokenizer.from_pretrained('joeddav/xlm-roberta-large-xnli')
67
+
68
+ premise = sequence
69
+ hypothesis = f'This example is {label}.'
70
+
71
+ # run through model pre-trained on MNLI
72
+ x = tokenizer.encode(premise, hypothesis, return_tensors='pt',
73
+ truncation_strategy='only_first')
74
+ logits = nli_model(x.to(device))[0]
75
+
76
+ # we throw away "neutral" (dim 1) and take the probability of
77
+ # "entailment" (2) as the probability of the label being true
78
+ entail_contradiction_logits = logits[:,[0,2]]
79
+ probs = entail_contradiction_logits.softmax(dim=1)
80
+ prob_label_is_true = probs[:,1]
81
+ ```