Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2-unit1.zip +3 -0
- ppo-LunarLander-v2-unit1/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-unit1/data +94 -0
- ppo-LunarLander-v2-unit1/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-unit1/policy.pth +3 -0
- ppo-LunarLander-v2-unit1/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-unit1/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 286.59 +/- 20.22
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f185d8cbe50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f185d8cbee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f185d8cbf70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f185d8d1040>", "_build": "<function ActorCriticPolicy._build at 0x7f185d8d10d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f185d8d1160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f185d8d11f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f185d8d1280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f185d8d1310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f185d8d13a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f185d8d1430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f185d8ca3c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 5046272, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671132696106443888, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAIAdOT0nNSk+nRQFvl8Iqb7n8wu+7dqYPQAAAAAAAAAAGhwdPddESD7dKAS+WS+tvquwxL2YhTG9AAAAAAAAAABaP4g9USejPWCpBr5WWKC+DFcCPf5z7LwAAAAAAAAAAM1SNL66tQ0/MvN5PmGM8r534P69egFIPgAAAAAAAAAAzUCsPD0IkT/zUfk93sAHvyGkRT3CI709AAAAAAAAAAAABac9oIy0Pt6ZtL0WP7C+FbYCvUABoL0AAAAAAAAAALM4Hb1I04m6VRxoOFHtzjIng3u5ov6FtwAAgD8AAIA/QIzQvU8azz7F1VI+/AjcvqmQiLxalSo+AAAAAAAAAAAzZzu9j8ZquvbwS7a1nSux+iXZOuaTdjUAAIA/AACAP5rnSLyuJMK8wmQrvINkRT1dyiy9vNqDvAAAgD8AAIA/86q3PfFiUD6LHj++rW7EvnWz3btYSem9AAAAAAAAAAAzSXe8n7iFu/ukmDtMz7E8mRXxvFP/lT0AAIA/AACAP4AbDr0H6jY+GohGPtUywb5OMis+xgjMPAAAAAAAAAAAmpP9vJY2Gj3uSjI+EBWyvpnWZj2qMhY+AAAAAAAAAAAAoTG9OpStPqNv0D2JXrm+zsRjPbo6gD0AAAAAAAAAAKaQ/j1LeIU/cHC7PqKiB7+xdls+qiNvPgAAAAAAAAAAM7sMO3+OFD4i8qM92Xatvsw9lD2mvdS6AAAAAAAAAADaGI29Kp+4Pzsm1L6HXua9QX6CvHmdpb0AAAAAAAAAAPNOir20PTU+MGEQPsG9oL5+u889TcbWPAAAAAAAAAAAZmgZvRQYhrrTY2OyUnUzr8eBibrnuYUzAACAPwAAgD8aElA94v1LPtwRGL5krqq+ZjCDvbKA7TkAAAAAAAAAAM1if70/YSo+KMkFvsD2pr5ndrW9RtjOvQAAAAAAAAAAGm+APoSnRz8WhQa+omrtvvBLkz5C4E6+AAAAAAAAAAAA0Hk8oXC2P3ZbwD48mvU9kog2vMUutLwAAAAAAAAAALLahL6uRsM+Ugw5PkaE+7656Vm+ix8wPgAAAAAAAAAAs8qBvQVdj7uSyyc72k6ZPH3p/rxEV4I9AACAPwAAgD9NWj+9jzMuvKq+Rb7FLES+rITOPRLSnD4AAAAAAACAP81CsD3r3Jc+AbEUvoUkwb4GTwC9gaCaPAAAAAAAAAAA8z9wPk2tdD/1RdI+he8MvyUs1z5zvys+AAAAAAAAAAAAVly8dikgPQoCJ77cpKi+Oy8qvv553DwAAAAAAAAAAJrg9jwusbo+eOFSvg1Irr4iryi9SF9kvQAAAAAAAAAAJrt5vgFt7T7+5bE+x1LvvnH6Qb0JGzA+AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.009254400000000107, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzVzg8lisckCUhpRSlIwBbJRL3IwBdJRHQKy0eoJiRW91fZQoaAZoCWgPQwjr5uJvuxhwQJSGlFKUaBVL42gWR0CstK2IO6NEdX2UKGgGaAloD0MIRiV1AprSZ0CUhpRSlGgVTegDaBZHQKy00r7wazh1fZQoaAZoCWgPQwgf2scKfntvQJSGlFKUaBVL32gWR0CstQghB7eEdX2UKGgGaAloD0MISKeufFbbcUCUhpRSlGgVS9VoFkdArLUwYgq3E3V9lChoBmgJaA9DCHy6umOx429AlIaUUpRoFUvYaBZHQKy1d7TDwYt1fZQoaAZoCWgPQwinBprPefNyQJSGlFKUaBVL52gWR0CstbC1AqusdX2UKGgGaAloD0MI2zS21wLGcECUhpRSlGgVS9JoFkdArLW4k1Mue3V9lChoBmgJaA9DCNwvn6xYV3NAlIaUUpRoFUvYaBZHQKy1yhwl0HR1fZQoaAZoCWgPQwjLEp1l1g5xQJSGlFKUaBVL4mgWR0Cstc+hwl0HdX2UKGgGaAloD0MIIAvRIbD1cUCUhpRSlGgVS+poFkdArLYb9KmKqHV9lChoBmgJaA9DCAh2/BfInXFAlIaUUpRoFUvVaBZHQKy2WfcN6Pd1fZQoaAZoCWgPQwi5OCo3kYJyQJSGlFKUaBVLx2gWR0CstpS0BwMqdX2UKGgGaAloD0MInKVkOUl5cECUhpRSlGgVS9VoFkdArLabSb6P83V9lChoBmgJaA9DCCandobpeHFAlIaUUpRoFUv4aBZHQKy20aOxSpB1fZQoaAZoCWgPQwhzu5f75HxPQJSGlFKUaBVLvGgWR0CstuGoR7JGdX2UKGgGaAloD0MIDoRkARMMckCUhpRSlGgVS/BoFkdArLbgoXsPa3V9lChoBmgJaA9DCGaiCKmbb3NAlIaUUpRoFUvPaBZHQKy26FeOXE91fZQoaAZoCWgPQwiNXg1QGjhyQJSGlFKUaBVL6mgWR0CstvC+De0pdX2UKGgGaAloD0MIoKhsWFNibkCUhpRSlGgVS9FoFkdArLbtv0h/zHV9lChoBmgJaA9DCDo978bCg3NAlIaUUpRoFUvPaBZHQKy2+pBHCoF1fZQoaAZoCWgPQwieXb71IYdwQJSGlFKUaBVL62gWR0CstwfNiYsvdX2UKGgGaAloD0MInKOOjmt4cUCUhpRSlGgVS+hoFkdArLcGDOC5E3V9lChoBmgJaA9DCPVnP1KEIXBAlIaUUpRoFUvfaBZHQKy3E0vXbud1fZQoaAZoCWgPQwh7Mv/oW15yQJSGlFKUaBVL5GgWR0Cst0dzOopAdX2UKGgGaAloD0MIM1AZ/76abUCUhpRSlGgVS9FoFkdArLdOza9K3HV9lChoBmgJaA9DCLUy4Zd6e3BAlIaUUpRoFUvIaBZHQKy3cGB4D9x1fZQoaAZoCWgPQwh5AfbRKe9yQJSGlFKUaBVL52gWR0Cst8Nwzch1dX2UKGgGaAloD0MI+Pnvwat6c0CUhpRSlGgVS9poFkdArLfZ9w3o93V9lChoBmgJaA9DCHU6kPXUwHNAlIaUUpRoFUvQaBZHQKy39B7/n4h1fZQoaAZoCWgPQwhJTbuY5qxvQJSGlFKUaBVL3GgWR0CsuCPiT+vRdX2UKGgGaAloD0MIRS+jWO4JckCUhpRSlGgVS/NoFkdArLhqIpH7QHV9lChoBmgJaA9DCMFXdOt1NXNAlIaUUpRoFUvRaBZHQKy4cVBUrCp1fZQoaAZoCWgPQwi9N4YAYLpxQJSGlFKUaBVL02gWR0CsuKSDIzWPdX2UKGgGaAloD0MIiQrVzQUGckCUhpRSlGgVS9NoFkdArLjA1k1/D3V9lChoBmgJaA9DCKT6zi9KcG9AlIaUUpRoFUveaBZHQKy5RcMVk+Z1fZQoaAZoCWgPQwgPRYE+URBzQJSGlFKUaBVL8mgWR0CsuYP4mCyydX2UKGgGaAloD0MIYB3HD5UZcECUhpRSlGgVS9ZoFkdArLmRMDfWMHV9lChoBmgJaA9DCJHVrZ4Ts3BAlIaUUpRoFUvTaBZHQKy5oqkM1CR1fZQoaAZoCWgPQwhtjJ3wUplyQJSGlFKUaBVL8GgWR0CsueUaAFxGdX2UKGgGaAloD0MIOsssQvHOckCUhpRSlGgVS/doFkdArLpbcIqsl3V9lChoBmgJaA9DCEyN0M9UAHRAlIaUUpRoFUvmaBZHQKy6Zdfsu4B1fZQoaAZoCWgPQwiDL0ymipxzQJSGlFKUaBVLzWgWR0CsumLS/j82dX2UKGgGaAloD0MIHOxNDInmcUCUhpRSlGgVS8VoFkdArLqDsY2sJnV9lChoBmgJaA9DCLQ9esM98nJAlIaUUpRoFU0BAWgWR0CsuoDCHh0hdX2UKGgGaAloD0MIPwEUI0sJb0CUhpRSlGgVS99oFkdArLqI+wC8vnV9lChoBmgJaA9DCNyAzw8j0W5AlIaUUpRoFUvZaBZHQKy6oRYA80V1fZQoaAZoCWgPQwj7HvXXawhxQJSGlFKUaBVLxWgWR0CsurNk4FRpdX2UKGgGaAloD0MIKENVTKUCckCUhpRSlGgVS8xoFkdArLrIOe8PF3V9lChoBmgJaA9DCAOTG0WWL3FAlIaUUpRoFUvZaBZHQKy64gFotcx1fZQoaAZoCWgPQwh9lBEXwGZxQJSGlFKUaBVL1mgWR0Csut8Wj45+dX2UKGgGaAloD0MIxR9FnTkNcUCUhpRSlGgVS8JoFkdArLrpUrCm/HV9lChoBmgJaA9DCC0ly0kok29AlIaUUpRoFUvXaBZHQKy6/A8B+4N1fZQoaAZoCWgPQwjmzeFarbBwQJSGlFKUaBVL32gWR0CsuwIjv/ipdX2UKGgGaAloD0MItvP91HiFcUCUhpRSlGgVS95oFkdArLsPs/pt8HV9lChoBmgJaA9DCNRJtrocPXBAlIaUUpRoFUvpaBZHQKy7HK9wm3R1fZQoaAZoCWgPQwhIiV3bW5tuQJSGlFKUaBVL52gWR0CsuyyvkiljdX2UKGgGaAloD0MIorjjTf5icUCUhpRSlGgVS8RoFkdArLtrD2rXDnV9lChoBmgJaA9DCDfGTngJsHBAlIaUUpRoFUviaBZHQKy7kX4TK1Z1fZQoaAZoCWgPQwjGTngJzgZyQJSGlFKUaBVL7WgWR0Csu5f7SApbdX2UKGgGaAloD0MIDDz3Hq4gc0CUhpRSlGgVS8ZoFkdArLuhhF3IMnV9lChoBmgJaA9DCMqmXOGd7HFAlIaUUpRoFUvGaBZHQKy7y6o2n891fZQoaAZoCWgPQwi45LhTeqlxQJSGlFKUaBVLz2gWR0CsvDY8uBczdX2UKGgGaAloD0MI7UeKyDCZcUCUhpRSlGgVS/FoFkdArLw8ZFXq7nV9lChoBmgJaA9DCO4jtyadI3FAlIaUUpRoFUvGaBZHQKy8SzeGfwt1fZQoaAZoCWgPQwiCxeHML7BzQJSGlFKUaBVL1mgWR0CsvFzRIBikdX2UKGgGaAloD0MI1NaIYBx8c0CUhpRSlGgVS99oFkdArLzSAavRq3V9lChoBmgJaA9DCCp0XmNXbHFAlIaUUpRoFUvNaBZHQKy8/azNUwV1fZQoaAZoCWgPQwgR4srZu29xQJSGlFKUaBVLzmgWR0CsvTgMMI/rdX2UKGgGaAloD0MINzXQfE42cUCUhpRSlGgVS9hoFkdArL15YxL0z3V9lChoBmgJaA9DCM138BMHRnNAlIaUUpRoFUvHaBZHQKy9dimVJMB1fZQoaAZoCWgPQwjG4GHad8NyQJSGlFKUaBVLyWgWR0Csve3n6l+FdX2UKGgGaAloD0MIKCfaVQjKcECUhpRSlGgVS7xoFkdArL45+lTFVHV9lChoBmgJaA9DCCUfuwsUdnBAlIaUUpRoFUvWaBZHQKy+PZ13dKx1fZQoaAZoCWgPQwgzw0ZZP5NwQJSGlFKUaBVL2mgWR0Csvlf6fra/dX2UKGgGaAloD0MIeJlhoywwc0CUhpRSlGgVS9hoFkdArL5qdBjWkXV9lChoBmgJaA9DCMy4qYHm5nFAlIaUUpRoFU0FAWgWR0CsvnqG+K0ldX2UKGgGaAloD0MI/yWpTPFGckCUhpRSlGgVS8toFkdArL6FLamGd3V9lChoBmgJaA9DCPRQ24aRf3JAlIaUUpRoFUviaBZHQKy+myBTXJ51fZQoaAZoCWgPQwiq1y0CYxtwQJSGlFKUaBVL02gWR0Csvq+UhV2idX2UKGgGaAloD0MI0m70MR+4cUCUhpRSlGgVS+RoFkdArL7n7m+0xHV9lChoBmgJaA9DCDEL7Zwm/3NAlIaUUpRoFUvpaBZHQKy+67yxzJZ1fZQoaAZoCWgPQwg0SwLUFNFxQJSGlFKUaBVLwWgWR0CsvvKXfIjodX2UKGgGaAloD0MI1bDfE6tPcUCUhpRSlGgVS99oFkdArL8G1SflIXV9lChoBmgJaA9DCEijAiebGnJAlIaUUpRoFUvyaBZHQKy/A/Tspod1fZQoaAZoCWgPQwgMkGgChTBzQJSGlFKUaBVL3GgWR0CsvwlMZgogdX2UKGgGaAloD0MIVn2utiJUcUCUhpRSlGgVS+VoFkdArL8adQO4G3V9lChoBmgJaA9DCEijAifbjG9AlIaUUpRoFUvDaBZHQKy/Jttygf51fZQoaAZoCWgPQwjni70X31hwQJSGlFKUaBVL3GgWR0CsvyYHgP3BdX2UKGgGaAloD0MI+bt31Fj7cUCUhpRSlGgVS+ZoFkdArL8+Fi8WbnV9lChoBmgJaA9DCHTTZpyG+HNAlIaUUpRoFU0KAWgWR0Csv1EyckMTdX2UKGgGaAloD0MIBr03hkDAcUCUhpRSlGgVS9VoFkdArL9phQWN3nV9lChoBmgJaA9DCF4UPfDx5nBAlIaUUpRoFUvbaBZHQKy/knpjc211fZQoaAZoCWgPQwj03hgCgCtwQJSGlFKUaBVL02gWR0Csv55Yoy9FdX2UKGgGaAloD0MIT1jiAaVOc0CUhpRSlGgVS8toFkdArL/mUD+zdHV9lChoBmgJaA9DCGA7GLEPlXFAlIaUUpRoFUvpaBZHQKzAYmtQsPJ1fZQoaAZoCWgPQwiKraBpSVJxQJSGlFKUaBVL8GgWR0CswJfapPykdX2UKGgGaAloD0MID7iumFF2cECUhpRSlGgVS9hoFkdArMC59/jKgnV9lChoBmgJaA9DCJCGU+YmvnJAlIaUUpRoFUv4aBZHQKzAzSfDk2h1fZQoaAZoCWgPQwhnSBXFK2RwQJSGlFKUaBVL0WgWR0CswQFA/s3RdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 308, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.99, "ent_coef": 0.009, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2-unit1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7694082219384a498dc7e8fc1195ca2d043fb1e9455368557f64b45ff695649f
|
3 |
+
size 147792
|
ppo-LunarLander-v2-unit1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2-unit1/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f185d8cbe50>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f185d8cbee0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f185d8cbf70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f185d8d1040>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f185d8d10d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f185d8d1160>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f185d8d11f0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f185d8d1280>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f185d8d1310>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f185d8d13a0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f185d8d1430>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f185d8ca3c0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 32,
|
45 |
+
"num_timesteps": 5046272,
|
46 |
+
"_total_timesteps": 5000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1671132696106443888,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAIAdOT0nNSk+nRQFvl8Iqb7n8wu+7dqYPQAAAAAAAAAAGhwdPddESD7dKAS+WS+tvquwxL2YhTG9AAAAAAAAAABaP4g9USejPWCpBr5WWKC+DFcCPf5z7LwAAAAAAAAAAM1SNL66tQ0/MvN5PmGM8r534P69egFIPgAAAAAAAAAAzUCsPD0IkT/zUfk93sAHvyGkRT3CI709AAAAAAAAAAAABac9oIy0Pt6ZtL0WP7C+FbYCvUABoL0AAAAAAAAAALM4Hb1I04m6VRxoOFHtzjIng3u5ov6FtwAAgD8AAIA/QIzQvU8azz7F1VI+/AjcvqmQiLxalSo+AAAAAAAAAAAzZzu9j8ZquvbwS7a1nSux+iXZOuaTdjUAAIA/AACAP5rnSLyuJMK8wmQrvINkRT1dyiy9vNqDvAAAgD8AAIA/86q3PfFiUD6LHj++rW7EvnWz3btYSem9AAAAAAAAAAAzSXe8n7iFu/ukmDtMz7E8mRXxvFP/lT0AAIA/AACAP4AbDr0H6jY+GohGPtUywb5OMis+xgjMPAAAAAAAAAAAmpP9vJY2Gj3uSjI+EBWyvpnWZj2qMhY+AAAAAAAAAAAAoTG9OpStPqNv0D2JXrm+zsRjPbo6gD0AAAAAAAAAAKaQ/j1LeIU/cHC7PqKiB7+xdls+qiNvPgAAAAAAAAAAM7sMO3+OFD4i8qM92Xatvsw9lD2mvdS6AAAAAAAAAADaGI29Kp+4Pzsm1L6HXua9QX6CvHmdpb0AAAAAAAAAAPNOir20PTU+MGEQPsG9oL5+u889TcbWPAAAAAAAAAAAZmgZvRQYhrrTY2OyUnUzr8eBibrnuYUzAACAPwAAgD8aElA94v1LPtwRGL5krqq+ZjCDvbKA7TkAAAAAAAAAAM1if70/YSo+KMkFvsD2pr5ndrW9RtjOvQAAAAAAAAAAGm+APoSnRz8WhQa+omrtvvBLkz5C4E6+AAAAAAAAAAAA0Hk8oXC2P3ZbwD48mvU9kog2vMUutLwAAAAAAAAAALLahL6uRsM+Ugw5PkaE+7656Vm+ix8wPgAAAAAAAAAAs8qBvQVdj7uSyyc72k6ZPH3p/rxEV4I9AACAPwAAgD9NWj+9jzMuvKq+Rb7FLES+rITOPRLSnD4AAAAAAACAP81CsD3r3Jc+AbEUvoUkwb4GTwC9gaCaPAAAAAAAAAAA8z9wPk2tdD/1RdI+he8MvyUs1z5zvys+AAAAAAAAAAAAVly8dikgPQoCJ77cpKi+Oy8qvv553DwAAAAAAAAAAJrg9jwusbo+eOFSvg1Irr4iryi9SF9kvQAAAAAAAAAAJrt5vgFt7T7+5bE+x1LvvnH6Qb0JGzA+AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.009254400000000107,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVIRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzVzg8lisckCUhpRSlIwBbJRL3IwBdJRHQKy0eoJiRW91fZQoaAZoCWgPQwjr5uJvuxhwQJSGlFKUaBVL42gWR0CstK2IO6NEdX2UKGgGaAloD0MIRiV1AprSZ0CUhpRSlGgVTegDaBZHQKy00r7wazh1fZQoaAZoCWgPQwgf2scKfntvQJSGlFKUaBVL32gWR0CstQghB7eEdX2UKGgGaAloD0MISKeufFbbcUCUhpRSlGgVS9VoFkdArLUwYgq3E3V9lChoBmgJaA9DCHy6umOx429AlIaUUpRoFUvYaBZHQKy1d7TDwYt1fZQoaAZoCWgPQwinBprPefNyQJSGlFKUaBVL52gWR0CstbC1AqusdX2UKGgGaAloD0MI2zS21wLGcECUhpRSlGgVS9JoFkdArLW4k1Mue3V9lChoBmgJaA9DCNwvn6xYV3NAlIaUUpRoFUvYaBZHQKy1yhwl0HR1fZQoaAZoCWgPQwjLEp1l1g5xQJSGlFKUaBVL4mgWR0Cstc+hwl0HdX2UKGgGaAloD0MIIAvRIbD1cUCUhpRSlGgVS+poFkdArLYb9KmKqHV9lChoBmgJaA9DCAh2/BfInXFAlIaUUpRoFUvVaBZHQKy2WfcN6Pd1fZQoaAZoCWgPQwi5OCo3kYJyQJSGlFKUaBVLx2gWR0CstpS0BwMqdX2UKGgGaAloD0MInKVkOUl5cECUhpRSlGgVS9VoFkdArLabSb6P83V9lChoBmgJaA9DCCandobpeHFAlIaUUpRoFUv4aBZHQKy20aOxSpB1fZQoaAZoCWgPQwhzu5f75HxPQJSGlFKUaBVLvGgWR0CstuGoR7JGdX2UKGgGaAloD0MIDoRkARMMckCUhpRSlGgVS/BoFkdArLbgoXsPa3V9lChoBmgJaA9DCGaiCKmbb3NAlIaUUpRoFUvPaBZHQKy26FeOXE91fZQoaAZoCWgPQwiNXg1QGjhyQJSGlFKUaBVL6mgWR0CstvC+De0pdX2UKGgGaAloD0MIoKhsWFNibkCUhpRSlGgVS9FoFkdArLbtv0h/zHV9lChoBmgJaA9DCDo978bCg3NAlIaUUpRoFUvPaBZHQKy2+pBHCoF1fZQoaAZoCWgPQwieXb71IYdwQJSGlFKUaBVL62gWR0CstwfNiYsvdX2UKGgGaAloD0MInKOOjmt4cUCUhpRSlGgVS+hoFkdArLcGDOC5E3V9lChoBmgJaA9DCPVnP1KEIXBAlIaUUpRoFUvfaBZHQKy3E0vXbud1fZQoaAZoCWgPQwh7Mv/oW15yQJSGlFKUaBVL5GgWR0Cst0dzOopAdX2UKGgGaAloD0MIM1AZ/76abUCUhpRSlGgVS9FoFkdArLdOza9K3HV9lChoBmgJaA9DCLUy4Zd6e3BAlIaUUpRoFUvIaBZHQKy3cGB4D9x1fZQoaAZoCWgPQwh5AfbRKe9yQJSGlFKUaBVL52gWR0Cst8Nwzch1dX2UKGgGaAloD0MI+Pnvwat6c0CUhpRSlGgVS9poFkdArLfZ9w3o93V9lChoBmgJaA9DCHU6kPXUwHNAlIaUUpRoFUvQaBZHQKy39B7/n4h1fZQoaAZoCWgPQwhJTbuY5qxvQJSGlFKUaBVL3GgWR0CsuCPiT+vRdX2UKGgGaAloD0MIRS+jWO4JckCUhpRSlGgVS/NoFkdArLhqIpH7QHV9lChoBmgJaA9DCMFXdOt1NXNAlIaUUpRoFUvRaBZHQKy4cVBUrCp1fZQoaAZoCWgPQwi9N4YAYLpxQJSGlFKUaBVL02gWR0CsuKSDIzWPdX2UKGgGaAloD0MIiQrVzQUGckCUhpRSlGgVS9NoFkdArLjA1k1/D3V9lChoBmgJaA9DCKT6zi9KcG9AlIaUUpRoFUveaBZHQKy5RcMVk+Z1fZQoaAZoCWgPQwgPRYE+URBzQJSGlFKUaBVL8mgWR0CsuYP4mCyydX2UKGgGaAloD0MIYB3HD5UZcECUhpRSlGgVS9ZoFkdArLmRMDfWMHV9lChoBmgJaA9DCJHVrZ4Ts3BAlIaUUpRoFUvTaBZHQKy5oqkM1CR1fZQoaAZoCWgPQwhtjJ3wUplyQJSGlFKUaBVL8GgWR0CsueUaAFxGdX2UKGgGaAloD0MIOsssQvHOckCUhpRSlGgVS/doFkdArLpbcIqsl3V9lChoBmgJaA9DCEyN0M9UAHRAlIaUUpRoFUvmaBZHQKy6Zdfsu4B1fZQoaAZoCWgPQwiDL0ymipxzQJSGlFKUaBVLzWgWR0CsumLS/j82dX2UKGgGaAloD0MIHOxNDInmcUCUhpRSlGgVS8VoFkdArLqDsY2sJnV9lChoBmgJaA9DCLQ9esM98nJAlIaUUpRoFU0BAWgWR0CsuoDCHh0hdX2UKGgGaAloD0MIPwEUI0sJb0CUhpRSlGgVS99oFkdArLqI+wC8vnV9lChoBmgJaA9DCNyAzw8j0W5AlIaUUpRoFUvZaBZHQKy6oRYA80V1fZQoaAZoCWgPQwj7HvXXawhxQJSGlFKUaBVLxWgWR0CsurNk4FRpdX2UKGgGaAloD0MIKENVTKUCckCUhpRSlGgVS8xoFkdArLrIOe8PF3V9lChoBmgJaA9DCAOTG0WWL3FAlIaUUpRoFUvZaBZHQKy64gFotcx1fZQoaAZoCWgPQwh9lBEXwGZxQJSGlFKUaBVL1mgWR0Csut8Wj45+dX2UKGgGaAloD0MIxR9FnTkNcUCUhpRSlGgVS8JoFkdArLrpUrCm/HV9lChoBmgJaA9DCC0ly0kok29AlIaUUpRoFUvXaBZHQKy6/A8B+4N1fZQoaAZoCWgPQwjmzeFarbBwQJSGlFKUaBVL32gWR0CsuwIjv/ipdX2UKGgGaAloD0MItvP91HiFcUCUhpRSlGgVS95oFkdArLsPs/pt8HV9lChoBmgJaA9DCNRJtrocPXBAlIaUUpRoFUvpaBZHQKy7HK9wm3R1fZQoaAZoCWgPQwhIiV3bW5tuQJSGlFKUaBVL52gWR0CsuyyvkiljdX2UKGgGaAloD0MIorjjTf5icUCUhpRSlGgVS8RoFkdArLtrD2rXDnV9lChoBmgJaA9DCDfGTngJsHBAlIaUUpRoFUviaBZHQKy7kX4TK1Z1fZQoaAZoCWgPQwjGTngJzgZyQJSGlFKUaBVL7WgWR0Csu5f7SApbdX2UKGgGaAloD0MIDDz3Hq4gc0CUhpRSlGgVS8ZoFkdArLuhhF3IMnV9lChoBmgJaA9DCMqmXOGd7HFAlIaUUpRoFUvGaBZHQKy7y6o2n891fZQoaAZoCWgPQwi45LhTeqlxQJSGlFKUaBVLz2gWR0CsvDY8uBczdX2UKGgGaAloD0MI7UeKyDCZcUCUhpRSlGgVS/FoFkdArLw8ZFXq7nV9lChoBmgJaA9DCO4jtyadI3FAlIaUUpRoFUvGaBZHQKy8SzeGfwt1fZQoaAZoCWgPQwiCxeHML7BzQJSGlFKUaBVL1mgWR0CsvFzRIBikdX2UKGgGaAloD0MI1NaIYBx8c0CUhpRSlGgVS99oFkdArLzSAavRq3V9lChoBmgJaA9DCCp0XmNXbHFAlIaUUpRoFUvNaBZHQKy8/azNUwV1fZQoaAZoCWgPQwgR4srZu29xQJSGlFKUaBVLzmgWR0CsvTgMMI/rdX2UKGgGaAloD0MINzXQfE42cUCUhpRSlGgVS9hoFkdArL15YxL0z3V9lChoBmgJaA9DCM138BMHRnNAlIaUUpRoFUvHaBZHQKy9dimVJMB1fZQoaAZoCWgPQwjG4GHad8NyQJSGlFKUaBVLyWgWR0Csve3n6l+FdX2UKGgGaAloD0MIKCfaVQjKcECUhpRSlGgVS7xoFkdArL45+lTFVHV9lChoBmgJaA9DCCUfuwsUdnBAlIaUUpRoFUvWaBZHQKy+PZ13dKx1fZQoaAZoCWgPQwgzw0ZZP5NwQJSGlFKUaBVL2mgWR0Csvlf6fra/dX2UKGgGaAloD0MIeJlhoywwc0CUhpRSlGgVS9hoFkdArL5qdBjWkXV9lChoBmgJaA9DCMy4qYHm5nFAlIaUUpRoFU0FAWgWR0CsvnqG+K0ldX2UKGgGaAloD0MI/yWpTPFGckCUhpRSlGgVS8toFkdArL6FLamGd3V9lChoBmgJaA9DCPRQ24aRf3JAlIaUUpRoFUviaBZHQKy+myBTXJ51fZQoaAZoCWgPQwiq1y0CYxtwQJSGlFKUaBVL02gWR0Csvq+UhV2idX2UKGgGaAloD0MI0m70MR+4cUCUhpRSlGgVS+RoFkdArL7n7m+0xHV9lChoBmgJaA9DCDEL7Zwm/3NAlIaUUpRoFUvpaBZHQKy+67yxzJZ1fZQoaAZoCWgPQwg0SwLUFNFxQJSGlFKUaBVLwWgWR0CsvvKXfIjodX2UKGgGaAloD0MI1bDfE6tPcUCUhpRSlGgVS99oFkdArL8G1SflIXV9lChoBmgJaA9DCEijAiebGnJAlIaUUpRoFUvyaBZHQKy/A/Tspod1fZQoaAZoCWgPQwgMkGgChTBzQJSGlFKUaBVL3GgWR0CsvwlMZgogdX2UKGgGaAloD0MIVn2utiJUcUCUhpRSlGgVS+VoFkdArL8adQO4G3V9lChoBmgJaA9DCEijAifbjG9AlIaUUpRoFUvDaBZHQKy/Jttygf51fZQoaAZoCWgPQwjni70X31hwQJSGlFKUaBVL3GgWR0CsvyYHgP3BdX2UKGgGaAloD0MI+bt31Fj7cUCUhpRSlGgVS+ZoFkdArL8+Fi8WbnV9lChoBmgJaA9DCHTTZpyG+HNAlIaUUpRoFU0KAWgWR0Csv1EyckMTdX2UKGgGaAloD0MIBr03hkDAcUCUhpRSlGgVS9VoFkdArL9phQWN3nV9lChoBmgJaA9DCF4UPfDx5nBAlIaUUpRoFUvbaBZHQKy/knpjc211fZQoaAZoCWgPQwj03hgCgCtwQJSGlFKUaBVL02gWR0Csv55Yoy9FdX2UKGgGaAloD0MIT1jiAaVOc0CUhpRSlGgVS8toFkdArL/mUD+zdHV9lChoBmgJaA9DCGA7GLEPlXFAlIaUUpRoFUvpaBZHQKzAYmtQsPJ1fZQoaAZoCWgPQwiKraBpSVJxQJSGlFKUaBVL8GgWR0CswJfapPykdX2UKGgGaAloD0MID7iumFF2cECUhpRSlGgVS9hoFkdArMC59/jKgnV9lChoBmgJaA9DCJCGU+YmvnJAlIaUUpRoFUv4aBZHQKzAzSfDk2h1fZQoaAZoCWgPQwhnSBXFK2RwQJSGlFKUaBVL0WgWR0CswQFA/s3RdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 308,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.99,
|
82 |
+
"ent_coef": 0.009,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 128,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2-unit1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c3d86b312b5e508992b289d44f92a2262af3f6772a5aab73cb64217be662a71
|
3 |
+
size 87929
|
ppo-LunarLander-v2-unit1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b5663043d4cfe937f33c51c4a94aab0ee37e55d8f932406ed37b5fdf296accd
|
3 |
+
size 43201
|
ppo-LunarLander-v2-unit1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-unit1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (204 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 286.5946964395771, "std_reward": 20.21642938933069, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-15T20:57:31.896676"}
|