Eyüp İpler
commited on
Update Main Models/bai-2.1/README.md
Browse files- Main Models/bai-2.1/README.md +81 -42
Main Models/bai-2.1/README.md
CHANGED
@@ -1,43 +1,82 @@
|
|
1 |
-
# bai-2.1 (338787 parametre)
|
2 |
-
|
3 |
-
## EEG üzerinden duygu sınıflandırması yapan "bai-2.1" modeli, bir önceki model olan "bai-2.0" modeline göre overfitting ihtimali azaltılmış ve optimize edilmiş versiyonudur. Tüm işlevleri aynıdır.
|
4 |
-
|
5 |
-
#### NOT: Gerçek zamanlı EEG veri takibi uygulamasına modeli entegre ederseniz, gerçek zamanlı olarak duygu tahmini yapabilmektedir. Uygulamaya erişebilmek için: https://github.com/neurazum/Realtime-EEG-Monitoring
|
6 |
-
|
7 |
-
## -----------------------------------------------------------------------------------
|
8 |
-
|
9 |
-
# bai-2.1 (338787 parameters)
|
10 |
-
|
11 |
-
## The "bai-2.1" model, which performs emotion classification over EEG, is an optimised version of the previous model "bai-2.0" with reduced overfitting probability. All functions are the same.
|
12 |
-
|
13 |
-
#### NOTE: If you integrate the model into a real-time EEG data tracking application, it can predict emotions in real time. To access the application: https://github.com/neurazum/Realtime-EEG-Monitoring
|
14 |
-
|
15 |
-
**Doğruluk/Accuracy: %97.93621013133207**
|
16 |
-
|
17 |
-
## -----------------------------------------------------------------------------------
|
18 |
-
|
19 |
-
# Kullanım / Usage
|
20 |
-
|
21 |
-
```python
|
22 |
-
import numpy as np
|
23 |
-
import pandas as pd
|
24 |
-
from sklearn.preprocessing import StandardScaler
|
25 |
-
from tensorflow.keras.models import load_model
|
26 |
-
import matplotlib.pyplot as plt
|
27 |
-
|
28 |
-
model_path = 'model-path'
|
29 |
-
|
30 |
-
model = load_model(model_path)
|
31 |
-
|
32 |
-
model_name = model_path.split('/')[-1].split('.')[0]
|
33 |
-
|
34 |
-
plt.figure(figsize=(10, 6))
|
35 |
-
plt.title(f'Duygu Tahmini ({model_name}.1)')
|
36 |
-
plt.xlabel('Zaman')
|
37 |
-
plt.ylabel('Sınıf')
|
38 |
-
plt.legend(loc='upper right')
|
39 |
-
plt.grid(True)
|
40 |
-
plt.show()
|
41 |
-
model.summary()
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
```
|
|
|
1 |
+
# bai-2.1 (338787 parametre)
|
2 |
+
|
3 |
+
## EEG üzerinden duygu sınıflandırması yapan "bai-2.1" modeli, bir önceki model olan "bai-2.0" modeline göre overfitting ihtimali azaltılmış ve optimize edilmiş versiyonudur. Tüm işlevleri aynıdır.
|
4 |
+
|
5 |
+
#### NOT: Gerçek zamanlı EEG veri takibi uygulamasına modeli entegre ederseniz, gerçek zamanlı olarak duygu tahmini yapabilmektedir. Uygulamaya erişebilmek için: https://github.com/neurazum/Realtime-EEG-Monitoring
|
6 |
+
|
7 |
+
## -----------------------------------------------------------------------------------
|
8 |
+
|
9 |
+
# bai-2.1 (338787 parameters)
|
10 |
+
|
11 |
+
## The "bai-2.1" model, which performs emotion classification over EEG, is an optimised version of the previous model "bai-2.0" with reduced overfitting probability. All functions are the same.
|
12 |
+
|
13 |
+
#### NOTE: If you integrate the model into a real-time EEG data tracking application, it can predict emotions in real time. To access the application: https://github.com/neurazum/Realtime-EEG-Monitoring
|
14 |
+
|
15 |
+
**Doğruluk/Accuracy: %97.93621013133207**
|
16 |
+
|
17 |
+
## -----------------------------------------------------------------------------------
|
18 |
+
|
19 |
+
# Kullanım / Usage
|
20 |
+
|
21 |
+
```python
|
22 |
+
import numpy as np
|
23 |
+
import pandas as pd
|
24 |
+
from sklearn.preprocessing import StandardScaler
|
25 |
+
from tensorflow.keras.models import load_model
|
26 |
+
import matplotlib.pyplot as plt
|
27 |
+
|
28 |
+
model_path = 'model-path'
|
29 |
+
|
30 |
+
model = load_model(model_path)
|
31 |
+
|
32 |
+
model_name = model_path.split('/')[-1].split('.')[0]
|
33 |
+
|
34 |
+
plt.figure(figsize=(10, 6))
|
35 |
+
plt.title(f'Duygu Tahmini ({model_name}.1)')
|
36 |
+
plt.xlabel('Zaman')
|
37 |
+
plt.ylabel('Sınıf')
|
38 |
+
plt.legend(loc='upper right')
|
39 |
+
plt.grid(True)
|
40 |
+
plt.show()
|
41 |
+
model.summary()
|
42 |
+
```
|
43 |
+
|
44 |
+
# Tahmin / Prediction
|
45 |
+
|
46 |
+
```python
|
47 |
+
import numpy as np
|
48 |
+
import pandas as pd
|
49 |
+
from sklearn.preprocessing import StandardScaler
|
50 |
+
from tensorflow.keras.models import load_model
|
51 |
+
|
52 |
+
model_path = 'model-path'
|
53 |
+
|
54 |
+
model = load_model(model_path)
|
55 |
+
|
56 |
+
scaler = StandardScaler()
|
57 |
+
|
58 |
+
predictions = model.predict(X_new_reshaped)
|
59 |
+
predicted_labels = np.argmax(predictions, axis=1)
|
60 |
+
|
61 |
+
label_mapping = {'NEGATIVE': 0, 'NEUTRAL': 1, 'POSITIVE': 2}
|
62 |
+
label_mapping_reverse = {v: k for k, v in label_mapping.items()}
|
63 |
+
|
64 |
+
#new_input = np.array([[23, 465, 12, 9653] * 637])
|
65 |
+
new_input = np.random.rand(1, 2548) # 1 örnek ve 2548 özellik
|
66 |
+
new_input_scaled = scaler.fit_transform(new_input)
|
67 |
+
new_input_reshaped = new_input_scaled.reshape((new_input_scaled.shape[0], 1, new_input_scaled.shape[1]))
|
68 |
+
|
69 |
+
new_prediction = model.predict(new_input_reshaped)
|
70 |
+
predicted_label = np.argmax(new_prediction, axis=1)[0]
|
71 |
+
predicted_emotion = label_mapping_reverse[predicted_label]
|
72 |
+
|
73 |
+
if predicted_emotion == 'NEGATIVE':
|
74 |
+
predicted_emotion = 'Negatif'
|
75 |
+
elif predicted_emotion == 'NEUTRAL':
|
76 |
+
predicted_emotion = 'Nötr'
|
77 |
+
elif predicted_emotion == 'POSITIVE':
|
78 |
+
predicted_emotion = 'Pozitif'
|
79 |
+
|
80 |
+
print(f'Giriş Verileri: {new_input}')
|
81 |
+
print(f'Tahmin Edilen Duygu: {predicted_emotion}')
|
82 |
```
|