Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import streamlit as st
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
|
5 |
+
def prediction_pop_model(year, population, pred_year):
|
6 |
+
n = len(year)
|
7 |
+
sum_x = np.sum(year, dtype=np.float64)
|
8 |
+
sum_y = np.sum(population, dtype=np.float64)
|
9 |
+
sum_xy = np.sum(year * population, dtype=np.float64)
|
10 |
+
sum_x_squared = np.sum(year ** 2, dtype=np.float64)
|
11 |
+
|
12 |
+
slope = (n * sum_xy - sum_x * sum_y) / (n * sum_x_squared - sum_x ** 2)
|
13 |
+
intercept = (sum_y - slope * sum_x) / n
|
14 |
+
|
15 |
+
pred_population = slope * (pred_year) + intercept
|
16 |
+
return pred_population
|
17 |
+
|
18 |
+
# Data
|
19 |
+
year = np.array([1952, 1957, 1962, 1967, 1972, 1977, 1982, 1987, 1992, 1997, 2002, 2007, 2009, 2011, 2013, 2015, 2017, 2019, 2021, 2023, 2024], dtype=np.float64)
|
20 |
+
population = np.array([22223309, 25009741, 28173309, 31681188, 34807417, 38783863, 45681811, 52799062, 59402198, 66134291, 73312559, 75100000, 78300000, 81500000, 85800000, 89000000, 94800000, 98900000, 102800000, 106100000, 107300000], dtype=np.float64)
|
21 |
+
|
22 |
+
# Streamlit Interface
|
23 |
+
st.title("Population Prediction Model")
|
24 |
+
|
25 |
+
# Input year
|
26 |
+
input_year = st.number_input("Enter the year you want to predict the population for:", min_value=1950, max_value=2100, step=1, value=2024)
|
27 |
+
|
28 |
+
# Predict button
|
29 |
+
if st.button("Predict"):
|
30 |
+
predicted_population = prediction_pop_model(year, population, input_year)
|
31 |
+
st.write(f"Predicted Population for {input_year}: {predicted_population}")
|
32 |
+
|
33 |
+
# Plotting
|
34 |
+
plt.figure(figsize=(10, 5))
|
35 |
+
plt.scatter(year, population, color='blue', label='Actual Population')
|
36 |
+
plt.plot(year, population, color='blue')
|
37 |
+
plt.scatter(input_year, predicted_population, color='red', label='Predicted Population')
|
38 |
+
plt.xlabel('Year')
|
39 |
+
plt.ylabel('Population')
|
40 |
+
plt.title('Population Prediction')
|
41 |
+
plt.legend()
|
42 |
+
st.pyplot(plt.gcf())
|