exaggerated
commited on
Commit
•
5765f25
1
Parent(s):
81bf11c
Upload 10 files
Browse files- README.md +121 -0
- config.json +32 -0
- logs.txt +19 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- rust_model.ot +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
README.md
CHANGED
@@ -1,3 +1,124 @@
|
|
1 |
---
|
|
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
license: apache-2.0
|
4 |
+
tags:
|
5 |
+
- text2vec
|
6 |
+
- feature-extraction
|
7 |
+
- sentence-similarity
|
8 |
+
- transformers
|
9 |
---
|
10 |
+
# shibing624/text2vec-base-chinese
|
11 |
+
This is a CoSENT(Cosine Sentence) model: shibing624/text2vec-base-chinese.
|
12 |
+
|
13 |
+
It maps sentences to a 768 dimensional dense vector space and can be used for tasks
|
14 |
+
like sentence embeddings, text matching or semantic search.
|
15 |
+
|
16 |
+
|
17 |
+
## Evaluation
|
18 |
+
For an automated evaluation of this model, see the *Evaluation Benchmark*: [text2vec](https://github.com/shibing624/text2vec)
|
19 |
+
|
20 |
+
- chinese text matching task:
|
21 |
+
|
22 |
+
| Model Name | ATEC | BQ | LCQMC | PAWSX | STS-B | Avg | QPS |
|
23 |
+
| :---- | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
|
24 |
+
| w2v-light-tencent-chinese | 20.00 | 31.49 | 59.46 | 2.57 | 55.78 | 33.86 | 10283 |
|
25 |
+
| paraphrase-multilingual-MiniLM-L12-v2 | 18.42 | 38.52 | 63.96 | 10.14 | 78.90 | 41.99 | 2371 |
|
26 |
+
| text2vec-base-chinese | 31.93 | 42.67 | 70.16 | 17.21 | 79.30 | **48.25** | 2572 |
|
27 |
+
|
28 |
+
|
29 |
+
## Usage (text2vec)
|
30 |
+
Using this model becomes easy when you have [text2vec](https://github.com/shibing624/text2vec) installed:
|
31 |
+
|
32 |
+
```
|
33 |
+
pip install -U text2vec
|
34 |
+
```
|
35 |
+
|
36 |
+
Then you can use the model like this:
|
37 |
+
|
38 |
+
```python
|
39 |
+
from text2vec import SentenceModel
|
40 |
+
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
|
41 |
+
|
42 |
+
model = SentenceModel('shibing624/text2vec-base-chinese')
|
43 |
+
embeddings = model.encode(sentences)
|
44 |
+
print(embeddings)
|
45 |
+
```
|
46 |
+
|
47 |
+
## Usage (HuggingFace Transformers)
|
48 |
+
Without [text2vec](https://github.com/shibing624/text2vec), you can use the model like this:
|
49 |
+
|
50 |
+
First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
51 |
+
|
52 |
+
Install transformers:
|
53 |
+
```
|
54 |
+
pip install transformers
|
55 |
+
```
|
56 |
+
|
57 |
+
Then load model and predict:
|
58 |
+
```python
|
59 |
+
from transformers import BertTokenizer, BertModel
|
60 |
+
import torch
|
61 |
+
|
62 |
+
# Mean Pooling - Take attention mask into account for correct averaging
|
63 |
+
def mean_pooling(model_output, attention_mask):
|
64 |
+
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
|
65 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
66 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
67 |
+
|
68 |
+
# Load model from HuggingFace Hub
|
69 |
+
tokenizer = BertTokenizer.from_pretrained('shibing624/text2vec-base-chinese')
|
70 |
+
model = BertModel.from_pretrained('shibing624/text2vec-base-chinese')
|
71 |
+
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
|
72 |
+
# Tokenize sentences
|
73 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
74 |
+
|
75 |
+
# Compute token embeddings
|
76 |
+
with torch.no_grad():
|
77 |
+
model_output = model(**encoded_input)
|
78 |
+
# Perform pooling. In this case, mean pooling.
|
79 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
80 |
+
print("Sentence embeddings:")
|
81 |
+
print(sentence_embeddings)
|
82 |
+
```
|
83 |
+
|
84 |
+
## Usage (sentence-transformers)
|
85 |
+
[sentence-transformers](https://github.com/UKPLab/sentence-transformers) is a popular library to compute dense vector representations for sentences.
|
86 |
+
|
87 |
+
Install sentence-transformers:
|
88 |
+
```
|
89 |
+
pip install -U sentence-transformers
|
90 |
+
```
|
91 |
+
|
92 |
+
Then load model and predict:
|
93 |
+
|
94 |
+
```python
|
95 |
+
from sentence_transformers import SentenceTransformer
|
96 |
+
|
97 |
+
m = SentenceTransformer("shibing624/text2vec-base-chinese")
|
98 |
+
sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
|
99 |
+
|
100 |
+
sentence_embeddings = m.encode(sentences)
|
101 |
+
print("Sentence embeddings:")
|
102 |
+
print(sentence_embeddings)
|
103 |
+
```
|
104 |
+
|
105 |
+
|
106 |
+
## Full Model Architecture
|
107 |
+
```
|
108 |
+
CoSENT(
|
109 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
110 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_mean_tokens': True})
|
111 |
+
)
|
112 |
+
```
|
113 |
+
## Citing & Authors
|
114 |
+
This model was trained by [text2vec](https://github.com/shibing624/text2vec).
|
115 |
+
|
116 |
+
If you find this model helpful, feel free to cite:
|
117 |
+
```bibtex
|
118 |
+
@software{text2vec,
|
119 |
+
author = {Xu Ming},
|
120 |
+
title = {text2vec: A Tool for Text to Vector},
|
121 |
+
year = {2022},
|
122 |
+
url = {https://github.com/shibing624/text2vec},
|
123 |
+
}
|
124 |
+
```
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "hfl/chinese-macbert-base",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"directionality": "bidi",
|
9 |
+
"gradient_checkpointing": false,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-12,
|
16 |
+
"max_position_embeddings": 512,
|
17 |
+
"model_type": "bert",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 0,
|
21 |
+
"pooler_fc_size": 768,
|
22 |
+
"pooler_num_attention_heads": 12,
|
23 |
+
"pooler_num_fc_layers": 3,
|
24 |
+
"pooler_size_per_head": 128,
|
25 |
+
"pooler_type": "first_token_transform",
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.12.3",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 21128
|
32 |
+
}
|
logs.txt
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Epoch:0 Valid| corr: 0.794410
|
2 |
+
Epoch:0 Valid| corr: 0.691819
|
3 |
+
Epoch:1 Valid| corr: 0.722749
|
4 |
+
Epoch:2 Valid| corr: 0.735054
|
5 |
+
Epoch:3 Valid| corr: 0.738295
|
6 |
+
Epoch:4 Valid| corr: 0.739411
|
7 |
+
Test | corr: 0.679971
|
8 |
+
Epoch:0 Valid| corr: 0.817416
|
9 |
+
Epoch:1 Valid| corr: 0.832376
|
10 |
+
Epoch:2 Valid| corr: 0.842308
|
11 |
+
Epoch:3 Valid| corr: 0.843520
|
12 |
+
Epoch:4 Valid| corr: 0.841837
|
13 |
+
Test | corr: 0.793495
|
14 |
+
Epoch:0 Valid| corr: 0.814648
|
15 |
+
Epoch:1 Valid| corr: 0.831609
|
16 |
+
Epoch:2 Valid| corr: 0.841678
|
17 |
+
Epoch:3 Valid| corr: 0.842387
|
18 |
+
Epoch:4 Valid| corr: 0.841435
|
19 |
+
Test | corr: 0.794840
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54ff3a857e3efa0b8114eb5e7a9e7e2b6230b4ddb083254a751e44772bb99075
|
3 |
+
size 409154033
|
rust_model.ot
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef6c0545c58ffb71777d1880df4fd5b18d54a38f8314e278cad3adb2e10d0f72
|
3 |
+
size 409136819
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "do_basic_tokenize": true, "never_split": null, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "name_or_path": "hfl/chinese-macbert-base", "tokenizer_class": "BertTokenizer"}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|