a2c-PandaReachDense-v3 / config.json
ewertonfelipe's picture
Initial commit
f1782d8
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7dfd5930f520>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dfd5930a480>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697639630131777688, "learning_rate": 0.00096, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAMHG6PjzEpjxtMr8+oVPIvuwhsj4b6Zg+2sORv392Ub5F4je/MHG6PjzEpjxtMr8+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAPmPGvygpuL8MybQ/GZG5v+4UTT/eOS0/yi1/vwvv5r6kFC6/TisGP3d7dL9oSdY/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAwcbo+PMSmPG0yvz6hUMM+rU1Lu4qIsT6hU8i+7CGyPhvpmD5QNT6/83jXP+qCWz/aw5G/f3ZRvkXiN7/r6ZW/CncPPKNpmr4wcbo+PMSmPG0yvz6hUMM+rU1Lu4qIsT6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.3641448 0.02035724 0.3734316 ]\n [-0.39126304 0.34791505 0.29865345]\n [-1.1387894 -0.20455359 -0.71829635]\n [ 0.3641448 0.02035724 0.3734316 ]]", "desired_goal": "[[-1.5499036 -1.438756 1.4123855 ]\n [-1.4497405 0.8011006 0.67666423]\n [-0.99679244 -0.4510425 -0.68000245]\n [ 0.5240983 -0.9550089 1.6741152 ]]", "observation": "[[ 0.3641448 0.02035724 0.3734316 0.38147452 -0.00310216 0.34674484]\n [-0.39126304 0.34791505 0.29865345 -0.743001 1.6833786 0.85746634]\n [-1.1387894 -0.20455359 -0.71829635 -1.1712011 0.00875641 -0.3015872 ]\n [ 0.3641448 0.02035724 0.3734316 0.38147452 -0.00310216 0.34674484]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUWu9PfqUEb41Zw09BXggPcWa0r3uC809o0gZviYaxrwgoI49joMGPqnFWTw+wV0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.09248985 -0.14216986 0.03452225]\n [ 0.03917696 -0.10283426 0.10012041]\n [-0.14969115 -0.02418239 0.06964135]\n [ 0.13136122 0.01329175 0.21655747]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7LSJCSidriMAWyUSwKMAXSUR0ClLHJx3mmtdX2UKGgGR7/djTrmhdt3aAdLB2gIR0ClLAZl4C6pdX2UKGgGR7/kGcWj4593aAdLCGgIR0ClK8hO58SgdX2UKGgGR7/Z2rXDm8ujaAdLBGgIR0ClLIuBMBZIdX2UKGgGR7/fB55Z8rqdaAdLBWgIR0ClLExYRujzdX2UKGgGR7/CgzxgAp8XaAdLAmgIR0ClLBIx59mZdX2UKGgGR7/BOrQw9JSSaAdLAmgIR0ClLJZi/fwadX2UKGgGR7/S++/QBxPwaAdLA2gIR0ClK9jKoybhdX2UKGgGR7/PavicXm/4aAdLA2gIR0ClLFuGj9GadX2UKGgGR7+928qWkaddaAdLAmgIR0ClLBxqoIfKdX2UKGgGR7/RGHHmzSkTaAdLA2gIR0ClK+yaVlf7dX2UKGgGR7/bVU+9rXUZaAdLBGgIR0ClLK/GMn7YdX2UKGgGR7/MIv8IiTt+aAdLA2gIR0ClLDCnpB5YdX2UKGgGR7/AUWVNYbKiaAdLAmgIR0ClLDkU0vXcdX2UKGgGR7/TBmPHT7VKaAdLA2gIR0ClK/qkdmxudX2UKGgGR7/RO5rgwXZXaAdLA2gIR0ClLL1Fx4pudX2UKGgGR7/egzguRLbpaAdLBmgIR0ClLH1D0DlpdX2UKGgGR7/UyqMm4RVZaAdLA2gIR0ClLEZQxesxdX2UKGgGR7/E176YVqN7aAdLA2gIR0ClLMplz2eydX2UKGgGR7/OV45cTrVwaAdLA2gIR0ClLIp9iMHbdX2UKGgGR7/YZhrnDBM0aAdLBWgIR0ClLBSvLX+VdX2UKGgGR7+2iGnGbTc7aAdLAmgIR0ClLJde6ZpjdX2UKGgGR7/VyylenhsJaAdLBGgIR0ClLF4UFjd6dX2UKGgGR7/R0TURWcSXaAdLBGgIR0ClLOJg9eQddX2UKGgGR7+lDc/MW43FaAdLAWgIR0ClLOcsUZeidX2UKGgGR7/RJul41P30aAdLA2gIR0ClLKdI5HVgdX2UKGgGR7/ao7FKkEcLaAdLBGgIR0ClLCm2TgVHdX2UKGgGR7+ggxJul41QaAdLAWgIR0ClLOx7RfF8dX2UKGgGR7/RLv1DjR2KaAdLA2gIR0ClLG2v8qFzdX2UKGgGR7/B1VYISlFdaAdLAmgIR0ClLDPcSGrTdX2UKGgGR7+wQrc0tRNzaAdLAmgIR0ClLHcUEgW8dX2UKGgGR7/ZRNh3JPqLaAdLBGgIR0ClLL4dhiLEdX2UKGgGR7/A4SYgJTl1aAdLAmgIR0ClLEBDXvphdX2UKGgGR7/VQ1aW5YozaAdLBGgIR0ClLQMxfv4NdX2UKGgGR7/B0/4ZdfLLaAdLAmgIR0ClLIPR7Z3+dX2UKGgGR7+bfgrH2h7FaAdLAWgIR0ClLIiUPhAGdX2UKGgGR7/ODEFW4mTlaAdLA2gIR0ClLMyVObiIdX2UKGgGR7+ocNpdrwfAaAdLAWgIR0ClLI2IwdsBdX2UKGgGR7/SemelKsdUaAdLA2gIR0ClLE84PwuvdX2UKGgGR7/GNPxhDw6RaAdLA2gIR0ClLRMsQNCrdX2UKGgGR7+80FbFCLMtaAdLAmgIR0ClLNieEqUedX2UKGgGR7/ChkAggX/HaAdLAmgIR0ClLJmBWgezdX2UKGgGR7+jZ6D5CWu6aAdLAWgIR0ClLN1EVnEmdX2UKGgGR7/RdvbXYlIFaAdLA2gIR0ClLF+VTrE+dX2UKGgGR7/CPczqKP4maAdLAmgIR0ClLKM8ox5+dX2UKGgGR7/SPeYUnG83aAdLBWgIR0ClLS6Ww/xEdX2UKGgGR7/S05U96kZaaAdLA2gIR0ClLO7SZ0CBdX2UKGgGR7/RSvC/GlyjaAdLA2gIR0ClLLQ9aEBbdX2UKGgGR7/a078vVVghaAdLBGgIR0ClLHWtU4rCdX2UKGgGR7+hczImw7koaAdLAWgIR0ClLHoFeOXFdX2UKGgGR7+1+kP+XJHRaAdLAmgIR0ClLL1LJ0W/dX2UKGgGR7/Vtbs4T9KmaAdLBGgIR0ClLUFolD4QdX2UKGgGR7/HII4VARkFaAdLAmgIR0ClLMX/xUeddX2UKGgGR7/RNSZSeiBYaAdLA2gIR0ClLIe0ojOcdX2UKGgGR7/XzvqkdmxuaAdLBmgIR0ClLQpyZKFqdX2UKGgGR7/KWZZ0Syt3aAdLA2gIR0ClLVGo73fydX2UKGgGR7/ODGLk0aZQaAdLA2gIR0ClLNa7dznzdX2UKGgGR7/Qi1y/9Hc2aAdLA2gIR0ClLJg/s3Q2dX2UKGgGR7/QxxDLKV6eaAdLA2gIR0ClLRqAjIJadX2UKGgGR7/DMvAXVLBbaAdLAmgIR0ClLN/dqL0jdX2UKGgGR7/B2AXl8w6AaAdLAmgIR0ClLSO2AoXsdX2UKGgGR7/Rz8P4EfT1aAdLA2gIR0ClLKXuE25ydX2UKGgGR7/VQqqfe1rqaAdLBWgIR0ClLWiVjZtfdX2UKGgGR7++QDFId2gWaAdLAmgIR0ClLOmFrVOLdX2UKGgGR7/Nhy8zyjHoaAdLA2gIR0ClLLQMH8jzdX2UKGgGR7/PxZMcp9ZzaAdLA2gIR0ClLXm8mKIjdX2UKGgGR7/a/ag2606YaAdLBGgIR0ClLTm7rcCYdX2UKGgGR7/VCpFTefqYaAdLA2gIR0ClLPrteD3/dX2UKGgGR7+2OPvKEFnqaAdLAmgIR0ClLYK6e5FxdX2UKGgGR7/Or4nF5v9+aAdLA2gIR0ClLMSkbgjydX2UKGgGR7/U34sVclgMaAdLA2gIR0ClLUcKw6hhdX2UKGgGR7/SyhBZ6lchaAdLBGgIR0ClLQzBAOawdX2UKGgGR7/MR9PUKArhaAdLA2gIR0ClLZCuuA7QdX2UKGgGR7/O4+8oQWepaAdLA2gIR0ClLNKGlANYdX2UKGgGR7/S9nscABDHaAdLA2gIR0ClLVTkp7TldX2UKGgGR7+8yULUkOZtaAdLAmgIR0ClLRW6TW5IdX2UKGgGR7+lFYuCf6GhaAdLAWgIR0ClLRntnf2sdX2UKGgGR7/B+Q2dd3SsaAdLAmgIR0ClLNt5t3wDdX2UKGgGR7/XSvC/GlyjaAdLBGgIR0ClLaTCUHIIdX2UKGgGR7/TdX1anrIHaAdLA2gIR0ClLWS4e9zwdX2UKGgGR7/Bqh11W8yvaAdLAmgIR0ClLSWOQyRCdX2UKGgGR7/X6t1ZDArQaAdLBGgIR0ClLPByKekIdX2UKGgGR7/GInjQzDXOaAdLA2gIR0ClLbMzl90BdX2UKGgGR7/GBDohY/3WaAdLA2gIR0ClLXM0HhS+dX2UKGgGR7/QdAgPmPo3aAdLA2gIR0ClLTQmVqvedX2UKGgGR7/DFVktmL9/aAdLAmgIR0ClLXzEit7sdX2UKGgGR7/B+y7f51vEaAdLAmgIR0ClLT2v8qFzdX2UKGgGR7/Qp8neBQN1aAdLA2gIR0ClLP9dmg8KdX2UKGgGR7/V9aEBbOeKaAdLA2gIR0ClLcIEB8x9dX2UKGgGR7+2xZ+x4Y78aAdLAmgIR0ClLUmJemeldX2UKGgGR7/UjbSJCSieaAdLA2gIR0ClLY1Rk3CLdX2UKGgGR7/JFAE+xGDuaAdLA2gIR0ClLQ+PzWf9dX2UKGgGR7/Tdn003wTeaAdLA2gIR0ClLdIgvDgqdX2UKGgGR7/CHxjJ+2E1aAdLAmgIR0ClLZYFRpDedX2UKGgGR7/Q92HLzPKMaAdLA2gIR0ClLVcTakAQdX2UKGgGR7/RCOWBz3h5aAdLA2gIR0ClLRzc6/7BdX2UKGgGR7+9ddE9dNWVaAdLAmgIR0ClLV/nnuAqdX2UKGgGR7/HBw++ueSTaAdLA2gIR0ClLaOby6MBdX2UKGgGR7/ZXlbNbC79aAdLBWgIR0ClLeg9V3lkdX2UKGgGR7/HNATqSowVaAdLA2gIR0ClLSqBmPHUdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}