evilfreelancer
commited on
Commit
•
a8fd3f6
1
Parent(s):
bc29382
Update README.md
Browse files
README.md
CHANGED
@@ -1,19 +1,46 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
pipeline_tag: sentence-similarity
|
4 |
tags:
|
|
|
5 |
- sentence-transformers
|
6 |
-
- feature-extraction
|
7 |
- sentence-similarity
|
|
|
8 |
- transformers
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
|
|
|
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
## Usage (Sentence-Transformers)
|
19 |
|
@@ -27,36 +54,56 @@ Then you can use the model like this:
|
|
27 |
|
28 |
```python
|
29 |
from sentence_transformers import SentenceTransformer
|
30 |
-
sentences = ["This is an example sentence", "Each sentence is converted"]
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
embeddings = model.encode(sentences)
|
34 |
print(embeddings)
|
35 |
```
|
36 |
|
37 |
-
|
38 |
-
|
39 |
## Usage (HuggingFace Transformers)
|
40 |
-
|
|
|
|
|
|
|
41 |
|
42 |
```python
|
43 |
from transformers import AutoTokenizer, AutoModel
|
44 |
import torch
|
45 |
|
46 |
|
47 |
-
#Mean Pooling - Take attention mask into account for correct averaging
|
48 |
def mean_pooling(model_output, attention_mask):
|
49 |
-
token_embeddings = model_output[0]
|
50 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
51 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
52 |
|
53 |
|
54 |
# Sentences we want sentence embeddings for
|
55 |
-
sentences = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
# Load model from HuggingFace Hub
|
58 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
59 |
-
model = AutoModel.from_pretrained('
|
60 |
|
61 |
# Tokenize sentences
|
62 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
@@ -72,30 +119,43 @@ print("Sentence embeddings:")
|
|
72 |
print(sentence_embeddings)
|
73 |
```
|
74 |
|
75 |
-
|
76 |
-
|
77 |
## Evaluation Results
|
78 |
|
79 |
-
|
|
|
|
|
|
|
80 |
|
81 |
-
|
82 |
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
## Training
|
|
|
85 |
The model was trained with the parameters:
|
86 |
|
87 |
**DataLoader**:
|
88 |
|
89 |
-
`torch.utils.data.dataloader.DataLoader` of length
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
92 |
```
|
93 |
|
94 |
**Loss**:
|
95 |
|
96 |
-
`sentence_transformers.losses.MSELoss.MSELoss`
|
97 |
|
98 |
Parameters of the fit()-Method:
|
|
|
99 |
```
|
100 |
{
|
101 |
"epochs": 20,
|
@@ -114,8 +174,8 @@ Parameters of the fit()-Method:
|
|
114 |
}
|
115 |
```
|
116 |
|
117 |
-
|
118 |
## Full Model Architecture
|
|
|
119 |
```
|
120 |
SentenceTransformer(
|
121 |
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
|
|
1 |
---
|
2 |
+
pipeline_tag: feature-extraction
|
|
|
3 |
tags:
|
4 |
+
- pytorch
|
5 |
- sentence-transformers
|
|
|
6 |
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
- transformers
|
9 |
+
language:
|
10 |
+
- ru
|
11 |
+
- en
|
12 |
+
datasets:
|
13 |
+
- evilfreelancer/opus-php-en-ru-cleaned
|
14 |
+
- evilfreelancer/golang-en-ru
|
15 |
+
- Helsinki-NLP/opus_books
|
16 |
---
|
17 |
|
18 |
+
# Enbeddrus v0.2 - English and Russian embedder
|
19 |
+
|
20 |
+
> This model trained on Parallel Corpora of Russian and English texts
|
21 |
+
|
22 |
+
This is a BERT (uncased) [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional
|
23 |
+
dense vector space and can be used for tasks like clustering or semantic search.
|
24 |
+
|
25 |
+
- **Parameters**: 168 million
|
26 |
+
- **Layers**: 12
|
27 |
+
- **Hidden Size**: 768
|
28 |
+
- **Attention Heads**: 12
|
29 |
+
- **Vocabulary Size**: 119,547
|
30 |
+
- **Maximum Sequence Length**: 512 tokens
|
31 |
|
32 |
+
The Enbeddrus model is designed to extract similar embeddings for comparable English and Russian phrases. It is based on
|
33 |
+
the [bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-cased) model and was
|
34 |
+
trained over 20 epochs on the following datasets:
|
35 |
|
36 |
+
- [evilfreelancer/opus-php-en-ru-cleaned](https://huggingface.co/datasets/evilfreelancer/opus-php-en-ru-cleaned) (train): 1.6k lines
|
37 |
+
- [evilfreelancer/golang-en-ru](https://huggingface.co/datasets/evilfreelancer/golang-en-ru) (train): 554 lines
|
38 |
+
- [Helsinki-NLP/opus_books](https://huggingface.co/datasets/Helsinki-NLP/opus_books/viewer/en-ru) (en-ru, train): 17.5k lines
|
39 |
+
|
40 |
+
The goal of this model is to generate identical or very similar embeddings regardless of whether the text is written in
|
41 |
+
English or Russian.
|
42 |
+
|
43 |
+
[Enbeddrus GGUF](https://ollama.com/evilfreelancer/enbeddrus) version available via Ollama.
|
44 |
|
45 |
## Usage (Sentence-Transformers)
|
46 |
|
|
|
54 |
|
55 |
```python
|
56 |
from sentence_transformers import SentenceTransformer
|
|
|
57 |
|
58 |
+
sentences = [
|
59 |
+
"PHP является скриптовым языком программирования, широко используемым для веб-разработки.",
|
60 |
+
"PHP is a scripting language widely used for web development.",
|
61 |
+
"PHP поддерживает множество баз данных, таких как MySQL, PostgreSQL и SQLite.",
|
62 |
+
"PHP supports many databases like MySQL, PostgreSQL, and SQLite.",
|
63 |
+
"Функция echo в PHP используется для вывода текста на экран.",
|
64 |
+
"The echo function in PHP is used to output text to the screen.",
|
65 |
+
"Машинное обучение помогает создавать интеллектуальные системы.",
|
66 |
+
"Machine learning helps to create intelligent systems.",
|
67 |
+
]
|
68 |
+
|
69 |
+
model = SentenceTransformer('evilfreelancer/enbeddrus-v0.1')
|
70 |
embeddings = model.encode(sentences)
|
71 |
print(embeddings)
|
72 |
```
|
73 |
|
|
|
|
|
74 |
## Usage (HuggingFace Transformers)
|
75 |
+
|
76 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input
|
77 |
+
through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word
|
78 |
+
embeddings.
|
79 |
|
80 |
```python
|
81 |
from transformers import AutoTokenizer, AutoModel
|
82 |
import torch
|
83 |
|
84 |
|
85 |
+
# Mean Pooling - Take attention mask into account for correct averaging
|
86 |
def mean_pooling(model_output, attention_mask):
|
87 |
+
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
|
88 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
89 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
90 |
|
91 |
|
92 |
# Sentences we want sentence embeddings for
|
93 |
+
sentences = [
|
94 |
+
"PHP является скриптовым языком программирования, широко используемым для веб-разработки.",
|
95 |
+
"PHP is a scripting language widely used for web development.",
|
96 |
+
"PHP поддерживает множество баз данных, таких как MySQL, PostgreSQL и SQLite.",
|
97 |
+
"PHP supports many databases like MySQL, PostgreSQL, and SQLite.",
|
98 |
+
"Функция echo в PHP используется для вывода текста на экран.",
|
99 |
+
"The echo function in PHP is used to output text to the screen.",
|
100 |
+
"Машинное обучение помогает создавать интеллектуальные системы.",
|
101 |
+
"Machine learning helps to create intelligent systems.",
|
102 |
+
]
|
103 |
|
104 |
# Load model from HuggingFace Hub
|
105 |
+
tokenizer = AutoTokenizer.from_pretrained('evilfreelancer/enbeddrus-v0.1')
|
106 |
+
model = AutoModel.from_pretrained('evilfreelancer/enbeddrus-v0.1')
|
107 |
|
108 |
# Tokenize sentences
|
109 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
119 |
print(sentence_embeddings)
|
120 |
```
|
121 |
|
|
|
|
|
122 |
## Evaluation Results
|
123 |
|
124 |
+
The model was tested on the `eval` split of the
|
125 |
+
dataset [evilfreelancer/opus-php-en-ru-cleaned](https://huggingface.co/datasets/evilfreelancer/opus-php-en-ru-cleaned),
|
126 |
+
which contains 100 pairs of sentences in Russian and English on the topic of PHP. The results of the testing are
|
127 |
+
presented in the image below.
|
128 |
|
129 |
+
![Evaluation Results](./eval.png)
|
130 |
|
131 |
+
* **Left**: Embedding similarity in Russian and English before training
|
132 |
+
(the points are spread out into two distinct clusters).
|
133 |
+
* **Center**: Embedding similarity after training
|
134 |
+
(the points representing similar phrases are very close to each other).
|
135 |
+
* **Right**: Cosine distance before and after training.
|
136 |
|
137 |
## Training
|
138 |
+
|
139 |
The model was trained with the parameters:
|
140 |
|
141 |
**DataLoader**:
|
142 |
|
143 |
+
`torch.utils.data.dataloader.DataLoader` of length 556 with parameters:
|
144 |
+
|
145 |
+
```python
|
146 |
+
{
|
147 |
+
'batch_size': 64,
|
148 |
+
'sampler': 'torch.utils.data.sampler.RandomSampler',
|
149 |
+
'batch_sampler': 'torch.utils.data.sampler.BatchSampler'
|
150 |
+
}
|
151 |
```
|
152 |
|
153 |
**Loss**:
|
154 |
|
155 |
+
`sentence_transformers.losses.MSELoss.MSELoss`
|
156 |
|
157 |
Parameters of the fit()-Method:
|
158 |
+
|
159 |
```
|
160 |
{
|
161 |
"epochs": 20,
|
|
|
174 |
}
|
175 |
```
|
176 |
|
|
|
177 |
## Full Model Architecture
|
178 |
+
|
179 |
```
|
180 |
SentenceTransformer(
|
181 |
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|