Create conditional_pipeline.py
Browse files- conditional_pipeline.py +83 -0
conditional_pipeline.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Union, List, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from diffusers.utils.torch_utils import randn_tensor
|
5 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
6 |
+
|
7 |
+
class ScoreSdeVePipelineConditioned(DiffusionPipeline):
|
8 |
+
r"""
|
9 |
+
Pipeline for unconditional image generation.
|
10 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
11 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
12 |
+
Parameters:
|
13 |
+
unet ([`UNet2DModel`]):
|
14 |
+
A `UNet2DModel` to denoise the encoded image.
|
15 |
+
scheduler ([`ScoreSdeVeScheduler`]):
|
16 |
+
A `ScoreSdeVeScheduler` to be used in combination with `unet` to denoise the encoded image.
|
17 |
+
"""
|
18 |
+
|
19 |
+
def __init__(self, unet, scheduler):
|
20 |
+
super().__init__()
|
21 |
+
self.register_modules(unet=unet, scheduler=scheduler)
|
22 |
+
|
23 |
+
@torch.no_grad()
|
24 |
+
def __call__(
|
25 |
+
self,
|
26 |
+
batch_size: int = 1,
|
27 |
+
num_inference_steps: int = 2000,
|
28 |
+
class_labels: Optional[torch.Tensor] = None,
|
29 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
30 |
+
output_type: Optional[str] = "pil",
|
31 |
+
return_dict: bool = True,
|
32 |
+
**kwargs,
|
33 |
+
) -> Union[ImagePipelineOutput, Tuple]:
|
34 |
+
r"""
|
35 |
+
The call function to the pipeline for generation.
|
36 |
+
Args:
|
37 |
+
batch_size (`int`, *optional*, defaults to 1):
|
38 |
+
The number of images to generate.
|
39 |
+
generator (`torch.Generator`, `optional`):
|
40 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
41 |
+
generation deterministic.
|
42 |
+
output_type (`str`, `optional`, defaults to `"pil"`):
|
43 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
44 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
45 |
+
Whether or not to return a [`ImagePipelineOutput`] instead of a plain tuple.
|
46 |
+
Returns:
|
47 |
+
[`~pipelines.ImagePipelineOutput`] or `tuple`:
|
48 |
+
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
|
49 |
+
returned where the first element is a list with the generated images.
|
50 |
+
"""
|
51 |
+
img_size = self.unet.config.sample_size
|
52 |
+
shape = (batch_size, 3, img_size, img_size)
|
53 |
+
|
54 |
+
model = self.unet
|
55 |
+
|
56 |
+
sample = randn_tensor(shape, generator=generator, device=self.device) * self.scheduler.init_noise_sigma
|
57 |
+
sample = sample.to(self.device)
|
58 |
+
|
59 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
60 |
+
self.scheduler.set_sigmas(num_inference_steps)
|
61 |
+
|
62 |
+
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
|
63 |
+
sigma_t = self.scheduler.sigmas[i] * torch.ones(shape[0], device=self.device)
|
64 |
+
|
65 |
+
# correction step
|
66 |
+
for _ in range(self.scheduler.config.correct_steps):
|
67 |
+
model_output = self.unet(sample, sigma_t, class_labels).sample
|
68 |
+
sample = self.scheduler.step_correct(model_output, sample, generator=generator).prev_sample
|
69 |
+
|
70 |
+
# prediction step
|
71 |
+
model_output = model(sample, sigma_t, class_labels).sample
|
72 |
+
output = self.scheduler.step_pred(model_output, t, sample, generator=generator)
|
73 |
+
|
74 |
+
sample, sample_mean = output.prev_sample, output.prev_sample_mean
|
75 |
+
|
76 |
+
sample = sample_mean.clamp(0, 1)
|
77 |
+
sample = sample.cpu().permute(0, 2, 3, 1).numpy()
|
78 |
+
if output_type == "pil":
|
79 |
+
sample = self.numpy_to_pil(sample)
|
80 |
+
|
81 |
+
if not return_dict:
|
82 |
+
return (sample,)
|
83 |
+
return ImagePipelineOutput(images=sample)
|