eulic commited on
Commit
9224f42
1 Parent(s): 26b4817

Upload the initial PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 240.60 +/- 19.08
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f421b041ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f421b041f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f421b045040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f421b0450d0>", "_build": "<function ActorCriticPolicy._build at 0x7f421b045160>", "forward": "<function ActorCriticPolicy.forward at 0x7f421b0451f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f421b045280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f421b045310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f421b0453a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f421b045430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f421b0454c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f421b045550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f421b042390>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676420401937192473, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABWC7w/UbY/x7xMvklP4D3HUnw5EllNvQAAAAAAAAAAAIX0vEjrm7rFZVG5cQtDtEPFvrrb33E4AACAPwAAgD/aAJw94kdfP3rJnz1Nm5m+gDiHPKa1rDwAAAAAAAAAALN5cz2fhNG74llsPZ3sNzw6Bx29oiwfPQAAgD8AAIA/sxGYPdGQ9j7/kEy9VoF2vmCHRTxWuWw8AAAAAAAAAABmjae8tFrdPd4lh73xYKC+IgkvvQxwBj0AAAAAAAAAANpJmr1If6q6dWJvuj1+bTapgDa6JdqIOQAAgD8AAIA/ZuhWPXsQmj26XyW+hBWMvraDJ72dV7W7AAAAAAAAAABzgwe+v/xOPz74fb1jSaW+NqVGvlaFLj0AAAAAAAAAAE13Eb3DmRe6MSsHNOA6KDAY0yU5PnGkswAAgD8AAIA/k1xqPq5mLz9DZFO9ABGLvk3Ydz2YKnk9AAAAAAAAAACmSKU91+tlu93/MrxgjnQ86G6ivNqrUz0AAIA/AACAP7McFD5ihk8/vbltu0Apqb7ki8s9YYeIvAAAAAAAAAAAwJ6Tvt6eOT+u6N68vISfvlvAKb42nKg9AAAAAAAAAAAAcJS8rm2vuoM99TZ3cuQxiJbCt11LDbYAAIA/AACAP20PCb5x1H27KOyMO1J++jjw9KQ8DJWvugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5Pih0ojbcECUhpRSlIwBbJRNJgGMAXSUR0CVlPk5IYm+dX2UKGgGaAloD0MIL96P26/GbECUhpRSlGgVTUQBaBZHQJWVNRUFSsN1fZQoaAZoCWgPQwjTvOMUnbdyQJSGlFKUaBVNIQFoFkdAlZX4287IUHV9lChoBmgJaA9DCCuhuyTOCG9AlIaUUpRoFU0uAWgWR0CVlhW7OE/TdX2UKGgGaAloD0MIMSO8PQhucUCUhpRSlGgVTYEBaBZHQJWWLOLR8dB1fZQoaAZoCWgPQwiyoDAoUwptQJSGlFKUaBVNJwFoFkdAla6sVgx8D3V9lChoBmgJaA9DCByygXQxYHBAlIaUUpRoFU1EAWgWR0CVr2QY1pCbdX2UKGgGaAloD0MIVaAWgwdgb0CUhpRSlGgVTUYBaBZHQJWvh0q6OHZ1fZQoaAZoCWgPQwifc7frJWNvQJSGlFKUaBVNRwFoFkdAlbCQjdHlO3V9lChoBmgJaA9DCDaxwFd0HU5AlIaUUpRoFUvWaBZHQJWxQBRyfcx1fZQoaAZoCWgPQwiPiv87Im1tQJSGlFKUaBVNQQFoFkdAlbFyHEdeY3V9lChoBmgJaA9DCFQ1QdT9IXFAlIaUUpRoFU0wAWgWR0CVsi/XGwRodX2UKGgGaAloD0MIbjMV4hHmbUCUhpRSlGgVTUIBaBZHQJWy+3Td+G51fZQoaAZoCWgPQwjqeqLrwolxQJSGlFKUaBVNLQFoFkdAlbVMZ5zHTHV9lChoBmgJaA9DCD+MEB7tlGxAlIaUUpRoFU1RAWgWR0CVtcFyq+8HdX2UKGgGaAloD0MI/p5Yp0qTbkCUhpRSlGgVTTIBaBZHQJW126MBIWh1fZQoaAZoCWgPQwgG2bJ83VpxQJSGlFKUaBVNGQFoFkdAlbaraRISUXV9lChoBmgJaA9DCDXwoxq2a3BAlIaUUpRoFU04AWgWR0CVttLZSNwSdX2UKGgGaAloD0MIzJntCn3gb0CUhpRSlGgVTSwBaBZHQJW3QSf16E91fZQoaAZoCWgPQwg+JHzv769uQJSGlFKUaBVNTwFoFkdAlbdx/3Fkx3V9lChoBmgJaA9DCKbW+412YHFAlIaUUpRoFU0WAWgWR0CVt+0svqTsdX2UKGgGaAloD0MIpdx9jo89cUCUhpRSlGgVTTEBaBZHQJW5q1iONo91fZQoaAZoCWgPQwiG/3QDBa9uQJSGlFKUaBVNPAFoFkdAlbo+uJUHZHV9lChoBmgJaA9DCI85z9iXLHBAlIaUUpRoFU0GAWgWR0CVumpHZsbedX2UKGgGaAloD0MIPkFiu/vKbkCUhpRSlGgVTZIBaBZHQJW69Cojv/l1fZQoaAZoCWgPQwhoeLMG75ZxQJSGlFKUaBVNIgFoFkdAlbt3YL9deXV9lChoBmgJaA9DCFeyYyOQwW5AlIaUUpRoFU1HAWgWR0CVu7Iu5BkadX2UKGgGaAloD0MICKpGrwZabkCUhpRSlGgVTS8BaBZHQJW8gNCqp991fZQoaAZoCWgPQwisrdhftqJxQJSGlFKUaBVNOwFoFkdAlb2miL2pQ3V9lChoBmgJaA9DCNRJtrqcjkZAlIaUUpRoFUvgaBZHQJW+qQ9zOop1fZQoaAZoCWgPQwgE4+DSMZ9uQJSGlFKUaBVNNQFoFkdAlb+3jIaLoHV9lChoBmgJaA9DCA8mxcfnPXNAlIaUUpRoFU0MAWgWR0CVwB0ZFXq8dX2UKGgGaAloD0MI8MLWbGXsb0CUhpRSlGgVTUABaBZHQJXAo163RXx1fZQoaAZoCWgPQwiveVVnNYpuQJSGlFKUaBVNMQFoFkdAlcDgCwKSgXV9lChoBmgJaA9DCMy4qYFmFHJAlIaUUpRoFU1TAWgWR0CVwTTCLuQZdX2UKGgGaAloD0MIGcqJdhUfcECUhpRSlGgVTVwBaBZHQJXCdB7eEZl1fZQoaAZoCWgPQwi7gJcZ9oxwQJSGlFKUaBVNWQFoFkdAlcN655JK8XV9lChoBmgJaA9DCA4xXvPqKXFAlIaUUpRoFU0kAWgWR0CVxAWCmMwUdX2UKGgGaAloD0MI4UbKFokkckCUhpRSlGgVTUABaBZHQJXEQJRfnfV1fZQoaAZoCWgPQwhxGw3g7YZxQJSGlFKUaBVNPgFoFkdAlcSo+KTB7HV9lChoBmgJaA9DCKvq5XeaHHBAlIaUUpRoFU0kAWgWR0CVxQXhOxjbdX2UKGgGaAloD0MIHjS77u3QcECUhpRSlGgVTSkBaBZHQJXFXXd0q6R1fZQoaAZoCWgPQwiBdocUw0FxQJSGlFKUaBVNUQFoFkdAlcXNsBQvYnV9lChoBmgJaA9DCA2K5gEs03FAlIaUUpRoFU1IAWgWR0CVxyQbMotudX2UKGgGaAloD0MI2T7kLdeFcUCUhpRSlGgVTTcBaBZHQJXH0BhhH9Z1fZQoaAZoCWgPQwgF+kSepERvQJSGlFKUaBVNJgFoFkdAlcpAYpDu0HV9lChoBmgJaA9DCEtZhjiWVnBAlIaUUpRoFU0tAWgWR0CVysshgVoIdX2UKGgGaAloD0MIXkvIB31lcUCUhpRSlGgVTXUBaBZHQJXLR5C4SYh1fZQoaAZoCWgPQwjcK/NWXb1vQJSGlFKUaBVNNwFoFkdAlcuYq5LAYnV9lChoBmgJaA9DCEoKLIDpfHJAlIaUUpRoFU1cAWgWR0CVy84Kx9ofdX2UKGgGaAloD0MIEVMiiR45cECUhpRSlGgVTWgBaBZHQJXL4J7b+Lp1fZQoaAZoCWgPQwiiDFUx1VlwQJSGlFKUaBVNNQFoFkdAlcy8ifQKKHV9lChoBmgJaA9DCHtrYKuE5HJAlIaUUpRoFU0uAWgWR0CVzgp84PwvdX2UKGgGaAloD0MIceSByGK+ckCUhpRSlGgVTQ0BaBZHQJXOFtVJcxF1fZQoaAZoCWgPQwg02qok8jpwQJSGlFKUaBVNRgFoFkdAlc5GYrrgO3V9lChoBmgJaA9DCBHF5A3wsHBAlIaUUpRoFU00AWgWR0CVzocLSeAedX2UKGgGaAloD0MI2SeAYmQnb0CUhpRSlGgVTS0BaBZHQJXOuCtihFp1fZQoaAZoCWgPQwgjvajd77txQJSGlFKUaBVNHQFoFkdAlc9xsANoanV9lChoBmgJaA9DCJ6ZYDhXwHFAlIaUUpRoFU04AWgWR0CVz/D28IzFdX2UKGgGaAloD0MIaqD5nLs+cECUhpRSlGgVTVEBaBZHQJXqfCoCMgl1fZQoaAZoCWgPQwiqtpvg2xBwQJSGlFKUaBVNVQFoFkdAle/TI/7iynV9lChoBmgJaA9DCFn3j4XoL21AlIaUUpRoFU1JAWgWR0CV8AwSrYGudX2UKGgGaAloD0MIzm3CvbJkbkCUhpRSlGgVTXYBaBZHQJXw5GKAJ9l1fZQoaAZoCWgPQwjYYrfPKiNwQJSGlFKUaBVNHgFoFkdAlfE7di2Dx3V9lChoBmgJaA9DCNV5VPyf2nFAlIaUUpRoFU0fAWgWR0CV8Y6ySmqHdX2UKGgGaAloD0MIpwTEJFzrcUCUhpRSlGgVTZwBaBZHQJXyCR/3Fkx1fZQoaAZoCWgPQwg4o+ar5KltQJSGlFKUaBVN7QFoFkdAlfLBVp9JBnV9lChoBmgJaA9DCEyo4PAChHFAlIaUUpRoFU1EAWgWR0CV849ic5KfdX2UKGgGaAloD0MIs3qH26FlcECUhpRSlGgVTYQBaBZHQJXz+G8Empl1fZQoaAZoCWgPQwhBSuzaXnppQJSGlFKUaBVNUwFoFkdAlfRoFeOXFHV9lChoBmgJaA9DCERv8fDe8HBAlIaUUpRoFU2AAWgWR0CV9VV8CxNZdX2UKGgGaAloD0MIjznP2JeecUCUhpRSlGgVTW0BaBZHQJX2KcRUWEd1fZQoaAZoCWgPQwgDP6ph/8NwQJSGlFKUaBVNYwFoFkdAlfY7YK6WgXV9lChoBmgJaA9DCBcSMLo82G9AlIaUUpRoFU3zAWgWR0CV9rbfgrH3dX2UKGgGaAloD0MIZf1mYjrgcECUhpRSlGgVTSMCaBZHQJX38LWqcVh1fZQoaAZoCWgPQwiBsb6BycxuQJSGlFKUaBVNfAFoFkdAlfmpQLux8nV9lChoBmgJaA9DCNyDEJAvD29AlIaUUpRoFU0fAWgWR0CV+0ogV45cdX2UKGgGaAloD0MIAWpq2VqIcUCUhpRSlGgVTTQBaBZHQJX8we8wpON1fZQoaAZoCWgPQwjEWnwKwEhwQJSGlFKUaBVNKgFoFkdAlfzDUutfX3V9lChoBmgJaA9DCDiFlQoqWm9AlIaUUpRoFU11AWgWR0CV/iLq2SdOdX2UKGgGaAloD0MIT7LV5ZRcb0CUhpRSlGgVTSkBaBZHQJX+ixZ+x4Z1fZQoaAZoCWgPQwgPm8jMBaxwQJSGlFKUaBVNbQFoFkdAlf7H1WbPQnV9lChoBmgJaA9DCLt+wW7YUG9AlIaUUpRoFU1XAWgWR0CV/zRf4REndX2UKGgGaAloD0MIAS8zbBRbcUCUhpRSlGgVTU0BaBZHQJX/enIhhYx1fZQoaAZoCWgPQwinP/uRIhpuQJSGlFKUaBVNTwFoFkdAlgIyGrS3LHV9lChoBmgJaA9DCL9J06Bo1HBAlIaUUpRoFU1wAWgWR0CWAoQDV6NVdX2UKGgGaAloD0MI8BMH0G/ya0CUhpRSlGgVTWABaBZHQJYDo0j1PFh1fZQoaAZoCWgPQwiQhegQeHNwQJSGlFKUaBVNvAFoFkdAlgRsQNCqqHV9lChoBmgJaA9DCDCCxkwiWnJAlIaUUpRoFU0nAmgWR0CWBKVawD/3dX2UKGgGaAloD0MIVdtN8E3IcECUhpRSlGgVTWkBaBZHQJYFfbeuV5d1fZQoaAZoCWgPQwhSDJBoQhRyQJSGlFKUaBVNNgFoFkdAlgV/q5byH3V9lChoBmgJaA9DCMOf4c3aG3FAlIaUUpRoFU2wAWgWR0CWBdjxTbWVdX2UKGgGaAloD0MIllzF4jcAc0CUhpRSlGgVTTMBaBZHQJYGxJtix3V1fZQoaAZoCWgPQwiZ8iGomm1uQJSGlFKUaBVNOgFoFkdAlgsNYW+GoXV9lChoBmgJaA9DCCzvqgfMQG1AlIaUUpRoFU1oAWgWR0CWCy8La24NdX2UKGgGaAloD0MI3h0Zq02BcECUhpRSlGgVTVoBaBZHQJYNKxxDLKV1fZQoaAZoCWgPQwhcHQBxl+lwQJSGlFKUaBVNcgFoFkdAlg2WrS3LFHV9lChoBmgJaA9DCOCBAYSP025AlIaUUpRoFU1gAWgWR0CWDhq7AckudX2UKGgGaAloD0MIdVjhls+scECUhpRSlGgVTRkBaBZHQJYOqudPLxJ1fZQoaAZoCWgPQwhLW1zj81BxQJSGlFKUaBVNTwFoFkdAlhH/GACnxnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1e25b86cf07703bcf2104a796cff792251204582ea5586ccf3b21cf16fd905e
3
+ size 147424
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f421b041ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f421b041f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f421b045040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f421b0450d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f421b045160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f421b0451f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f421b045280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f421b045310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f421b0453a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f421b045430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f421b0454c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f421b045550>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f421b042390>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1676420401937192473,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABWC7w/UbY/x7xMvklP4D3HUnw5EllNvQAAAAAAAAAAAIX0vEjrm7rFZVG5cQtDtEPFvrrb33E4AACAPwAAgD/aAJw94kdfP3rJnz1Nm5m+gDiHPKa1rDwAAAAAAAAAALN5cz2fhNG74llsPZ3sNzw6Bx29oiwfPQAAgD8AAIA/sxGYPdGQ9j7/kEy9VoF2vmCHRTxWuWw8AAAAAAAAAABmjae8tFrdPd4lh73xYKC+IgkvvQxwBj0AAAAAAAAAANpJmr1If6q6dWJvuj1+bTapgDa6JdqIOQAAgD8AAIA/ZuhWPXsQmj26XyW+hBWMvraDJ72dV7W7AAAAAAAAAABzgwe+v/xOPz74fb1jSaW+NqVGvlaFLj0AAAAAAAAAAE13Eb3DmRe6MSsHNOA6KDAY0yU5PnGkswAAgD8AAIA/k1xqPq5mLz9DZFO9ABGLvk3Ydz2YKnk9AAAAAAAAAACmSKU91+tlu93/MrxgjnQ86G6ivNqrUz0AAIA/AACAP7McFD5ihk8/vbltu0Apqb7ki8s9YYeIvAAAAAAAAAAAwJ6Tvt6eOT+u6N68vISfvlvAKb42nKg9AAAAAAAAAAAAcJS8rm2vuoM99TZ3cuQxiJbCt11LDbYAAIA/AACAP20PCb5x1H27KOyMO1J++jjw9KQ8DJWvugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5Pih0ojbcECUhpRSlIwBbJRNJgGMAXSUR0CVlPk5IYm+dX2UKGgGaAloD0MIL96P26/GbECUhpRSlGgVTUQBaBZHQJWVNRUFSsN1fZQoaAZoCWgPQwjTvOMUnbdyQJSGlFKUaBVNIQFoFkdAlZX4287IUHV9lChoBmgJaA9DCCuhuyTOCG9AlIaUUpRoFU0uAWgWR0CVlhW7OE/TdX2UKGgGaAloD0MIMSO8PQhucUCUhpRSlGgVTYEBaBZHQJWWLOLR8dB1fZQoaAZoCWgPQwiyoDAoUwptQJSGlFKUaBVNJwFoFkdAla6sVgx8D3V9lChoBmgJaA9DCByygXQxYHBAlIaUUpRoFU1EAWgWR0CVr2QY1pCbdX2UKGgGaAloD0MIVaAWgwdgb0CUhpRSlGgVTUYBaBZHQJWvh0q6OHZ1fZQoaAZoCWgPQwifc7frJWNvQJSGlFKUaBVNRwFoFkdAlbCQjdHlO3V9lChoBmgJaA9DCDaxwFd0HU5AlIaUUpRoFUvWaBZHQJWxQBRyfcx1fZQoaAZoCWgPQwiPiv87Im1tQJSGlFKUaBVNQQFoFkdAlbFyHEdeY3V9lChoBmgJaA9DCFQ1QdT9IXFAlIaUUpRoFU0wAWgWR0CVsi/XGwRodX2UKGgGaAloD0MIbjMV4hHmbUCUhpRSlGgVTUIBaBZHQJWy+3Td+G51fZQoaAZoCWgPQwjqeqLrwolxQJSGlFKUaBVNLQFoFkdAlbVMZ5zHTHV9lChoBmgJaA9DCD+MEB7tlGxAlIaUUpRoFU1RAWgWR0CVtcFyq+8HdX2UKGgGaAloD0MI/p5Yp0qTbkCUhpRSlGgVTTIBaBZHQJW126MBIWh1fZQoaAZoCWgPQwgG2bJ83VpxQJSGlFKUaBVNGQFoFkdAlbaraRISUXV9lChoBmgJaA9DCDXwoxq2a3BAlIaUUpRoFU04AWgWR0CVttLZSNwSdX2UKGgGaAloD0MIzJntCn3gb0CUhpRSlGgVTSwBaBZHQJW3QSf16E91fZQoaAZoCWgPQwg+JHzv769uQJSGlFKUaBVNTwFoFkdAlbdx/3Fkx3V9lChoBmgJaA9DCKbW+412YHFAlIaUUpRoFU0WAWgWR0CVt+0svqTsdX2UKGgGaAloD0MIpdx9jo89cUCUhpRSlGgVTTEBaBZHQJW5q1iONo91fZQoaAZoCWgPQwiG/3QDBa9uQJSGlFKUaBVNPAFoFkdAlbo+uJUHZHV9lChoBmgJaA9DCI85z9iXLHBAlIaUUpRoFU0GAWgWR0CVumpHZsbedX2UKGgGaAloD0MIPkFiu/vKbkCUhpRSlGgVTZIBaBZHQJW69Cojv/l1fZQoaAZoCWgPQwhoeLMG75ZxQJSGlFKUaBVNIgFoFkdAlbt3YL9deXV9lChoBmgJaA9DCFeyYyOQwW5AlIaUUpRoFU1HAWgWR0CVu7Iu5BkadX2UKGgGaAloD0MICKpGrwZabkCUhpRSlGgVTS8BaBZHQJW8gNCqp991fZQoaAZoCWgPQwisrdhftqJxQJSGlFKUaBVNOwFoFkdAlb2miL2pQ3V9lChoBmgJaA9DCNRJtrqcjkZAlIaUUpRoFUvgaBZHQJW+qQ9zOop1fZQoaAZoCWgPQwgE4+DSMZ9uQJSGlFKUaBVNNQFoFkdAlb+3jIaLoHV9lChoBmgJaA9DCA8mxcfnPXNAlIaUUpRoFU0MAWgWR0CVwB0ZFXq8dX2UKGgGaAloD0MI8MLWbGXsb0CUhpRSlGgVTUABaBZHQJXAo163RXx1fZQoaAZoCWgPQwiveVVnNYpuQJSGlFKUaBVNMQFoFkdAlcDgCwKSgXV9lChoBmgJaA9DCMy4qYFmFHJAlIaUUpRoFU1TAWgWR0CVwTTCLuQZdX2UKGgGaAloD0MIGcqJdhUfcECUhpRSlGgVTVwBaBZHQJXCdB7eEZl1fZQoaAZoCWgPQwi7gJcZ9oxwQJSGlFKUaBVNWQFoFkdAlcN655JK8XV9lChoBmgJaA9DCA4xXvPqKXFAlIaUUpRoFU0kAWgWR0CVxAWCmMwUdX2UKGgGaAloD0MI4UbKFokkckCUhpRSlGgVTUABaBZHQJXEQJRfnfV1fZQoaAZoCWgPQwhxGw3g7YZxQJSGlFKUaBVNPgFoFkdAlcSo+KTB7HV9lChoBmgJaA9DCKvq5XeaHHBAlIaUUpRoFU0kAWgWR0CVxQXhOxjbdX2UKGgGaAloD0MIHjS77u3QcECUhpRSlGgVTSkBaBZHQJXFXXd0q6R1fZQoaAZoCWgPQwiBdocUw0FxQJSGlFKUaBVNUQFoFkdAlcXNsBQvYnV9lChoBmgJaA9DCA2K5gEs03FAlIaUUpRoFU1IAWgWR0CVxyQbMotudX2UKGgGaAloD0MI2T7kLdeFcUCUhpRSlGgVTTcBaBZHQJXH0BhhH9Z1fZQoaAZoCWgPQwgF+kSepERvQJSGlFKUaBVNJgFoFkdAlcpAYpDu0HV9lChoBmgJaA9DCEtZhjiWVnBAlIaUUpRoFU0tAWgWR0CVysshgVoIdX2UKGgGaAloD0MIXkvIB31lcUCUhpRSlGgVTXUBaBZHQJXLR5C4SYh1fZQoaAZoCWgPQwjcK/NWXb1vQJSGlFKUaBVNNwFoFkdAlcuYq5LAYnV9lChoBmgJaA9DCEoKLIDpfHJAlIaUUpRoFU1cAWgWR0CVy84Kx9ofdX2UKGgGaAloD0MIEVMiiR45cECUhpRSlGgVTWgBaBZHQJXL4J7b+Lp1fZQoaAZoCWgPQwiiDFUx1VlwQJSGlFKUaBVNNQFoFkdAlcy8ifQKKHV9lChoBmgJaA9DCHtrYKuE5HJAlIaUUpRoFU0uAWgWR0CVzgp84PwvdX2UKGgGaAloD0MIceSByGK+ckCUhpRSlGgVTQ0BaBZHQJXOFtVJcxF1fZQoaAZoCWgPQwg02qok8jpwQJSGlFKUaBVNRgFoFkdAlc5GYrrgO3V9lChoBmgJaA9DCBHF5A3wsHBAlIaUUpRoFU00AWgWR0CVzocLSeAedX2UKGgGaAloD0MI2SeAYmQnb0CUhpRSlGgVTS0BaBZHQJXOuCtihFp1fZQoaAZoCWgPQwgjvajd77txQJSGlFKUaBVNHQFoFkdAlc9xsANoanV9lChoBmgJaA9DCJ6ZYDhXwHFAlIaUUpRoFU04AWgWR0CVz/D28IzFdX2UKGgGaAloD0MIaqD5nLs+cECUhpRSlGgVTVEBaBZHQJXqfCoCMgl1fZQoaAZoCWgPQwiqtpvg2xBwQJSGlFKUaBVNVQFoFkdAle/TI/7iynV9lChoBmgJaA9DCFn3j4XoL21AlIaUUpRoFU1JAWgWR0CV8AwSrYGudX2UKGgGaAloD0MIzm3CvbJkbkCUhpRSlGgVTXYBaBZHQJXw5GKAJ9l1fZQoaAZoCWgPQwjYYrfPKiNwQJSGlFKUaBVNHgFoFkdAlfE7di2Dx3V9lChoBmgJaA9DCNV5VPyf2nFAlIaUUpRoFU0fAWgWR0CV8Y6ySmqHdX2UKGgGaAloD0MIpwTEJFzrcUCUhpRSlGgVTZwBaBZHQJXyCR/3Fkx1fZQoaAZoCWgPQwg4o+ar5KltQJSGlFKUaBVN7QFoFkdAlfLBVp9JBnV9lChoBmgJaA9DCEyo4PAChHFAlIaUUpRoFU1EAWgWR0CV849ic5KfdX2UKGgGaAloD0MIs3qH26FlcECUhpRSlGgVTYQBaBZHQJXz+G8Empl1fZQoaAZoCWgPQwhBSuzaXnppQJSGlFKUaBVNUwFoFkdAlfRoFeOXFHV9lChoBmgJaA9DCERv8fDe8HBAlIaUUpRoFU2AAWgWR0CV9VV8CxNZdX2UKGgGaAloD0MIjznP2JeecUCUhpRSlGgVTW0BaBZHQJX2KcRUWEd1fZQoaAZoCWgPQwgDP6ph/8NwQJSGlFKUaBVNYwFoFkdAlfY7YK6WgXV9lChoBmgJaA9DCBcSMLo82G9AlIaUUpRoFU3zAWgWR0CV9rbfgrH3dX2UKGgGaAloD0MIZf1mYjrgcECUhpRSlGgVTSMCaBZHQJX38LWqcVh1fZQoaAZoCWgPQwiBsb6BycxuQJSGlFKUaBVNfAFoFkdAlfmpQLux8nV9lChoBmgJaA9DCNyDEJAvD29AlIaUUpRoFU0fAWgWR0CV+0ogV45cdX2UKGgGaAloD0MIAWpq2VqIcUCUhpRSlGgVTTQBaBZHQJX8we8wpON1fZQoaAZoCWgPQwjEWnwKwEhwQJSGlFKUaBVNKgFoFkdAlfzDUutfX3V9lChoBmgJaA9DCDiFlQoqWm9AlIaUUpRoFU11AWgWR0CV/iLq2SdOdX2UKGgGaAloD0MIT7LV5ZRcb0CUhpRSlGgVTSkBaBZHQJX+ixZ+x4Z1fZQoaAZoCWgPQwgPm8jMBaxwQJSGlFKUaBVNbQFoFkdAlf7H1WbPQnV9lChoBmgJaA9DCLt+wW7YUG9AlIaUUpRoFU1XAWgWR0CV/zRf4REndX2UKGgGaAloD0MIAS8zbBRbcUCUhpRSlGgVTU0BaBZHQJX/enIhhYx1fZQoaAZoCWgPQwinP/uRIhpuQJSGlFKUaBVNTwFoFkdAlgIyGrS3LHV9lChoBmgJaA9DCL9J06Bo1HBAlIaUUpRoFU1wAWgWR0CWAoQDV6NVdX2UKGgGaAloD0MI8BMH0G/ya0CUhpRSlGgVTWABaBZHQJYDo0j1PFh1fZQoaAZoCWgPQwiQhegQeHNwQJSGlFKUaBVNvAFoFkdAlgRsQNCqqHV9lChoBmgJaA9DCDCCxkwiWnJAlIaUUpRoFU0nAmgWR0CWBKVawD/3dX2UKGgGaAloD0MIVdtN8E3IcECUhpRSlGgVTWkBaBZHQJYFfbeuV5d1fZQoaAZoCWgPQwhSDJBoQhRyQJSGlFKUaBVNNgFoFkdAlgV/q5byH3V9lChoBmgJaA9DCMOf4c3aG3FAlIaUUpRoFU2wAWgWR0CWBdjxTbWVdX2UKGgGaAloD0MIllzF4jcAc0CUhpRSlGgVTTMBaBZHQJYGxJtix3V1fZQoaAZoCWgPQwiZ8iGomm1uQJSGlFKUaBVNOgFoFkdAlgsNYW+GoXV9lChoBmgJaA9DCCzvqgfMQG1AlIaUUpRoFU1oAWgWR0CWCy8La24NdX2UKGgGaAloD0MI3h0Zq02BcECUhpRSlGgVTVoBaBZHQJYNKxxDLKV1fZQoaAZoCWgPQwhcHQBxl+lwQJSGlFKUaBVNcgFoFkdAlg2WrS3LFHV9lChoBmgJaA9DCOCBAYSP025AlIaUUpRoFU1gAWgWR0CWDhq7AckudX2UKGgGaAloD0MIdVjhls+scECUhpRSlGgVTRkBaBZHQJYOqudPLxJ1fZQoaAZoCWgPQwhLW1zj81BxQJSGlFKUaBVNTwFoFkdAlhH/GACnxnVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95307b628b8bf051b2a3d7ec100540ae4f8cc9d5f173e6517fc23828f3896019
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3514694391319fd184b1e24598ad598a1bb50790177b81ebadf7ea57690c7aad
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (254 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 240.6029436242703, "std_reward": 19.076605110472865, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-15T01:05:30.942512"}