euijinrnd's picture
Add files using upload-large-folder tool
9de9fbf verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# DiT: https://github.com/facebookresearch/DiT
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# --------------------------------------------------------
import math
from collections import OrderedDict
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.jit import Final
from timm.models.vision_transformer import Attention, Mlp, RmsNorm, use_fused_attn
#################################################################################
# Embedding Layers for Timesteps and Condition Inptus #
#################################################################################
class TimestepEmbedder(nn.Module):
"""
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256, dtype=torch.bfloat16):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(frequency_embedding_size, hidden_size, bias=True),
nn.SiLU(),
nn.Linear(hidden_size, hidden_size, bias=True),
)
self.frequency_embedding_size = frequency_embedding_size
self.dtype = dtype
def timestep_embedding(self, t, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(
start=0, end=half, dtype=torch.float32, device=t.device) / half
)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding.to(self.dtype)
def forward(self, t):
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
t_emb = self.mlp(t_freq)
return t_emb
#################################################################################
# Cross Attention Layers #
#################################################################################
class CrossAttention(nn.Module):
"""
A cross-attention layer with flash attention.
"""
fused_attn: Final[bool]
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = False,
qk_norm: bool = False,
attn_drop: float = 0,
proj_drop: float = 0,
norm_layer: nn.Module = nn.LayerNorm,
) -> None:
super().__init__()
assert dim % num_heads == 0, 'dim should be divisible by num_heads'
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.scale = self.head_dim ** -0.5
self.fused_attn = use_fused_attn()
self.q = nn.Linear(dim, dim, bias=qkv_bias)
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
self.q_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.k_norm = norm_layer(self.head_dim) if qk_norm else nn.Identity()
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x: torch.Tensor, c: torch.Tensor,
mask: torch.Tensor | None = None) -> torch.Tensor:
B, N, C = x.shape
_, L, _ = c.shape
q = self.q(x).reshape(B, N, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
kv = self.kv(c).reshape(B, L, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
k, v = kv.unbind(0)
q, k = self.q_norm(q), self.k_norm(k)
# Prepare attn mask (B, L) to mask the conditioion
if mask is not None:
mask = mask.reshape(B, 1, 1, L)
mask = mask.expand(-1, -1, N, -1)
if self.fused_attn:
x = F.scaled_dot_product_attention(
query=q,
key=k,
value=v,
dropout_p=self.attn_drop.p if self.training else 0.,
attn_mask=mask
)
else:
q = q * self.scale
attn = q @ k.transpose(-2, -1)
if mask is not None:
attn = attn.masked_fill_(mask.logical_not(), float('-inf'))
attn = attn.softmax(dim=-1)
if self.attn_drop.p > 0:
attn = self.attn_drop(attn)
x = attn @ v
x = x.permute(0, 2, 1, 3).reshape(B, N, C)
x = self.proj(x)
if self.proj_drop.p > 0:
x = self.proj_drop(x)
return x
#################################################################################
# RDT Block #
#################################################################################
class RDTBlock(nn.Module):
"""
A RDT block with cross-attention conditioning.
"""
def __init__(self, hidden_size, num_heads, **block_kwargs):
super().__init__()
self.norm1 = RmsNorm(hidden_size, eps=1e-6)
self.attn = Attention(
dim=hidden_size, num_heads=num_heads,
qkv_bias=True, qk_norm=True,
norm_layer=RmsNorm,**block_kwargs)
self.cross_attn = CrossAttention(
hidden_size, num_heads=num_heads,
qkv_bias=True, qk_norm=True,
norm_layer=RmsNorm,**block_kwargs)
self.norm2 = RmsNorm(hidden_size, eps=1e-6)
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.ffn = Mlp(in_features=hidden_size,
hidden_features=hidden_size,
act_layer=approx_gelu, drop=0)
self.norm3 = RmsNorm(hidden_size, eps=1e-6)
def forward(self, x, c, mask=None):
origin_x = x
x = self.norm1(x)
x = self.attn(x)
x = x + origin_x
origin_x = x
x = self.norm2(x)
x = self.cross_attn(x, c, mask)
x = x + origin_x
origin_x = x
x = self.norm3(x)
x = self.ffn(x)
x = x + origin_x
return x
class FinalLayer(nn.Module):
"""
The final layer of RDT.
"""
def __init__(self, hidden_size, out_channels):
super().__init__()
self.norm_final = RmsNorm(hidden_size, eps=1e-6)
approx_gelu = lambda: nn.GELU(approximate="tanh")
self.ffn_final = Mlp(in_features=hidden_size,
hidden_features=hidden_size,
out_features=out_channels,
act_layer=approx_gelu, drop=0)
def forward(self, x):
x = self.norm_final(x)
x = self.ffn_final(x)
return x
#################################################################################
# Sine/Cosine Positional Embedding Functions #
#################################################################################
# https://github.com/facebookresearch/mae/blob/main/util/pos_embed.py
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.
omega = 1. / 10000**omega # (D/2,)
if not isinstance(pos, np.ndarray):
pos = np.array(pos, dtype=np.float64)
pos = pos.reshape(-1) # (M,)
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
def get_nd_sincos_pos_embed_from_grid(embed_dim, grid_sizes):
"""
embed_dim: output dimension for each position
grid_sizes: the grids sizes in each dimension (K,).
out: (grid_sizes[0], ..., grid_sizes[K-1], D)
"""
num_sizes = len(grid_sizes)
# For grid size of 1, we do not need to add any positional embedding
num_valid_sizes = len([x for x in grid_sizes if x > 1])
emb = np.zeros(grid_sizes + (embed_dim,))
# Uniformly divide the embedding dimension for each grid size
dim_for_each_grid = embed_dim // num_valid_sizes
# To make it even
if dim_for_each_grid % 2 != 0:
dim_for_each_grid -= 1
valid_size_idx = 0
for size_idx in range(num_sizes):
grid_size = grid_sizes[size_idx]
if grid_size <= 1:
continue
pos = np.arange(grid_size)
posemb_shape = [1] * len(grid_sizes) + [dim_for_each_grid]
posemb_shape[size_idx] = -1
emb[..., valid_size_idx * dim_for_each_grid:(valid_size_idx + 1) * dim_for_each_grid] += \
get_1d_sincos_pos_embed_from_grid(dim_for_each_grid, pos).reshape(posemb_shape)
valid_size_idx += 1
return emb
def get_multimodal_cond_pos_embed(embed_dim, mm_cond_lens: OrderedDict,
embed_modality=True):
"""
Generate position embeddings for multimodal conditions.
mm_cond_lens: an OrderedDict containing
(modality name, modality token length) pairs.
For `"image"` modality, the value can be a multi-dimensional tuple.
If the length < 0, it means there is no position embedding for the modality or grid.
embed_modality: whether to embed the modality information. Default is True.
"""
num_modalities = len(mm_cond_lens)
modality_pos_embed = np.zeros((num_modalities, embed_dim))
if embed_modality:
# Get embeddings for various modalites
# We put it in the first half
modality_sincos_embed = get_1d_sincos_pos_embed_from_grid(
embed_dim // 2, torch.arange(num_modalities))
modality_pos_embed[:, :embed_dim // 2] = modality_sincos_embed
# The second half is for position embeddings
pos_embed_dim = embed_dim // 2
else:
# The whole embedding is for position embeddings
pos_embed_dim = embed_dim
# Get embeddings for positions inside each modality
c_pos_emb = np.zeros((0, embed_dim))
for idx, (modality, cond_len) in enumerate(mm_cond_lens.items()):
if modality == "image" and \
(isinstance(cond_len, tuple) or isinstance(cond_len, list)):
all_grid_sizes = tuple([abs(x) for x in cond_len])
embed_grid_sizes = tuple([x if x > 0 else 1 for x in cond_len])
cond_sincos_embed = get_nd_sincos_pos_embed_from_grid(
pos_embed_dim, embed_grid_sizes)
cond_pos_embed = np.zeros(all_grid_sizes + (embed_dim,))
cond_pos_embed[..., -pos_embed_dim:] += cond_sincos_embed
cond_pos_embed = cond_pos_embed.reshape((-1, embed_dim))
else:
cond_sincos_embed = get_1d_sincos_pos_embed_from_grid(
pos_embed_dim, torch.arange(cond_len if cond_len > 0 else 1))
cond_pos_embed = np.zeros((abs(cond_len), embed_dim))
cond_pos_embed[:, -pos_embed_dim:] += cond_sincos_embed
cond_pos_embed += modality_pos_embed[idx]
c_pos_emb = np.concatenate([c_pos_emb, cond_pos_embed], axis=0)
return c_pos_emb