Transformers
EDSR
super-image
image-super-resolution
Inference Endpoints
Eugene Siow commited on
Commit
d44aba7
1 Parent(s): 83d3d05

Add training notebook link.

Browse files
Files changed (1) hide show
  1. README.md +4 -1
README.md CHANGED
@@ -64,6 +64,7 @@ The following code gets the data and preprocesses/augments the data.
64
 
65
  ```python
66
  from datasets import load_dataset
 
67
 
68
  augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\
69
  .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method
@@ -89,11 +90,13 @@ trainer = Trainer(
89
  model=model, # the instantiated model to be trained
90
  args=training_args, # training arguments, defined above
91
  train_dataset=train_dataset, # training dataset
92
- eval_dataset=val_dataset # evaluation dataset
93
  )
94
 
95
  trainer.train()
96
  ```
 
 
97
  ## Evaluation results
98
  The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm).
99
 
 
64
 
65
  ```python
66
  from datasets import load_dataset
67
+ from super_image.data import EvalDataset, TrainDataset, augment_five_crop
68
 
69
  augmented_dataset = load_dataset('eugenesiow/Div2k', 'bicubic_x4', split='train')\
70
  .map(augment_five_crop, batched=True, desc="Augmenting Dataset") # download and augment the data with the five_crop method
 
90
  model=model, # the instantiated model to be trained
91
  args=training_args, # training arguments, defined above
92
  train_dataset=train_dataset, # training dataset
93
+ eval_dataset=eval_dataset # evaluation dataset
94
  )
95
 
96
  trainer.train()
97
  ```
98
+
99
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/eugenesiow/super-image-notebooks/blob/master/notebooks/Train_super_image_Models.ipynb "Open in Colab")
100
  ## Evaluation results
101
  The evaluation metrics include [PSNR](https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio#Quality_estimation_with_PSNR) and [SSIM](https://en.wikipedia.org/wiki/Structural_similarity#Algorithm).
102