Upload PPO LunarLander-v2 trained agent, agent v.0.1
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 279.13 +/- 18.69
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc28da09c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc28da09ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc28da09d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc28da09dc0>", "_build": "<function ActorCriticPolicy._build at 0x7fc28da09e50>", "forward": "<function ActorCriticPolicy.forward at 0x7fc28da09ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc28da09f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc28da0d040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc28da0d0d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc28da0d160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc28da0d1f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc28da084b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672574508219851899, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbDc73DwT26sJULtIX+NS7a6tI5PaGuMwAAgD8AAIA/04NMPtpvcj+heJw+vW7yvpGVgj56GyY9AAAAAAAAAAAzPVw8KRwfuuUQHzipzUcz6wKFO7pIPbcAAIA/AACAP2YPoL3sMda5yJWGObzAXDSPdyg7CUObuAAAgD8AAIA/TRA7vRRQh7rCPL26lzKqtf0gVbuyKtw5AACAPwAAgD8zj5e8tuMOvDa5kLmw+Zw86EB4PV5Ggr0AAIA/AACAP9rt1b32FFu6GDF2O/42wzMo40y7w8YPMgAAAAAAAIA/M4wJvq5nuj7r4fQ96gRlvvxQ4DyHvKE8AAAAAAAAAACaSaW6FPiNuoRNn7rJV5e1yUb4NpYFuTkAAIA/AACAP2a+ULxc60S6YA4+uWJ1I7TU0R06CoZgOAAAgD8AAIA/5txLPSlEKrrwANg6PAC5tJDXZ7vdKf25AACAPwAAgD97jo2+Up1gP86tabyfTba+iyfOvlxTBT4AAAAAAAAAAGbW0TrDkWG6sisWuE3mdLMqo+w5V4guNwAAgD8AAIA/s41+vRRYgrpRuMQ6Xh2ZNQcTtzpYgOW5AACAPwAAgD8Adfa8w8F2uvgIYznC4Ek0AHk6u2fPhLgAAIA/AACAP2YmBjsUBIW6wjmtuARqh7NN6Dq6T4fJNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6Q5iZ4r3Z0CUhpRSlIwBbJRN6AOMAXSUR0CY2EsmOU+tdX2UKGgGaAloD0MIApoIG54RZUCUhpRSlGgVTegDaBZHQJjZ2mygPEt1fZQoaAZoCWgPQwgcti3KbKZgQJSGlFKUaBVN6ANoFkdAmNve2y9mH3V9lChoBmgJaA9DCNMRwM3iw2ZAlIaUUpRoFU3oA2gWR0CY3mP0qYqodX2UKGgGaAloD0MIcET3rGt5aECUhpRSlGgVTegDaBZHQJjf3eaa1Cx1fZQoaAZoCWgPQwiWQiCXuGRkQJSGlFKUaBVN6ANoFkdAmODKJdjXnXV9lChoBmgJaA9DCJs5JLVQbGVAlIaUUpRoFU3oA2gWR0CY44phnanKdX2UKGgGaAloD0MIYFlpUgpsYECUhpRSlGgVTegDaBZHQJjlGwgTyrh1fZQoaAZoCWgPQwjJrN7h9k9oQJSGlFKUaBVN6ANoFkdAmO2cH0K7ZnV9lChoBmgJaA9DCA1VMZX+WWhAlIaUUpRoFU3oA2gWR0CY8fVsDW9UdX2UKGgGaAloD0MI2PLK9TYOZUCUhpRSlGgVTegDaBZHQJj1K47Rv3t1fZQoaAZoCWgPQwgtBg/Tvr9jQJSGlFKUaBVN6ANoFkdAmPgCUxEfDHV9lChoBmgJaA9DCPlmmxvTM3NAlIaUUpRoFU1nAmgWR0CZDqnAZbY9dX2UKGgGaAloD0MIGED4UCLBaECUhpRSlGgVTegDaBZHQJkO7Ggi/wl1fZQoaAZoCWgPQwgct5ifm0JjQJSGlFKUaBVN6ANoFkdAmQ+fTb349HV9lChoBmgJaA9DCMMPzqeO1GFAlIaUUpRoFU3oA2gWR0CZD9HMlkYodX2UKGgGaAloD0MIYHglyXPlY0CUhpRSlGgVTegDaBZHQJkQJlar3kB1fZQoaAZoCWgPQwhBfcucLqlfQJSGlFKUaBVN6ANoFkdAmR9Em2LHdXV9lChoBmgJaA9DCMxfIXNlslxAlIaUUpRoFU3oA2gWR0CZIOP8yeqadX2UKGgGaAloD0MIkbkyqDb6ZUCUhpRSlGgVTegDaBZHQJkl2L0jC551fZQoaAZoCWgPQwiIuDmVDP1jQJSGlFKUaBVN6ANoFkdAmSei9EkSmXV9lChoBmgJaA9DCPERMSUS5GZAlIaUUpRoFU3oA2gWR0CZKLxUNrj6dX2UKGgGaAloD0MIlQ1rKotBX0CUhpRSlGgVTegDaBZHQJksRY7q6e51fZQoaAZoCWgPQwjcuwZ9aYxiQJSGlFKUaBVN6ANoFkdAmS4mI42jwnV9lChoBmgJaA9DCAG9cOdCsGVAlIaUUpRoFU3oA2gWR0CZN4o/zJ6qdX2UKGgGaAloD0MID9JT5JCDYECUhpRSlGgVTegDaBZHQJk75FtsN2F1fZQoaAZoCWgPQwg26iEa3WFiQJSGlFKUaBVN6ANoFkdAmT8K2F36h3V9lChoBmgJaA9DCJNTO8PUXGVAlIaUUpRoFU3oA2gWR0CZQdvvjOs1dX2UKGgGaAloD0MIxm6fVWZUZECUhpRSlGgVTegDaBZHQJlYK5QP7N11fZQoaAZoCWgPQwgbEvdY+uFoQJSGlFKUaBVN6ANoFkdAmVhtd/rjYXV9lChoBmgJaA9DCCtQi8FDeWVAlIaUUpRoFU3oA2gWR0CZWRp0fYBedX2UKGgGaAloD0MITgmISTiGYkCUhpRSlGgVTegDaBZHQJlZSdTYNAl1fZQoaAZoCWgPQwjnxYmvdmdjQJSGlFKUaBVN6ANoFkdAmVmUEs8PnXV9lChoBmgJaA9DCH5wPnWsKXBAlIaUUpRoFU2QA2gWR0CZZAymALApdX2UKGgGaAloD0MIpG/SNCgMYECUhpRSlGgVTegDaBZHQJlnUxwhnrZ1fZQoaAZoCWgPQwjMXradNiVxQJSGlFKUaBVNbwNoFkdAmW1ykO7QLXV9lChoBmgJaA9DCH3qWKV0VGZAlIaUUpRoFU3oA2gWR0CZbbsWO6uodX2UKGgGaAloD0MIr0Sg+gerZUCUhpRSlGgVTegDaBZHQJlvZF5OafB1fZQoaAZoCWgPQwhlUkMbgMJnQJSGlFKUaBVN6ANoFkdAmXB0rwvxpnV9lChoBmgJaA9DCHS366Upl2lAlIaUUpRoFU3oA2gWR0CZdYz1schldX2UKGgGaAloD0MIsDpypDOZYkCUhpRSlGgVTegDaBZHQJl+dPxhDw91fZQoaAZoCWgPQwgA4q5exeRlQJSGlFKUaBVN6ANoFkdAmYLlfE4vOHV9lChoBmgJaA9DCKX0TC+x/2FAlIaUUpRoFU3oA2gWR0CZhhgdOqNqdX2UKGgGaAloD0MIdmwE4vUpZUCUhpRSlGgVTegDaBZHQJmI/GYKIBR1fZQoaAZoCWgPQwjTTPc6KeZoQJSGlFKUaBVN6ANoFkdAmZ96t1ZDA3V9lChoBmgJaA9DCNcyGY7n6GFAlIaUUpRoFU3oA2gWR0CZn7yUcGTtdX2UKGgGaAloD0MIbXAi+jVmZ0CUhpRSlGgVTegDaBZHQJmgZH2AXl91fZQoaAZoCWgPQwh/FkuRfPBiQJSGlFKUaBVN6ANoFkdAmaCYyGi5/nV9lChoBmgJaA9DCETbMXVXumFAlIaUUpRoFU3oA2gWR0CZoOsxwhnrdX2UKGgGaAloD0MISDFAoglYXUCUhpRSlGgVTegDaBZHQJmrhDzAeq91fZQoaAZoCWgPQwhzafzCqzljQJSGlFKUaBVN6ANoFkdAma8B9oexOnV9lChoBmgJaA9DCGhaYmU0UWJAlIaUUpRoFU3oA2gWR0CZtPt1p0wKdX2UKGgGaAloD0MIhgDg2DOAYUCUhpRSlGgVTegDaBZHQJm1QLThHb11fZQoaAZoCWgPQwh9eQH20WplQJSGlFKUaBVN6ANoFkdAmbb7S3LFGXV9lChoBmgJaA9DCB/bMuAsR2NAlIaUUpRoFU3oA2gWR0CZt/deIEbHdX2UKGgGaAloD0MIFhiyulWqZUCUhpRSlGgVTegDaBZHQJm8704BFNN1fZQoaAZoCWgPQwj3V4/7Vs5fQJSGlFKUaBVN6ANoFkdAmcaUWAPNFHV9lChoBmgJaA9DCD6xTpXvfmhAlIaUUpRoFU3oA2gWR0CZy2QPI4lydX2UKGgGaAloD0MIEmkbf6IoZUCUhpRSlGgVTegDaBZHQJnO0o4MnZ11fZQoaAZoCWgPQwgGvqJbL7hlQJSGlFKUaBVN6ANoFkdAmdHPCQ9zO3V9lChoBmgJaA9DCJP8iF+xL2ZAlIaUUpRoFU3oA2gWR0CZ1WVAAyVOdX2UKGgGaAloD0MIO99PjZexZ0CUhpRSlGgVTegDaBZHQJnVtCWu5jJ1fZQoaAZoCWgPQwjbxMn9jhVmQJSGlFKUaBVN6ANoFkdAmem8aS9ug3V9lChoBmgJaA9DCCJxj6WPdWNAlIaUUpRoFU3oA2gWR0CZ6fTYNAkcdX2UKGgGaAloD0MIPN7kt+hbYkCUhpRSlGgVTegDaBZHQJnqSgUUO/d1fZQoaAZoCWgPQwjejQWFQVdBQJSGlFKUaBVL52gWR0CZ7mf/FR51dX2UKGgGaAloD0MIzjP2JRuOYUCUhpRSlGgVTegDaBZHQJn158NQTEl1fZQoaAZoCWgPQwheEmdF1FxkQJSGlFKUaBVN6ANoFkdAmfl0kfLcK3V9lChoBmgJaA9DCGfSpuoermFAlIaUUpRoFU3oA2gWR0CZ/9FM7EHddX2UKGgGaAloD0MIggAZOvaOYkCUhpRSlGgVTegDaBZHQJoAHnB+F111fZQoaAZoCWgPQwgtJ6H0BdJjQJSGlFKUaBVN6ANoFkdAmgHYi5d4V3V9lChoBmgJaA9DCMBcixagfGdAlIaUUpRoFU3oA2gWR0CaAt6TGHYZdX2UKGgGaAloD0MImN9pMuOLZECUhpRSlGgVTegDaBZHQJoH811nuiN1fZQoaAZoCWgPQwhCsKpe/gtgQJSGlFKUaBVN6ANoFkdAmhEUnb7CSHV9lChoBmgJaA9DCA9kPbX6yWdAlIaUUpRoFU3oA2gWR0CaFYIwudwvdX2UKGgGaAloD0MIu2QcI9ndZECUhpRSlGgVTegDaBZHQJob0A7xNIt1fZQoaAZoCWgPQwgAqOLGrURkQJSGlFKUaBVN6ANoFkdAmh8p7gKnenV9lChoBmgJaA9DCKs/wjBgl2NAlIaUUpRoFU3oA2gWR0CaH3ClJpWWdX2UKGgGaAloD0MI7GtdaoRiYUCUhpRSlGgVTegDaBZHQJogLSJCSid1fZQoaAZoCWgPQwg+527XS0BiQJSGlFKUaBVN6ANoFkdAmiBhWtEG7nV9lChoBmgJaA9DCJQvaCGB2mFAlIaUUpRoFU3oA2gWR0CaILbcoH9ndX2UKGgGaAloD0MIEw8om/L4YECUhpRSlGgVTegDaBZHQJo3hEuxrzp1fZQoaAZoCWgPQwh5PZgUnz1wQJSGlFKUaBVNqQFoFkdAmjoMVDa4+nV9lChoBmgJaA9DCHNoke18V0JAlIaUUpRoFUvQaBZHQJo8HYVZcLV1fZQoaAZoCWgPQwh2NuSfWZpyQJSGlFKUaBVNLQNoFkdAmjysqFyq/HV9lChoBmgJaA9DCFjjbDoCcmdAlIaUUpRoFU3oA2gWR0CaPW/mT1TSdX2UKGgGaAloD0MIEW3H1J1GckCUhpRSlGgVTSkDaBZHQJo9+rFOwgV1fZQoaAZoCWgPQwgO2NXkqaxmQJSGlFKUaBVN6ANoFkdAmj/aOcUdrHV9lChoBmgJaA9DCG3heamYbXJAlIaUUpRoFU3rAWgWR0CaRIFG5MDfdX2UKGgGaAloD0MI4lzDDI3cZkCUhpRSlGgVTegDaBZHQJpErL5hz/91fZQoaAZoCWgPQwhe2nBYGplpQJSGlFKUaBVN6ANoFkdAmkbfVVghKXV9lChoBmgJaA9DCFWFBmKZ7XJAlIaUUpRoFU0tAWgWR0CaSMX4j8k2dX2UKGgGaAloD0MISOLl6dz8Y0CUhpRSlGgVTegDaBZHQJpLU+nqFAV1fZQoaAZoCWgPQwgbECGunDhtQJSGlFKUaBVNRAJoFkdAmkx2tyPuHHV9lChoBmgJaA9DCEijAifbFDJAlIaUUpRoFUviaBZHQJpRFv5xiod1fZQoaAZoCWgPQwhXem02lqNwQJSGlFKUaBVN1gJoFkdAmlHBwVCXyHV9lChoBmgJaA9DCK+ytimelWJAlIaUUpRoFU3oA2gWR0CaVoWSEDhcdX2UKGgGaAloD0MIDCJS0y52ckCUhpRSlGgVTWMCaBZHQJpbeIpH7P91fZQoaAZoCWgPQwitiQW+omloQJSGlFKUaBVN6ANoFkdAml7NC3PRiXV9lChoBmgJaA9DCHk6V5SS12ZAlIaUUpRoFU3oA2gWR0CaX5z3RG+cdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 280, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e7ab037288f1c1c42d7f1357bd1de521fdf436527185ee04fc86dfb61b58d3e
|
3 |
+
size 147214
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc28da09c10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc28da09ca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc28da09d30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc28da09dc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc28da09e50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc28da09ee0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc28da09f70>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc28da0d040>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc28da0d0d0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc28da0d160>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc28da0d1f0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fc28da084b0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1672574508219851899,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbDc73DwT26sJULtIX+NS7a6tI5PaGuMwAAgD8AAIA/04NMPtpvcj+heJw+vW7yvpGVgj56GyY9AAAAAAAAAAAzPVw8KRwfuuUQHzipzUcz6wKFO7pIPbcAAIA/AACAP2YPoL3sMda5yJWGObzAXDSPdyg7CUObuAAAgD8AAIA/TRA7vRRQh7rCPL26lzKqtf0gVbuyKtw5AACAPwAAgD8zj5e8tuMOvDa5kLmw+Zw86EB4PV5Ggr0AAIA/AACAP9rt1b32FFu6GDF2O/42wzMo40y7w8YPMgAAAAAAAIA/M4wJvq5nuj7r4fQ96gRlvvxQ4DyHvKE8AAAAAAAAAACaSaW6FPiNuoRNn7rJV5e1yUb4NpYFuTkAAIA/AACAP2a+ULxc60S6YA4+uWJ1I7TU0R06CoZgOAAAgD8AAIA/5txLPSlEKrrwANg6PAC5tJDXZ7vdKf25AACAPwAAgD97jo2+Up1gP86tabyfTba+iyfOvlxTBT4AAAAAAAAAAGbW0TrDkWG6sisWuE3mdLMqo+w5V4guNwAAgD8AAIA/s41+vRRYgrpRuMQ6Xh2ZNQcTtzpYgOW5AACAPwAAgD8Adfa8w8F2uvgIYznC4Ek0AHk6u2fPhLgAAIA/AACAP2YmBjsUBIW6wjmtuARqh7NN6Dq6T4fJNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6Q5iZ4r3Z0CUhpRSlIwBbJRN6AOMAXSUR0CY2EsmOU+tdX2UKGgGaAloD0MIApoIG54RZUCUhpRSlGgVTegDaBZHQJjZ2mygPEt1fZQoaAZoCWgPQwgcti3KbKZgQJSGlFKUaBVN6ANoFkdAmNve2y9mH3V9lChoBmgJaA9DCNMRwM3iw2ZAlIaUUpRoFU3oA2gWR0CY3mP0qYqodX2UKGgGaAloD0MIcET3rGt5aECUhpRSlGgVTegDaBZHQJjf3eaa1Cx1fZQoaAZoCWgPQwiWQiCXuGRkQJSGlFKUaBVN6ANoFkdAmODKJdjXnXV9lChoBmgJaA9DCJs5JLVQbGVAlIaUUpRoFU3oA2gWR0CY44phnanKdX2UKGgGaAloD0MIYFlpUgpsYECUhpRSlGgVTegDaBZHQJjlGwgTyrh1fZQoaAZoCWgPQwjJrN7h9k9oQJSGlFKUaBVN6ANoFkdAmO2cH0K7ZnV9lChoBmgJaA9DCA1VMZX+WWhAlIaUUpRoFU3oA2gWR0CY8fVsDW9UdX2UKGgGaAloD0MI2PLK9TYOZUCUhpRSlGgVTegDaBZHQJj1K47Rv3t1fZQoaAZoCWgPQwgtBg/Tvr9jQJSGlFKUaBVN6ANoFkdAmPgCUxEfDHV9lChoBmgJaA9DCPlmmxvTM3NAlIaUUpRoFU1nAmgWR0CZDqnAZbY9dX2UKGgGaAloD0MIGED4UCLBaECUhpRSlGgVTegDaBZHQJkO7Ggi/wl1fZQoaAZoCWgPQwgct5ifm0JjQJSGlFKUaBVN6ANoFkdAmQ+fTb349HV9lChoBmgJaA9DCMMPzqeO1GFAlIaUUpRoFU3oA2gWR0CZD9HMlkYodX2UKGgGaAloD0MIYHglyXPlY0CUhpRSlGgVTegDaBZHQJkQJlar3kB1fZQoaAZoCWgPQwhBfcucLqlfQJSGlFKUaBVN6ANoFkdAmR9Em2LHdXV9lChoBmgJaA9DCMxfIXNlslxAlIaUUpRoFU3oA2gWR0CZIOP8yeqadX2UKGgGaAloD0MIkbkyqDb6ZUCUhpRSlGgVTegDaBZHQJkl2L0jC551fZQoaAZoCWgPQwiIuDmVDP1jQJSGlFKUaBVN6ANoFkdAmSei9EkSmXV9lChoBmgJaA9DCPERMSUS5GZAlIaUUpRoFU3oA2gWR0CZKLxUNrj6dX2UKGgGaAloD0MIlQ1rKotBX0CUhpRSlGgVTegDaBZHQJksRY7q6e51fZQoaAZoCWgPQwjcuwZ9aYxiQJSGlFKUaBVN6ANoFkdAmS4mI42jwnV9lChoBmgJaA9DCAG9cOdCsGVAlIaUUpRoFU3oA2gWR0CZN4o/zJ6qdX2UKGgGaAloD0MID9JT5JCDYECUhpRSlGgVTegDaBZHQJk75FtsN2F1fZQoaAZoCWgPQwg26iEa3WFiQJSGlFKUaBVN6ANoFkdAmT8K2F36h3V9lChoBmgJaA9DCJNTO8PUXGVAlIaUUpRoFU3oA2gWR0CZQdvvjOs1dX2UKGgGaAloD0MIxm6fVWZUZECUhpRSlGgVTegDaBZHQJlYK5QP7N11fZQoaAZoCWgPQwgbEvdY+uFoQJSGlFKUaBVN6ANoFkdAmVhtd/rjYXV9lChoBmgJaA9DCCtQi8FDeWVAlIaUUpRoFU3oA2gWR0CZWRp0fYBedX2UKGgGaAloD0MITgmISTiGYkCUhpRSlGgVTegDaBZHQJlZSdTYNAl1fZQoaAZoCWgPQwjnxYmvdmdjQJSGlFKUaBVN6ANoFkdAmVmUEs8PnXV9lChoBmgJaA9DCH5wPnWsKXBAlIaUUpRoFU2QA2gWR0CZZAymALApdX2UKGgGaAloD0MIpG/SNCgMYECUhpRSlGgVTegDaBZHQJlnUxwhnrZ1fZQoaAZoCWgPQwjMXradNiVxQJSGlFKUaBVNbwNoFkdAmW1ykO7QLXV9lChoBmgJaA9DCH3qWKV0VGZAlIaUUpRoFU3oA2gWR0CZbbsWO6uodX2UKGgGaAloD0MIr0Sg+gerZUCUhpRSlGgVTegDaBZHQJlvZF5OafB1fZQoaAZoCWgPQwhlUkMbgMJnQJSGlFKUaBVN6ANoFkdAmXB0rwvxpnV9lChoBmgJaA9DCHS366Upl2lAlIaUUpRoFU3oA2gWR0CZdYz1schldX2UKGgGaAloD0MIsDpypDOZYkCUhpRSlGgVTegDaBZHQJl+dPxhDw91fZQoaAZoCWgPQwgA4q5exeRlQJSGlFKUaBVN6ANoFkdAmYLlfE4vOHV9lChoBmgJaA9DCKX0TC+x/2FAlIaUUpRoFU3oA2gWR0CZhhgdOqNqdX2UKGgGaAloD0MIdmwE4vUpZUCUhpRSlGgVTegDaBZHQJmI/GYKIBR1fZQoaAZoCWgPQwjTTPc6KeZoQJSGlFKUaBVN6ANoFkdAmZ96t1ZDA3V9lChoBmgJaA9DCNcyGY7n6GFAlIaUUpRoFU3oA2gWR0CZn7yUcGTtdX2UKGgGaAloD0MIbXAi+jVmZ0CUhpRSlGgVTegDaBZHQJmgZH2AXl91fZQoaAZoCWgPQwh/FkuRfPBiQJSGlFKUaBVN6ANoFkdAmaCYyGi5/nV9lChoBmgJaA9DCETbMXVXumFAlIaUUpRoFU3oA2gWR0CZoOsxwhnrdX2UKGgGaAloD0MISDFAoglYXUCUhpRSlGgVTegDaBZHQJmrhDzAeq91fZQoaAZoCWgPQwhzafzCqzljQJSGlFKUaBVN6ANoFkdAma8B9oexOnV9lChoBmgJaA9DCGhaYmU0UWJAlIaUUpRoFU3oA2gWR0CZtPt1p0wKdX2UKGgGaAloD0MIhgDg2DOAYUCUhpRSlGgVTegDaBZHQJm1QLThHb11fZQoaAZoCWgPQwh9eQH20WplQJSGlFKUaBVN6ANoFkdAmbb7S3LFGXV9lChoBmgJaA9DCB/bMuAsR2NAlIaUUpRoFU3oA2gWR0CZt/deIEbHdX2UKGgGaAloD0MIFhiyulWqZUCUhpRSlGgVTegDaBZHQJm8704BFNN1fZQoaAZoCWgPQwj3V4/7Vs5fQJSGlFKUaBVN6ANoFkdAmcaUWAPNFHV9lChoBmgJaA9DCD6xTpXvfmhAlIaUUpRoFU3oA2gWR0CZy2QPI4lydX2UKGgGaAloD0MIEmkbf6IoZUCUhpRSlGgVTegDaBZHQJnO0o4MnZ11fZQoaAZoCWgPQwgGvqJbL7hlQJSGlFKUaBVN6ANoFkdAmdHPCQ9zO3V9lChoBmgJaA9DCJP8iF+xL2ZAlIaUUpRoFU3oA2gWR0CZ1WVAAyVOdX2UKGgGaAloD0MIO99PjZexZ0CUhpRSlGgVTegDaBZHQJnVtCWu5jJ1fZQoaAZoCWgPQwjbxMn9jhVmQJSGlFKUaBVN6ANoFkdAmem8aS9ug3V9lChoBmgJaA9DCCJxj6WPdWNAlIaUUpRoFU3oA2gWR0CZ6fTYNAkcdX2UKGgGaAloD0MIPN7kt+hbYkCUhpRSlGgVTegDaBZHQJnqSgUUO/d1fZQoaAZoCWgPQwjejQWFQVdBQJSGlFKUaBVL52gWR0CZ7mf/FR51dX2UKGgGaAloD0MIzjP2JRuOYUCUhpRSlGgVTegDaBZHQJn158NQTEl1fZQoaAZoCWgPQwheEmdF1FxkQJSGlFKUaBVN6ANoFkdAmfl0kfLcK3V9lChoBmgJaA9DCGfSpuoermFAlIaUUpRoFU3oA2gWR0CZ/9FM7EHddX2UKGgGaAloD0MIggAZOvaOYkCUhpRSlGgVTegDaBZHQJoAHnB+F111fZQoaAZoCWgPQwgtJ6H0BdJjQJSGlFKUaBVN6ANoFkdAmgHYi5d4V3V9lChoBmgJaA9DCMBcixagfGdAlIaUUpRoFU3oA2gWR0CaAt6TGHYZdX2UKGgGaAloD0MImN9pMuOLZECUhpRSlGgVTegDaBZHQJoH811nuiN1fZQoaAZoCWgPQwhCsKpe/gtgQJSGlFKUaBVN6ANoFkdAmhEUnb7CSHV9lChoBmgJaA9DCA9kPbX6yWdAlIaUUpRoFU3oA2gWR0CaFYIwudwvdX2UKGgGaAloD0MIu2QcI9ndZECUhpRSlGgVTegDaBZHQJob0A7xNIt1fZQoaAZoCWgPQwgAqOLGrURkQJSGlFKUaBVN6ANoFkdAmh8p7gKnenV9lChoBmgJaA9DCKs/wjBgl2NAlIaUUpRoFU3oA2gWR0CaH3ClJpWWdX2UKGgGaAloD0MI7GtdaoRiYUCUhpRSlGgVTegDaBZHQJogLSJCSid1fZQoaAZoCWgPQwg+527XS0BiQJSGlFKUaBVN6ANoFkdAmiBhWtEG7nV9lChoBmgJaA9DCJQvaCGB2mFAlIaUUpRoFU3oA2gWR0CaILbcoH9ndX2UKGgGaAloD0MIEw8om/L4YECUhpRSlGgVTegDaBZHQJo3hEuxrzp1fZQoaAZoCWgPQwh5PZgUnz1wQJSGlFKUaBVNqQFoFkdAmjoMVDa4+nV9lChoBmgJaA9DCHNoke18V0JAlIaUUpRoFUvQaBZHQJo8HYVZcLV1fZQoaAZoCWgPQwh2NuSfWZpyQJSGlFKUaBVNLQNoFkdAmjysqFyq/HV9lChoBmgJaA9DCFjjbDoCcmdAlIaUUpRoFU3oA2gWR0CaPW/mT1TSdX2UKGgGaAloD0MIEW3H1J1GckCUhpRSlGgVTSkDaBZHQJo9+rFOwgV1fZQoaAZoCWgPQwgO2NXkqaxmQJSGlFKUaBVN6ANoFkdAmj/aOcUdrHV9lChoBmgJaA9DCG3heamYbXJAlIaUUpRoFU3rAWgWR0CaRIFG5MDfdX2UKGgGaAloD0MI4lzDDI3cZkCUhpRSlGgVTegDaBZHQJpErL5hz/91fZQoaAZoCWgPQwhe2nBYGplpQJSGlFKUaBVN6ANoFkdAmkbfVVghKXV9lChoBmgJaA9DCFWFBmKZ7XJAlIaUUpRoFU0tAWgWR0CaSMX4j8k2dX2UKGgGaAloD0MISOLl6dz8Y0CUhpRSlGgVTegDaBZHQJpLU+nqFAV1fZQoaAZoCWgPQwgbECGunDhtQJSGlFKUaBVNRAJoFkdAmkx2tyPuHHV9lChoBmgJaA9DCEijAifbFDJAlIaUUpRoFUviaBZHQJpRFv5xiod1fZQoaAZoCWgPQwhXem02lqNwQJSGlFKUaBVN1gJoFkdAmlHBwVCXyHV9lChoBmgJaA9DCK+ytimelWJAlIaUUpRoFU3oA2gWR0CaVoWSEDhcdX2UKGgGaAloD0MIDCJS0y52ckCUhpRSlGgVTWMCaBZHQJpbeIpH7P91fZQoaAZoCWgPQwitiQW+omloQJSGlFKUaBVN6ANoFkdAml7NC3PRiXV9lChoBmgJaA9DCHk6V5SS12ZAlIaUUpRoFU3oA2gWR0CaX5z3RG+cdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 280,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18fb3e6a29f18c0cfc4d9292ddd76c488c24adef095a520f8ef60d193dd17ad5
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e09e8f80a300694947d85099c6b9cc39b09b653d63b3d0a5807c26785d58361
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (239 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 279.12637641531376, "std_reward": 18.689714283608083, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-01T13:00:20.181480"}
|