eugene-d commited on
Commit
0db56f7
1 Parent(s): 121fc99

Upload PPO LunarLander-v2 trained agent, agent v.0.1

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 279.13 +/- 18.69
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc28da09c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc28da09ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc28da09d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc28da09dc0>", "_build": "<function ActorCriticPolicy._build at 0x7fc28da09e50>", "forward": "<function ActorCriticPolicy.forward at 0x7fc28da09ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc28da09f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc28da0d040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc28da0d0d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc28da0d160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc28da0d1f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc28da084b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1672574508219851899, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbDc73DwT26sJULtIX+NS7a6tI5PaGuMwAAgD8AAIA/04NMPtpvcj+heJw+vW7yvpGVgj56GyY9AAAAAAAAAAAzPVw8KRwfuuUQHzipzUcz6wKFO7pIPbcAAIA/AACAP2YPoL3sMda5yJWGObzAXDSPdyg7CUObuAAAgD8AAIA/TRA7vRRQh7rCPL26lzKqtf0gVbuyKtw5AACAPwAAgD8zj5e8tuMOvDa5kLmw+Zw86EB4PV5Ggr0AAIA/AACAP9rt1b32FFu6GDF2O/42wzMo40y7w8YPMgAAAAAAAIA/M4wJvq5nuj7r4fQ96gRlvvxQ4DyHvKE8AAAAAAAAAACaSaW6FPiNuoRNn7rJV5e1yUb4NpYFuTkAAIA/AACAP2a+ULxc60S6YA4+uWJ1I7TU0R06CoZgOAAAgD8AAIA/5txLPSlEKrrwANg6PAC5tJDXZ7vdKf25AACAPwAAgD97jo2+Up1gP86tabyfTba+iyfOvlxTBT4AAAAAAAAAAGbW0TrDkWG6sisWuE3mdLMqo+w5V4guNwAAgD8AAIA/s41+vRRYgrpRuMQ6Xh2ZNQcTtzpYgOW5AACAPwAAgD8Adfa8w8F2uvgIYznC4Ek0AHk6u2fPhLgAAIA/AACAP2YmBjsUBIW6wjmtuARqh7NN6Dq6T4fJNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6Q5iZ4r3Z0CUhpRSlIwBbJRN6AOMAXSUR0CY2EsmOU+tdX2UKGgGaAloD0MIApoIG54RZUCUhpRSlGgVTegDaBZHQJjZ2mygPEt1fZQoaAZoCWgPQwgcti3KbKZgQJSGlFKUaBVN6ANoFkdAmNve2y9mH3V9lChoBmgJaA9DCNMRwM3iw2ZAlIaUUpRoFU3oA2gWR0CY3mP0qYqodX2UKGgGaAloD0MIcET3rGt5aECUhpRSlGgVTegDaBZHQJjf3eaa1Cx1fZQoaAZoCWgPQwiWQiCXuGRkQJSGlFKUaBVN6ANoFkdAmODKJdjXnXV9lChoBmgJaA9DCJs5JLVQbGVAlIaUUpRoFU3oA2gWR0CY44phnanKdX2UKGgGaAloD0MIYFlpUgpsYECUhpRSlGgVTegDaBZHQJjlGwgTyrh1fZQoaAZoCWgPQwjJrN7h9k9oQJSGlFKUaBVN6ANoFkdAmO2cH0K7ZnV9lChoBmgJaA9DCA1VMZX+WWhAlIaUUpRoFU3oA2gWR0CY8fVsDW9UdX2UKGgGaAloD0MI2PLK9TYOZUCUhpRSlGgVTegDaBZHQJj1K47Rv3t1fZQoaAZoCWgPQwgtBg/Tvr9jQJSGlFKUaBVN6ANoFkdAmPgCUxEfDHV9lChoBmgJaA9DCPlmmxvTM3NAlIaUUpRoFU1nAmgWR0CZDqnAZbY9dX2UKGgGaAloD0MIGED4UCLBaECUhpRSlGgVTegDaBZHQJkO7Ggi/wl1fZQoaAZoCWgPQwgct5ifm0JjQJSGlFKUaBVN6ANoFkdAmQ+fTb349HV9lChoBmgJaA9DCMMPzqeO1GFAlIaUUpRoFU3oA2gWR0CZD9HMlkYodX2UKGgGaAloD0MIYHglyXPlY0CUhpRSlGgVTegDaBZHQJkQJlar3kB1fZQoaAZoCWgPQwhBfcucLqlfQJSGlFKUaBVN6ANoFkdAmR9Em2LHdXV9lChoBmgJaA9DCMxfIXNlslxAlIaUUpRoFU3oA2gWR0CZIOP8yeqadX2UKGgGaAloD0MIkbkyqDb6ZUCUhpRSlGgVTegDaBZHQJkl2L0jC551fZQoaAZoCWgPQwiIuDmVDP1jQJSGlFKUaBVN6ANoFkdAmSei9EkSmXV9lChoBmgJaA9DCPERMSUS5GZAlIaUUpRoFU3oA2gWR0CZKLxUNrj6dX2UKGgGaAloD0MIlQ1rKotBX0CUhpRSlGgVTegDaBZHQJksRY7q6e51fZQoaAZoCWgPQwjcuwZ9aYxiQJSGlFKUaBVN6ANoFkdAmS4mI42jwnV9lChoBmgJaA9DCAG9cOdCsGVAlIaUUpRoFU3oA2gWR0CZN4o/zJ6qdX2UKGgGaAloD0MID9JT5JCDYECUhpRSlGgVTegDaBZHQJk75FtsN2F1fZQoaAZoCWgPQwg26iEa3WFiQJSGlFKUaBVN6ANoFkdAmT8K2F36h3V9lChoBmgJaA9DCJNTO8PUXGVAlIaUUpRoFU3oA2gWR0CZQdvvjOs1dX2UKGgGaAloD0MIxm6fVWZUZECUhpRSlGgVTegDaBZHQJlYK5QP7N11fZQoaAZoCWgPQwgbEvdY+uFoQJSGlFKUaBVN6ANoFkdAmVhtd/rjYXV9lChoBmgJaA9DCCtQi8FDeWVAlIaUUpRoFU3oA2gWR0CZWRp0fYBedX2UKGgGaAloD0MITgmISTiGYkCUhpRSlGgVTegDaBZHQJlZSdTYNAl1fZQoaAZoCWgPQwjnxYmvdmdjQJSGlFKUaBVN6ANoFkdAmVmUEs8PnXV9lChoBmgJaA9DCH5wPnWsKXBAlIaUUpRoFU2QA2gWR0CZZAymALApdX2UKGgGaAloD0MIpG/SNCgMYECUhpRSlGgVTegDaBZHQJlnUxwhnrZ1fZQoaAZoCWgPQwjMXradNiVxQJSGlFKUaBVNbwNoFkdAmW1ykO7QLXV9lChoBmgJaA9DCH3qWKV0VGZAlIaUUpRoFU3oA2gWR0CZbbsWO6uodX2UKGgGaAloD0MIr0Sg+gerZUCUhpRSlGgVTegDaBZHQJlvZF5OafB1fZQoaAZoCWgPQwhlUkMbgMJnQJSGlFKUaBVN6ANoFkdAmXB0rwvxpnV9lChoBmgJaA9DCHS366Upl2lAlIaUUpRoFU3oA2gWR0CZdYz1schldX2UKGgGaAloD0MIsDpypDOZYkCUhpRSlGgVTegDaBZHQJl+dPxhDw91fZQoaAZoCWgPQwgA4q5exeRlQJSGlFKUaBVN6ANoFkdAmYLlfE4vOHV9lChoBmgJaA9DCKX0TC+x/2FAlIaUUpRoFU3oA2gWR0CZhhgdOqNqdX2UKGgGaAloD0MIdmwE4vUpZUCUhpRSlGgVTegDaBZHQJmI/GYKIBR1fZQoaAZoCWgPQwjTTPc6KeZoQJSGlFKUaBVN6ANoFkdAmZ96t1ZDA3V9lChoBmgJaA9DCNcyGY7n6GFAlIaUUpRoFU3oA2gWR0CZn7yUcGTtdX2UKGgGaAloD0MIbXAi+jVmZ0CUhpRSlGgVTegDaBZHQJmgZH2AXl91fZQoaAZoCWgPQwh/FkuRfPBiQJSGlFKUaBVN6ANoFkdAmaCYyGi5/nV9lChoBmgJaA9DCETbMXVXumFAlIaUUpRoFU3oA2gWR0CZoOsxwhnrdX2UKGgGaAloD0MISDFAoglYXUCUhpRSlGgVTegDaBZHQJmrhDzAeq91fZQoaAZoCWgPQwhzafzCqzljQJSGlFKUaBVN6ANoFkdAma8B9oexOnV9lChoBmgJaA9DCGhaYmU0UWJAlIaUUpRoFU3oA2gWR0CZtPt1p0wKdX2UKGgGaAloD0MIhgDg2DOAYUCUhpRSlGgVTegDaBZHQJm1QLThHb11fZQoaAZoCWgPQwh9eQH20WplQJSGlFKUaBVN6ANoFkdAmbb7S3LFGXV9lChoBmgJaA9DCB/bMuAsR2NAlIaUUpRoFU3oA2gWR0CZt/deIEbHdX2UKGgGaAloD0MIFhiyulWqZUCUhpRSlGgVTegDaBZHQJm8704BFNN1fZQoaAZoCWgPQwj3V4/7Vs5fQJSGlFKUaBVN6ANoFkdAmcaUWAPNFHV9lChoBmgJaA9DCD6xTpXvfmhAlIaUUpRoFU3oA2gWR0CZy2QPI4lydX2UKGgGaAloD0MIEmkbf6IoZUCUhpRSlGgVTegDaBZHQJnO0o4MnZ11fZQoaAZoCWgPQwgGvqJbL7hlQJSGlFKUaBVN6ANoFkdAmdHPCQ9zO3V9lChoBmgJaA9DCJP8iF+xL2ZAlIaUUpRoFU3oA2gWR0CZ1WVAAyVOdX2UKGgGaAloD0MIO99PjZexZ0CUhpRSlGgVTegDaBZHQJnVtCWu5jJ1fZQoaAZoCWgPQwjbxMn9jhVmQJSGlFKUaBVN6ANoFkdAmem8aS9ug3V9lChoBmgJaA9DCCJxj6WPdWNAlIaUUpRoFU3oA2gWR0CZ6fTYNAkcdX2UKGgGaAloD0MIPN7kt+hbYkCUhpRSlGgVTegDaBZHQJnqSgUUO/d1fZQoaAZoCWgPQwjejQWFQVdBQJSGlFKUaBVL52gWR0CZ7mf/FR51dX2UKGgGaAloD0MIzjP2JRuOYUCUhpRSlGgVTegDaBZHQJn158NQTEl1fZQoaAZoCWgPQwheEmdF1FxkQJSGlFKUaBVN6ANoFkdAmfl0kfLcK3V9lChoBmgJaA9DCGfSpuoermFAlIaUUpRoFU3oA2gWR0CZ/9FM7EHddX2UKGgGaAloD0MIggAZOvaOYkCUhpRSlGgVTegDaBZHQJoAHnB+F111fZQoaAZoCWgPQwgtJ6H0BdJjQJSGlFKUaBVN6ANoFkdAmgHYi5d4V3V9lChoBmgJaA9DCMBcixagfGdAlIaUUpRoFU3oA2gWR0CaAt6TGHYZdX2UKGgGaAloD0MImN9pMuOLZECUhpRSlGgVTegDaBZHQJoH811nuiN1fZQoaAZoCWgPQwhCsKpe/gtgQJSGlFKUaBVN6ANoFkdAmhEUnb7CSHV9lChoBmgJaA9DCA9kPbX6yWdAlIaUUpRoFU3oA2gWR0CaFYIwudwvdX2UKGgGaAloD0MIu2QcI9ndZECUhpRSlGgVTegDaBZHQJob0A7xNIt1fZQoaAZoCWgPQwgAqOLGrURkQJSGlFKUaBVN6ANoFkdAmh8p7gKnenV9lChoBmgJaA9DCKs/wjBgl2NAlIaUUpRoFU3oA2gWR0CaH3ClJpWWdX2UKGgGaAloD0MI7GtdaoRiYUCUhpRSlGgVTegDaBZHQJogLSJCSid1fZQoaAZoCWgPQwg+527XS0BiQJSGlFKUaBVN6ANoFkdAmiBhWtEG7nV9lChoBmgJaA9DCJQvaCGB2mFAlIaUUpRoFU3oA2gWR0CaILbcoH9ndX2UKGgGaAloD0MIEw8om/L4YECUhpRSlGgVTegDaBZHQJo3hEuxrzp1fZQoaAZoCWgPQwh5PZgUnz1wQJSGlFKUaBVNqQFoFkdAmjoMVDa4+nV9lChoBmgJaA9DCHNoke18V0JAlIaUUpRoFUvQaBZHQJo8HYVZcLV1fZQoaAZoCWgPQwh2NuSfWZpyQJSGlFKUaBVNLQNoFkdAmjysqFyq/HV9lChoBmgJaA9DCFjjbDoCcmdAlIaUUpRoFU3oA2gWR0CaPW/mT1TSdX2UKGgGaAloD0MIEW3H1J1GckCUhpRSlGgVTSkDaBZHQJo9+rFOwgV1fZQoaAZoCWgPQwgO2NXkqaxmQJSGlFKUaBVN6ANoFkdAmj/aOcUdrHV9lChoBmgJaA9DCG3heamYbXJAlIaUUpRoFU3rAWgWR0CaRIFG5MDfdX2UKGgGaAloD0MI4lzDDI3cZkCUhpRSlGgVTegDaBZHQJpErL5hz/91fZQoaAZoCWgPQwhe2nBYGplpQJSGlFKUaBVN6ANoFkdAmkbfVVghKXV9lChoBmgJaA9DCFWFBmKZ7XJAlIaUUpRoFU0tAWgWR0CaSMX4j8k2dX2UKGgGaAloD0MISOLl6dz8Y0CUhpRSlGgVTegDaBZHQJpLU+nqFAV1fZQoaAZoCWgPQwgbECGunDhtQJSGlFKUaBVNRAJoFkdAmkx2tyPuHHV9lChoBmgJaA9DCEijAifbFDJAlIaUUpRoFUviaBZHQJpRFv5xiod1fZQoaAZoCWgPQwhXem02lqNwQJSGlFKUaBVN1gJoFkdAmlHBwVCXyHV9lChoBmgJaA9DCK+ytimelWJAlIaUUpRoFU3oA2gWR0CaVoWSEDhcdX2UKGgGaAloD0MIDCJS0y52ckCUhpRSlGgVTWMCaBZHQJpbeIpH7P91fZQoaAZoCWgPQwitiQW+omloQJSGlFKUaBVN6ANoFkdAml7NC3PRiXV9lChoBmgJaA9DCHk6V5SS12ZAlIaUUpRoFU3oA2gWR0CaX5z3RG+cdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 280, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e7ab037288f1c1c42d7f1357bd1de521fdf436527185ee04fc86dfb61b58d3e
3
+ size 147214
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc28da09c10>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc28da09ca0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc28da09d30>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc28da09dc0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc28da09e50>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc28da09ee0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc28da09f70>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc28da0d040>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc28da0d0d0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc28da0d160>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc28da0d1f0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fc28da084b0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1672574508219851899,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbDc73DwT26sJULtIX+NS7a6tI5PaGuMwAAgD8AAIA/04NMPtpvcj+heJw+vW7yvpGVgj56GyY9AAAAAAAAAAAzPVw8KRwfuuUQHzipzUcz6wKFO7pIPbcAAIA/AACAP2YPoL3sMda5yJWGObzAXDSPdyg7CUObuAAAgD8AAIA/TRA7vRRQh7rCPL26lzKqtf0gVbuyKtw5AACAPwAAgD8zj5e8tuMOvDa5kLmw+Zw86EB4PV5Ggr0AAIA/AACAP9rt1b32FFu6GDF2O/42wzMo40y7w8YPMgAAAAAAAIA/M4wJvq5nuj7r4fQ96gRlvvxQ4DyHvKE8AAAAAAAAAACaSaW6FPiNuoRNn7rJV5e1yUb4NpYFuTkAAIA/AACAP2a+ULxc60S6YA4+uWJ1I7TU0R06CoZgOAAAgD8AAIA/5txLPSlEKrrwANg6PAC5tJDXZ7vdKf25AACAPwAAgD97jo2+Up1gP86tabyfTba+iyfOvlxTBT4AAAAAAAAAAGbW0TrDkWG6sisWuE3mdLMqo+w5V4guNwAAgD8AAIA/s41+vRRYgrpRuMQ6Xh2ZNQcTtzpYgOW5AACAPwAAgD8Adfa8w8F2uvgIYznC4Ek0AHk6u2fPhLgAAIA/AACAP2YmBjsUBIW6wjmtuARqh7NN6Dq6T4fJNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6Q5iZ4r3Z0CUhpRSlIwBbJRN6AOMAXSUR0CY2EsmOU+tdX2UKGgGaAloD0MIApoIG54RZUCUhpRSlGgVTegDaBZHQJjZ2mygPEt1fZQoaAZoCWgPQwgcti3KbKZgQJSGlFKUaBVN6ANoFkdAmNve2y9mH3V9lChoBmgJaA9DCNMRwM3iw2ZAlIaUUpRoFU3oA2gWR0CY3mP0qYqodX2UKGgGaAloD0MIcET3rGt5aECUhpRSlGgVTegDaBZHQJjf3eaa1Cx1fZQoaAZoCWgPQwiWQiCXuGRkQJSGlFKUaBVN6ANoFkdAmODKJdjXnXV9lChoBmgJaA9DCJs5JLVQbGVAlIaUUpRoFU3oA2gWR0CY44phnanKdX2UKGgGaAloD0MIYFlpUgpsYECUhpRSlGgVTegDaBZHQJjlGwgTyrh1fZQoaAZoCWgPQwjJrN7h9k9oQJSGlFKUaBVN6ANoFkdAmO2cH0K7ZnV9lChoBmgJaA9DCA1VMZX+WWhAlIaUUpRoFU3oA2gWR0CY8fVsDW9UdX2UKGgGaAloD0MI2PLK9TYOZUCUhpRSlGgVTegDaBZHQJj1K47Rv3t1fZQoaAZoCWgPQwgtBg/Tvr9jQJSGlFKUaBVN6ANoFkdAmPgCUxEfDHV9lChoBmgJaA9DCPlmmxvTM3NAlIaUUpRoFU1nAmgWR0CZDqnAZbY9dX2UKGgGaAloD0MIGED4UCLBaECUhpRSlGgVTegDaBZHQJkO7Ggi/wl1fZQoaAZoCWgPQwgct5ifm0JjQJSGlFKUaBVN6ANoFkdAmQ+fTb349HV9lChoBmgJaA9DCMMPzqeO1GFAlIaUUpRoFU3oA2gWR0CZD9HMlkYodX2UKGgGaAloD0MIYHglyXPlY0CUhpRSlGgVTegDaBZHQJkQJlar3kB1fZQoaAZoCWgPQwhBfcucLqlfQJSGlFKUaBVN6ANoFkdAmR9Em2LHdXV9lChoBmgJaA9DCMxfIXNlslxAlIaUUpRoFU3oA2gWR0CZIOP8yeqadX2UKGgGaAloD0MIkbkyqDb6ZUCUhpRSlGgVTegDaBZHQJkl2L0jC551fZQoaAZoCWgPQwiIuDmVDP1jQJSGlFKUaBVN6ANoFkdAmSei9EkSmXV9lChoBmgJaA9DCPERMSUS5GZAlIaUUpRoFU3oA2gWR0CZKLxUNrj6dX2UKGgGaAloD0MIlQ1rKotBX0CUhpRSlGgVTegDaBZHQJksRY7q6e51fZQoaAZoCWgPQwjcuwZ9aYxiQJSGlFKUaBVN6ANoFkdAmS4mI42jwnV9lChoBmgJaA9DCAG9cOdCsGVAlIaUUpRoFU3oA2gWR0CZN4o/zJ6qdX2UKGgGaAloD0MID9JT5JCDYECUhpRSlGgVTegDaBZHQJk75FtsN2F1fZQoaAZoCWgPQwg26iEa3WFiQJSGlFKUaBVN6ANoFkdAmT8K2F36h3V9lChoBmgJaA9DCJNTO8PUXGVAlIaUUpRoFU3oA2gWR0CZQdvvjOs1dX2UKGgGaAloD0MIxm6fVWZUZECUhpRSlGgVTegDaBZHQJlYK5QP7N11fZQoaAZoCWgPQwgbEvdY+uFoQJSGlFKUaBVN6ANoFkdAmVhtd/rjYXV9lChoBmgJaA9DCCtQi8FDeWVAlIaUUpRoFU3oA2gWR0CZWRp0fYBedX2UKGgGaAloD0MITgmISTiGYkCUhpRSlGgVTegDaBZHQJlZSdTYNAl1fZQoaAZoCWgPQwjnxYmvdmdjQJSGlFKUaBVN6ANoFkdAmVmUEs8PnXV9lChoBmgJaA9DCH5wPnWsKXBAlIaUUpRoFU2QA2gWR0CZZAymALApdX2UKGgGaAloD0MIpG/SNCgMYECUhpRSlGgVTegDaBZHQJlnUxwhnrZ1fZQoaAZoCWgPQwjMXradNiVxQJSGlFKUaBVNbwNoFkdAmW1ykO7QLXV9lChoBmgJaA9DCH3qWKV0VGZAlIaUUpRoFU3oA2gWR0CZbbsWO6uodX2UKGgGaAloD0MIr0Sg+gerZUCUhpRSlGgVTegDaBZHQJlvZF5OafB1fZQoaAZoCWgPQwhlUkMbgMJnQJSGlFKUaBVN6ANoFkdAmXB0rwvxpnV9lChoBmgJaA9DCHS366Upl2lAlIaUUpRoFU3oA2gWR0CZdYz1schldX2UKGgGaAloD0MIsDpypDOZYkCUhpRSlGgVTegDaBZHQJl+dPxhDw91fZQoaAZoCWgPQwgA4q5exeRlQJSGlFKUaBVN6ANoFkdAmYLlfE4vOHV9lChoBmgJaA9DCKX0TC+x/2FAlIaUUpRoFU3oA2gWR0CZhhgdOqNqdX2UKGgGaAloD0MIdmwE4vUpZUCUhpRSlGgVTegDaBZHQJmI/GYKIBR1fZQoaAZoCWgPQwjTTPc6KeZoQJSGlFKUaBVN6ANoFkdAmZ96t1ZDA3V9lChoBmgJaA9DCNcyGY7n6GFAlIaUUpRoFU3oA2gWR0CZn7yUcGTtdX2UKGgGaAloD0MIbXAi+jVmZ0CUhpRSlGgVTegDaBZHQJmgZH2AXl91fZQoaAZoCWgPQwh/FkuRfPBiQJSGlFKUaBVN6ANoFkdAmaCYyGi5/nV9lChoBmgJaA9DCETbMXVXumFAlIaUUpRoFU3oA2gWR0CZoOsxwhnrdX2UKGgGaAloD0MISDFAoglYXUCUhpRSlGgVTegDaBZHQJmrhDzAeq91fZQoaAZoCWgPQwhzafzCqzljQJSGlFKUaBVN6ANoFkdAma8B9oexOnV9lChoBmgJaA9DCGhaYmU0UWJAlIaUUpRoFU3oA2gWR0CZtPt1p0wKdX2UKGgGaAloD0MIhgDg2DOAYUCUhpRSlGgVTegDaBZHQJm1QLThHb11fZQoaAZoCWgPQwh9eQH20WplQJSGlFKUaBVN6ANoFkdAmbb7S3LFGXV9lChoBmgJaA9DCB/bMuAsR2NAlIaUUpRoFU3oA2gWR0CZt/deIEbHdX2UKGgGaAloD0MIFhiyulWqZUCUhpRSlGgVTegDaBZHQJm8704BFNN1fZQoaAZoCWgPQwj3V4/7Vs5fQJSGlFKUaBVN6ANoFkdAmcaUWAPNFHV9lChoBmgJaA9DCD6xTpXvfmhAlIaUUpRoFU3oA2gWR0CZy2QPI4lydX2UKGgGaAloD0MIEmkbf6IoZUCUhpRSlGgVTegDaBZHQJnO0o4MnZ11fZQoaAZoCWgPQwgGvqJbL7hlQJSGlFKUaBVN6ANoFkdAmdHPCQ9zO3V9lChoBmgJaA9DCJP8iF+xL2ZAlIaUUpRoFU3oA2gWR0CZ1WVAAyVOdX2UKGgGaAloD0MIO99PjZexZ0CUhpRSlGgVTegDaBZHQJnVtCWu5jJ1fZQoaAZoCWgPQwjbxMn9jhVmQJSGlFKUaBVN6ANoFkdAmem8aS9ug3V9lChoBmgJaA9DCCJxj6WPdWNAlIaUUpRoFU3oA2gWR0CZ6fTYNAkcdX2UKGgGaAloD0MIPN7kt+hbYkCUhpRSlGgVTegDaBZHQJnqSgUUO/d1fZQoaAZoCWgPQwjejQWFQVdBQJSGlFKUaBVL52gWR0CZ7mf/FR51dX2UKGgGaAloD0MIzjP2JRuOYUCUhpRSlGgVTegDaBZHQJn158NQTEl1fZQoaAZoCWgPQwheEmdF1FxkQJSGlFKUaBVN6ANoFkdAmfl0kfLcK3V9lChoBmgJaA9DCGfSpuoermFAlIaUUpRoFU3oA2gWR0CZ/9FM7EHddX2UKGgGaAloD0MIggAZOvaOYkCUhpRSlGgVTegDaBZHQJoAHnB+F111fZQoaAZoCWgPQwgtJ6H0BdJjQJSGlFKUaBVN6ANoFkdAmgHYi5d4V3V9lChoBmgJaA9DCMBcixagfGdAlIaUUpRoFU3oA2gWR0CaAt6TGHYZdX2UKGgGaAloD0MImN9pMuOLZECUhpRSlGgVTegDaBZHQJoH811nuiN1fZQoaAZoCWgPQwhCsKpe/gtgQJSGlFKUaBVN6ANoFkdAmhEUnb7CSHV9lChoBmgJaA9DCA9kPbX6yWdAlIaUUpRoFU3oA2gWR0CaFYIwudwvdX2UKGgGaAloD0MIu2QcI9ndZECUhpRSlGgVTegDaBZHQJob0A7xNIt1fZQoaAZoCWgPQwgAqOLGrURkQJSGlFKUaBVN6ANoFkdAmh8p7gKnenV9lChoBmgJaA9DCKs/wjBgl2NAlIaUUpRoFU3oA2gWR0CaH3ClJpWWdX2UKGgGaAloD0MI7GtdaoRiYUCUhpRSlGgVTegDaBZHQJogLSJCSid1fZQoaAZoCWgPQwg+527XS0BiQJSGlFKUaBVN6ANoFkdAmiBhWtEG7nV9lChoBmgJaA9DCJQvaCGB2mFAlIaUUpRoFU3oA2gWR0CaILbcoH9ndX2UKGgGaAloD0MIEw8om/L4YECUhpRSlGgVTegDaBZHQJo3hEuxrzp1fZQoaAZoCWgPQwh5PZgUnz1wQJSGlFKUaBVNqQFoFkdAmjoMVDa4+nV9lChoBmgJaA9DCHNoke18V0JAlIaUUpRoFUvQaBZHQJo8HYVZcLV1fZQoaAZoCWgPQwh2NuSfWZpyQJSGlFKUaBVNLQNoFkdAmjysqFyq/HV9lChoBmgJaA9DCFjjbDoCcmdAlIaUUpRoFU3oA2gWR0CaPW/mT1TSdX2UKGgGaAloD0MIEW3H1J1GckCUhpRSlGgVTSkDaBZHQJo9+rFOwgV1fZQoaAZoCWgPQwgO2NXkqaxmQJSGlFKUaBVN6ANoFkdAmj/aOcUdrHV9lChoBmgJaA9DCG3heamYbXJAlIaUUpRoFU3rAWgWR0CaRIFG5MDfdX2UKGgGaAloD0MI4lzDDI3cZkCUhpRSlGgVTegDaBZHQJpErL5hz/91fZQoaAZoCWgPQwhe2nBYGplpQJSGlFKUaBVN6ANoFkdAmkbfVVghKXV9lChoBmgJaA9DCFWFBmKZ7XJAlIaUUpRoFU0tAWgWR0CaSMX4j8k2dX2UKGgGaAloD0MISOLl6dz8Y0CUhpRSlGgVTegDaBZHQJpLU+nqFAV1fZQoaAZoCWgPQwgbECGunDhtQJSGlFKUaBVNRAJoFkdAmkx2tyPuHHV9lChoBmgJaA9DCEijAifbFDJAlIaUUpRoFUviaBZHQJpRFv5xiod1fZQoaAZoCWgPQwhXem02lqNwQJSGlFKUaBVN1gJoFkdAmlHBwVCXyHV9lChoBmgJaA9DCK+ytimelWJAlIaUUpRoFU3oA2gWR0CaVoWSEDhcdX2UKGgGaAloD0MIDCJS0y52ckCUhpRSlGgVTWMCaBZHQJpbeIpH7P91fZQoaAZoCWgPQwitiQW+omloQJSGlFKUaBVN6ANoFkdAml7NC3PRiXV9lChoBmgJaA9DCHk6V5SS12ZAlIaUUpRoFU3oA2gWR0CaX5z3RG+cdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 280,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18fb3e6a29f18c0cfc4d9292ddd76c488c24adef095a520f8ef60d193dd17ad5
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e09e8f80a300694947d85099c6b9cc39b09b653d63b3d0a5807c26785d58361
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (239 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 279.12637641531376, "std_reward": 18.689714283608083, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-01T13:00:20.181480"}