Add v1.1 model card
Browse files
README.md
ADDED
|
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc0-1.0
|
| 3 |
+
base_model: mlx-community/Qwen2.5-Coder-7B-Instruct-4bit
|
| 4 |
+
tags:
|
| 5 |
+
- gguf
|
| 6 |
+
- cybersecurity
|
| 7 |
+
- nist
|
| 8 |
+
- security-controls
|
| 9 |
+
- compliance
|
| 10 |
+
- fine-tuned
|
| 11 |
+
- llama-cpp
|
| 12 |
+
language:
|
| 13 |
+
- en
|
| 14 |
+
quantized_by: ethanolivertroy
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
# HackIDLE-NIST-Coder v1.1 (GGUF)
|
| 18 |
+
|
| 19 |
+
**The most comprehensive NIST cybersecurity model** in GGUF format - Compatible with llama.cpp, Ollama, LM Studio, and text-generation-webui.
|
| 20 |
+
|
| 21 |
+
## Model Overview
|
| 22 |
+
|
| 23 |
+
Fine-tuned on 530,912 examples from 596 NIST publications. Version 1.1 includes:
|
| 24 |
+
|
| 25 |
+
- **+7,206 training examples** (530,912 total)
|
| 26 |
+
- **+28 new documents** (596 NIST publications)
|
| 27 |
+
- **CSWP series**: CSF 2.0, Zero Trust Architecture, Post-Quantum Cryptography
|
| 28 |
+
- **Improved quality**: Fixed 6,150 malformed DOI links, 0 broken link markers
|
| 29 |
+
|
| 30 |
+
## Available Quantizations
|
| 31 |
+
|
| 32 |
+
| Quantization | Size | Use Case | Description |
|
| 33 |
+
|--------------|------|----------|-------------|
|
| 34 |
+
| **F16** | ~14 GB | Reference Quality | Full precision, best quality |
|
| 35 |
+
| **Q8_0** | ~7.5 GB | High Quality | Minimal quality loss |
|
| 36 |
+
| **Q5_K_M** | ~5.1 GB | Balanced | Good quality/size trade-off |
|
| 37 |
+
| **Q4_K_M** | ~4.4 GB | Recommended | Best speed/quality balance |
|
| 38 |
+
|
| 39 |
+
**Recommended**: Start with **Q4_K_M** for best overall performance.
|
| 40 |
+
|
| 41 |
+
## Training Data (v1.1)
|
| 42 |
+
|
| 43 |
+
**Dataset**: [ethanolivertroy/nist-cybersecurity-training](https://huggingface.co/datasets/ethanolivertroy/nist-cybersecurity-training)
|
| 44 |
+
|
| 45 |
+
**Coverage:**
|
| 46 |
+
- **FIPS**: Cryptographic standards
|
| 47 |
+
- **SP 800**: Security guidelines and controls
|
| 48 |
+
- **SP 1800**: Practice guides
|
| 49 |
+
- **IR**: Technical reports
|
| 50 |
+
- **CSWP**: White Papers (CSF 2.0, Zero Trust, PQC, IoT, Privacy) β¨ NEW
|
| 51 |
+
|
| 52 |
+
**Stats**: 530,912 examples β’ 596 documents β’ 61,480 working references
|
| 53 |
+
|
| 54 |
+
## Installation
|
| 55 |
+
|
| 56 |
+
### Ollama
|
| 57 |
+
|
| 58 |
+
```bash
|
| 59 |
+
# Pull from Ollama registry
|
| 60 |
+
ollama pull etgohome/hackidle-nist-coder:v1.1
|
| 61 |
+
|
| 62 |
+
# Or create from GGUF
|
| 63 |
+
ollama create hackidle-nist-coder -f Modelfile
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
### LM Studio
|
| 67 |
+
|
| 68 |
+
1. Open LM Studio
|
| 69 |
+
2. Search for "hackidle-nist-coder"
|
| 70 |
+
3. Download Q4_K_M or Q5_K_M quantization
|
| 71 |
+
4. Load and chat
|
| 72 |
+
|
| 73 |
+
### llama.cpp
|
| 74 |
+
|
| 75 |
+
```bash
|
| 76 |
+
# Clone llama.cpp
|
| 77 |
+
git clone https://github.com/ggerganov/llama.cpp
|
| 78 |
+
cd llama.cpp && make
|
| 79 |
+
|
| 80 |
+
# Download model (Q4_K_M recommended)
|
| 81 |
+
wget https://huggingface.co/ethanolivertroy/HackIDLE-NIST-Coder-v1.1-GGUF/resolve/main/hackidle-nist-coder-v1.1-q4_k_m.gguf
|
| 82 |
+
|
| 83 |
+
# Run inference
|
| 84 |
+
./llama-cli -m hackidle-nist-coder-v1.1-q4_k_m.gguf -p "What is Zero Trust Architecture?"
|
| 85 |
+
```
|
| 86 |
+
|
| 87 |
+
### text-generation-webui
|
| 88 |
+
|
| 89 |
+
1. Place GGUF file in `models/` directory
|
| 90 |
+
2. Select model in UI
|
| 91 |
+
3. Load and chat
|
| 92 |
+
|
| 93 |
+
## Usage Examples
|
| 94 |
+
|
| 95 |
+
### Ollama
|
| 96 |
+
|
| 97 |
+
```bash
|
| 98 |
+
ollama run etgohome/hackidle-nist-coder:v1.1 "Explain the CSF 2.0 GOVERN function"
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
### Python (llama-cpp-python)
|
| 102 |
+
|
| 103 |
+
```python
|
| 104 |
+
from llama_cpp import Llama
|
| 105 |
+
|
| 106 |
+
llm = Llama(
|
| 107 |
+
model_path="hackidle-nist-coder-v1.1-q4_k_m.gguf",
|
| 108 |
+
n_ctx=4096,
|
| 109 |
+
n_threads=8
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
response = llm("What are the core principles of Zero Trust Architecture in SP 800-207?",
|
| 113 |
+
max_tokens=500)
|
| 114 |
+
print(response['choices'][0]['text'])
|
| 115 |
+
```
|
| 116 |
+
|
| 117 |
+
## Model Capabilities
|
| 118 |
+
|
| 119 |
+
Trained on comprehensive NIST content:
|
| 120 |
+
|
| 121 |
+
β
**Security Controls** (SP 800-53)
|
| 122 |
+
β
**CSF 2.0** with GOVERN function
|
| 123 |
+
β
**Zero Trust Architecture** (SP 800-207)
|
| 124 |
+
β
**Risk Management Framework** (RMF)
|
| 125 |
+
β
**Cloud Security** (SP 800-145, 800-146)
|
| 126 |
+
β
**FIPS Cryptography** standards
|
| 127 |
+
β
**Post-Quantum Cryptography** migration
|
| 128 |
+
β
**Privacy Engineering**
|
| 129 |
+
β
**Supply Chain Risk Management**
|
| 130 |
+
β
**IoT Cybersecurity**
|
| 131 |
+
|
| 132 |
+
## What's New in v1.1
|
| 133 |
+
|
| 134 |
+
**Added Content:**
|
| 135 |
+
- CSF 2.0 (Cybersecurity Framework 2.0)
|
| 136 |
+
- Zero Trust Architecture planning guidance
|
| 137 |
+
- Post-Quantum Cryptography recommendations
|
| 138 |
+
- IoT security and labeling
|
| 139 |
+
- Privacy Framework v1.0
|
| 140 |
+
- Supply chain risk management case studies
|
| 141 |
+
|
| 142 |
+
**Quality Improvements:**
|
| 143 |
+
- Fixed 6,150 malformed DOI links
|
| 144 |
+
- Removed 202 broken link markers
|
| 145 |
+
- Validated 124,946 total links
|
| 146 |
+
- Clean training data
|
| 147 |
+
|
| 148 |
+
## System Requirements
|
| 149 |
+
|
| 150 |
+
| Quantization | RAM Required | CPU/GPU |
|
| 151 |
+
|--------------|-------------|---------|
|
| 152 |
+
| Q4_K_M | 6 GB | CPU or GPU |
|
| 153 |
+
| Q5_K_M | 7 GB | CPU or GPU |
|
| 154 |
+
| Q8_0 | 10 GB | CPU or GPU |
|
| 155 |
+
| F16 | 16 GB | GPU recommended |
|
| 156 |
+
|
| 157 |
+
## Other Formats
|
| 158 |
+
|
| 159 |
+
- **MLX**: [ethanolivertroy/HackIDLE-NIST-Coder-v1.1-MLX-4bit](https://huggingface.co/ethanolivertroy/HackIDLE-NIST-Coder-v1.1-MLX-4bit) (Apple Silicon)
|
| 160 |
+
- **Ollama**: [etgohome/hackidle-nist-coder](https://ollama.com/etgohome/hackidle-nist-coder)
|
| 161 |
+
|
| 162 |
+
## Limitations
|
| 163 |
+
|
| 164 |
+
- Training data current as of October 2025
|
| 165 |
+
- May not reflect NIST publications released after training
|
| 166 |
+
- 54.2% of references are broken links (cataloged for recovery)
|
| 167 |
+
- Optimized for NIST-specific cybersecurity questions
|
| 168 |
+
|
| 169 |
+
## Citation
|
| 170 |
+
|
| 171 |
+
```bibtex
|
| 172 |
+
@misc{hackidle-nist-coder-v1.1-gguf,
|
| 173 |
+
title={HackIDLE-NIST-Coder: NIST Cybersecurity Expert Model},
|
| 174 |
+
author={Troy, Ethan Oliver},
|
| 175 |
+
year={2025},
|
| 176 |
+
version={1.1},
|
| 177 |
+
format={GGUF},
|
| 178 |
+
url={https://huggingface.co/ethanolivertroy/HackIDLE-NIST-Coder-v1.1-GGUF}
|
| 179 |
+
}
|
| 180 |
+
```
|
| 181 |
+
|
| 182 |
+
## License
|
| 183 |
+
|
| 184 |
+
CC0 1.0 Universal (Public Domain) - All NIST publications are in the public domain.
|
| 185 |
+
|
| 186 |
+
## Acknowledgments
|
| 187 |
+
|
| 188 |
+
- NIST Computer Security Resource Center
|
| 189 |
+
- Qwen2.5-Coder base model (Alibaba Cloud)
|
| 190 |
+
- llama.cpp quantization (Georgi Gerganov)
|
| 191 |
+
- MLX framework (Apple)
|
| 192 |
+
|
| 193 |
+
---
|
| 194 |
+
|
| 195 |
+
**Version**: 1.1
|
| 196 |
+
**Release Date**: October 2025
|
| 197 |
+
**Training Dataset**: [nist-cybersecurity-training v1.1](https://huggingface.co/datasets/ethanolivertroy/nist-cybersecurity-training)
|
| 198 |
+
**Format**: GGUF (compatible with llama.cpp ecosystem)
|