ethan-ky commited on
Commit
f37b046
1 Parent(s): 3c0ee0c

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,801 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-base-en-v1.5
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - cosine_accuracy@1
8
+ - cosine_accuracy@3
9
+ - cosine_accuracy@5
10
+ - cosine_accuracy@10
11
+ - cosine_precision@1
12
+ - cosine_precision@3
13
+ - cosine_precision@5
14
+ - cosine_precision@10
15
+ - cosine_recall@1
16
+ - cosine_recall@3
17
+ - cosine_recall@5
18
+ - cosine_recall@10
19
+ - cosine_ndcg@10
20
+ - cosine_mrr@10
21
+ - cosine_map@100
22
+ pipeline_tag: sentence-similarity
23
+ tags:
24
+ - sentence-transformers
25
+ - sentence-similarity
26
+ - feature-extraction
27
+ - generated_from_trainer
28
+ - dataset_size:6300
29
+ - loss:MatryoshkaLoss
30
+ - loss:MultipleNegativesRankingLoss
31
+ widget:
32
+ - source_sentence: As of January 31, 2023, the weighted average remaining lease term
33
+ for operating leases was 7 years and for finance leases was 3 years.
34
+ sentences:
35
+ - What was the Company's net deferred tax assets as of December 30, 2023, and December
36
+ 31, 2022?
37
+ - What were the weighted average remaining lease terms for operating and finance
38
+ leases as of January 31, 2023?
39
+ - How much did the net investment income change from 2021 to 2023?
40
+ - source_sentence: The 4.500% notes due in August 2034 have an interest rate of 4.55%.
41
+ sentences:
42
+ - What types of insurance coverage does the company provide to its employees at
43
+ no premium cost, as part of their general employee benefits package?
44
+ - What is the interest rate for the 4.500% notes due in August 2034?
45
+ - How much did the company's revenues decrease in 2023 compared to 2022?
46
+ - source_sentence: In 2023, other income (expense), net included $376 million of interest
47
+ income, partially offset by $167 million of net unrealized losses on equity investments.
48
+ Other income (expense), net in 2022 included $657 million of net unrealized losses
49
+ on equity investments, partially offset by $106 million of interest income.
50
+ sentences:
51
+ - What contributed to the net other income (expense) in 2023?
52
+ - What types of products does the Canada operation offer?
53
+ - What was the net change in cash and cash equivalents in 2022?
54
+ - source_sentence: We believe the claims in these cases are without merit and are
55
+ vigorously defending these lawsuits.
56
+ sentences:
57
+ - Where in the Annual Report can one find a description of certain legal matters
58
+ and their impact on the company?
59
+ - What is the goal of the company regarding its global corporate operations by 2030?
60
+ - What is the stance of the defending airlines on the claims made against them in
61
+ the capacity antitrust litigation?
62
+ - source_sentence: North America's total net revenues for the fiscal year ended October
63
+ 1, 2023, were $26,569.6 million.
64
+ sentences:
65
+ - What was the total net revenue for North America in fiscal 2023?
66
+ - What are the consequences of impermissible use or disclosure of PHI according
67
+ to the HITECH Act?
68
+ - What does the index in a financial report indicate?
69
+ model-index:
70
+ - name: SentenceTransformer based on BAAI/bge-base-en-v1.5
71
+ results:
72
+ - task:
73
+ type: information-retrieval
74
+ name: Information Retrieval
75
+ dataset:
76
+ name: dim 768
77
+ type: dim_768
78
+ metrics:
79
+ - type: cosine_accuracy@1
80
+ value: 0.6171428571428571
81
+ name: Cosine Accuracy@1
82
+ - type: cosine_accuracy@3
83
+ value: 0.7457142857142857
84
+ name: Cosine Accuracy@3
85
+ - type: cosine_accuracy@5
86
+ value: 0.8114285714285714
87
+ name: Cosine Accuracy@5
88
+ - type: cosine_accuracy@10
89
+ value: 0.8585714285714285
90
+ name: Cosine Accuracy@10
91
+ - type: cosine_precision@1
92
+ value: 0.6171428571428571
93
+ name: Cosine Precision@1
94
+ - type: cosine_precision@3
95
+ value: 0.24857142857142858
96
+ name: Cosine Precision@3
97
+ - type: cosine_precision@5
98
+ value: 0.16228571428571428
99
+ name: Cosine Precision@5
100
+ - type: cosine_precision@10
101
+ value: 0.08585714285714285
102
+ name: Cosine Precision@10
103
+ - type: cosine_recall@1
104
+ value: 0.6171428571428571
105
+ name: Cosine Recall@1
106
+ - type: cosine_recall@3
107
+ value: 0.7457142857142857
108
+ name: Cosine Recall@3
109
+ - type: cosine_recall@5
110
+ value: 0.8114285714285714
111
+ name: Cosine Recall@5
112
+ - type: cosine_recall@10
113
+ value: 0.8585714285714285
114
+ name: Cosine Recall@10
115
+ - type: cosine_ndcg@10
116
+ value: 0.7357204832416036
117
+ name: Cosine Ndcg@10
118
+ - type: cosine_mrr@10
119
+ value: 0.6965260770975052
120
+ name: Cosine Mrr@10
121
+ - type: cosine_map@100
122
+ value: 0.7015509951793545
123
+ name: Cosine Map@100
124
+ - task:
125
+ type: information-retrieval
126
+ name: Information Retrieval
127
+ dataset:
128
+ name: dim 512
129
+ type: dim_512
130
+ metrics:
131
+ - type: cosine_accuracy@1
132
+ value: 0.6214285714285714
133
+ name: Cosine Accuracy@1
134
+ - type: cosine_accuracy@3
135
+ value: 0.74
136
+ name: Cosine Accuracy@3
137
+ - type: cosine_accuracy@5
138
+ value: 0.8
139
+ name: Cosine Accuracy@5
140
+ - type: cosine_accuracy@10
141
+ value: 0.8642857142857143
142
+ name: Cosine Accuracy@10
143
+ - type: cosine_precision@1
144
+ value: 0.6214285714285714
145
+ name: Cosine Precision@1
146
+ - type: cosine_precision@3
147
+ value: 0.24666666666666665
148
+ name: Cosine Precision@3
149
+ - type: cosine_precision@5
150
+ value: 0.15999999999999998
151
+ name: Cosine Precision@5
152
+ - type: cosine_precision@10
153
+ value: 0.08642857142857142
154
+ name: Cosine Precision@10
155
+ - type: cosine_recall@1
156
+ value: 0.6214285714285714
157
+ name: Cosine Recall@1
158
+ - type: cosine_recall@3
159
+ value: 0.74
160
+ name: Cosine Recall@3
161
+ - type: cosine_recall@5
162
+ value: 0.8
163
+ name: Cosine Recall@5
164
+ - type: cosine_recall@10
165
+ value: 0.8642857142857143
166
+ name: Cosine Recall@10
167
+ - type: cosine_ndcg@10
168
+ value: 0.738181682287809
169
+ name: Cosine Ndcg@10
170
+ - type: cosine_mrr@10
171
+ value: 0.6983236961451246
172
+ name: Cosine Mrr@10
173
+ - type: cosine_map@100
174
+ value: 0.7027820040111107
175
+ name: Cosine Map@100
176
+ - task:
177
+ type: information-retrieval
178
+ name: Information Retrieval
179
+ dataset:
180
+ name: dim 256
181
+ type: dim_256
182
+ metrics:
183
+ - type: cosine_accuracy@1
184
+ value: 0.6
185
+ name: Cosine Accuracy@1
186
+ - type: cosine_accuracy@3
187
+ value: 0.7271428571428571
188
+ name: Cosine Accuracy@3
189
+ - type: cosine_accuracy@5
190
+ value: 0.7928571428571428
191
+ name: Cosine Accuracy@5
192
+ - type: cosine_accuracy@10
193
+ value: 0.8442857142857143
194
+ name: Cosine Accuracy@10
195
+ - type: cosine_precision@1
196
+ value: 0.6
197
+ name: Cosine Precision@1
198
+ - type: cosine_precision@3
199
+ value: 0.24238095238095236
200
+ name: Cosine Precision@3
201
+ - type: cosine_precision@5
202
+ value: 0.15857142857142856
203
+ name: Cosine Precision@5
204
+ - type: cosine_precision@10
205
+ value: 0.08442857142857142
206
+ name: Cosine Precision@10
207
+ - type: cosine_recall@1
208
+ value: 0.6
209
+ name: Cosine Recall@1
210
+ - type: cosine_recall@3
211
+ value: 0.7271428571428571
212
+ name: Cosine Recall@3
213
+ - type: cosine_recall@5
214
+ value: 0.7928571428571428
215
+ name: Cosine Recall@5
216
+ - type: cosine_recall@10
217
+ value: 0.8442857142857143
218
+ name: Cosine Recall@10
219
+ - type: cosine_ndcg@10
220
+ value: 0.7182448637999702
221
+ name: Cosine Ndcg@10
222
+ - type: cosine_mrr@10
223
+ value: 0.6782879818594099
224
+ name: Cosine Mrr@10
225
+ - type: cosine_map@100
226
+ value: 0.683606591058064
227
+ name: Cosine Map@100
228
+ - task:
229
+ type: information-retrieval
230
+ name: Information Retrieval
231
+ dataset:
232
+ name: dim 128
233
+ type: dim_128
234
+ metrics:
235
+ - type: cosine_accuracy@1
236
+ value: 0.5728571428571428
237
+ name: Cosine Accuracy@1
238
+ - type: cosine_accuracy@3
239
+ value: 0.7014285714285714
240
+ name: Cosine Accuracy@3
241
+ - type: cosine_accuracy@5
242
+ value: 0.7557142857142857
243
+ name: Cosine Accuracy@5
244
+ - type: cosine_accuracy@10
245
+ value: 0.8157142857142857
246
+ name: Cosine Accuracy@10
247
+ - type: cosine_precision@1
248
+ value: 0.5728571428571428
249
+ name: Cosine Precision@1
250
+ - type: cosine_precision@3
251
+ value: 0.2338095238095238
252
+ name: Cosine Precision@3
253
+ - type: cosine_precision@5
254
+ value: 0.1511428571428571
255
+ name: Cosine Precision@5
256
+ - type: cosine_precision@10
257
+ value: 0.08157142857142856
258
+ name: Cosine Precision@10
259
+ - type: cosine_recall@1
260
+ value: 0.5728571428571428
261
+ name: Cosine Recall@1
262
+ - type: cosine_recall@3
263
+ value: 0.7014285714285714
264
+ name: Cosine Recall@3
265
+ - type: cosine_recall@5
266
+ value: 0.7557142857142857
267
+ name: Cosine Recall@5
268
+ - type: cosine_recall@10
269
+ value: 0.8157142857142857
270
+ name: Cosine Recall@10
271
+ - type: cosine_ndcg@10
272
+ value: 0.6915163160852085
273
+ name: Cosine Ndcg@10
274
+ - type: cosine_mrr@10
275
+ value: 0.6521536281179136
276
+ name: Cosine Mrr@10
277
+ - type: cosine_map@100
278
+ value: 0.6580414471513885
279
+ name: Cosine Map@100
280
+ - task:
281
+ type: information-retrieval
282
+ name: Information Retrieval
283
+ dataset:
284
+ name: dim 64
285
+ type: dim_64
286
+ metrics:
287
+ - type: cosine_accuracy@1
288
+ value: 0.5142857142857142
289
+ name: Cosine Accuracy@1
290
+ - type: cosine_accuracy@3
291
+ value: 0.6371428571428571
292
+ name: Cosine Accuracy@3
293
+ - type: cosine_accuracy@5
294
+ value: 0.6728571428571428
295
+ name: Cosine Accuracy@5
296
+ - type: cosine_accuracy@10
297
+ value: 0.7357142857142858
298
+ name: Cosine Accuracy@10
299
+ - type: cosine_precision@1
300
+ value: 0.5142857142857142
301
+ name: Cosine Precision@1
302
+ - type: cosine_precision@3
303
+ value: 0.21238095238095234
304
+ name: Cosine Precision@3
305
+ - type: cosine_precision@5
306
+ value: 0.13457142857142856
307
+ name: Cosine Precision@5
308
+ - type: cosine_precision@10
309
+ value: 0.07357142857142857
310
+ name: Cosine Precision@10
311
+ - type: cosine_recall@1
312
+ value: 0.5142857142857142
313
+ name: Cosine Recall@1
314
+ - type: cosine_recall@3
315
+ value: 0.6371428571428571
316
+ name: Cosine Recall@3
317
+ - type: cosine_recall@5
318
+ value: 0.6728571428571428
319
+ name: Cosine Recall@5
320
+ - type: cosine_recall@10
321
+ value: 0.7357142857142858
322
+ name: Cosine Recall@10
323
+ - type: cosine_ndcg@10
324
+ value: 0.6197107516374883
325
+ name: Cosine Ndcg@10
326
+ - type: cosine_mrr@10
327
+ value: 0.5832369614512468
328
+ name: Cosine Mrr@10
329
+ - type: cosine_map@100
330
+ value: 0.5907376271746598
331
+ name: Cosine Map@100
332
+ ---
333
+
334
+ # SentenceTransformer based on BAAI/bge-base-en-v1.5
335
+
336
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
337
+
338
+ ## Model Details
339
+
340
+ ### Model Description
341
+ - **Model Type:** Sentence Transformer
342
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
343
+ - **Maximum Sequence Length:** 512 tokens
344
+ - **Output Dimensionality:** 768 tokens
345
+ - **Similarity Function:** Cosine Similarity
346
+ <!-- - **Training Dataset:** Unknown -->
347
+ <!-- - **Language:** Unknown -->
348
+ <!-- - **License:** Unknown -->
349
+
350
+ ### Model Sources
351
+
352
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
353
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
354
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
355
+
356
+ ### Full Model Architecture
357
+
358
+ ```
359
+ SentenceTransformer(
360
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
361
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
362
+ (2): Normalize()
363
+ )
364
+ ```
365
+
366
+ ## Usage
367
+
368
+ ### Direct Usage (Sentence Transformers)
369
+
370
+ First install the Sentence Transformers library:
371
+
372
+ ```bash
373
+ pip install -U sentence-transformers
374
+ ```
375
+
376
+ Then you can load this model and run inference.
377
+ ```python
378
+ from sentence_transformers import SentenceTransformer
379
+
380
+ # Download from the 🤗 Hub
381
+ model = SentenceTransformer("ethan-ky/bge-base-financial-matryoshka")
382
+ # Run inference
383
+ sentences = [
384
+ "North America's total net revenues for the fiscal year ended October 1, 2023, were $26,569.6 million.",
385
+ 'What was the total net revenue for North America in fiscal 2023?',
386
+ 'What are the consequences of impermissible use or disclosure of PHI according to the HITECH Act?',
387
+ ]
388
+ embeddings = model.encode(sentences)
389
+ print(embeddings.shape)
390
+ # [3, 768]
391
+
392
+ # Get the similarity scores for the embeddings
393
+ similarities = model.similarity(embeddings, embeddings)
394
+ print(similarities.shape)
395
+ # [3, 3]
396
+ ```
397
+
398
+ <!--
399
+ ### Direct Usage (Transformers)
400
+
401
+ <details><summary>Click to see the direct usage in Transformers</summary>
402
+
403
+ </details>
404
+ -->
405
+
406
+ <!--
407
+ ### Downstream Usage (Sentence Transformers)
408
+
409
+ You can finetune this model on your own dataset.
410
+
411
+ <details><summary>Click to expand</summary>
412
+
413
+ </details>
414
+ -->
415
+
416
+ <!--
417
+ ### Out-of-Scope Use
418
+
419
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
420
+ -->
421
+
422
+ ## Evaluation
423
+
424
+ ### Metrics
425
+
426
+ #### Information Retrieval
427
+ * Dataset: `dim_768`
428
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
429
+
430
+ | Metric | Value |
431
+ |:--------------------|:-----------|
432
+ | cosine_accuracy@1 | 0.6171 |
433
+ | cosine_accuracy@3 | 0.7457 |
434
+ | cosine_accuracy@5 | 0.8114 |
435
+ | cosine_accuracy@10 | 0.8586 |
436
+ | cosine_precision@1 | 0.6171 |
437
+ | cosine_precision@3 | 0.2486 |
438
+ | cosine_precision@5 | 0.1623 |
439
+ | cosine_precision@10 | 0.0859 |
440
+ | cosine_recall@1 | 0.6171 |
441
+ | cosine_recall@3 | 0.7457 |
442
+ | cosine_recall@5 | 0.8114 |
443
+ | cosine_recall@10 | 0.8586 |
444
+ | cosine_ndcg@10 | 0.7357 |
445
+ | cosine_mrr@10 | 0.6965 |
446
+ | **cosine_map@100** | **0.7016** |
447
+
448
+ #### Information Retrieval
449
+ * Dataset: `dim_512`
450
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
451
+
452
+ | Metric | Value |
453
+ |:--------------------|:-----------|
454
+ | cosine_accuracy@1 | 0.6214 |
455
+ | cosine_accuracy@3 | 0.74 |
456
+ | cosine_accuracy@5 | 0.8 |
457
+ | cosine_accuracy@10 | 0.8643 |
458
+ | cosine_precision@1 | 0.6214 |
459
+ | cosine_precision@3 | 0.2467 |
460
+ | cosine_precision@5 | 0.16 |
461
+ | cosine_precision@10 | 0.0864 |
462
+ | cosine_recall@1 | 0.6214 |
463
+ | cosine_recall@3 | 0.74 |
464
+ | cosine_recall@5 | 0.8 |
465
+ | cosine_recall@10 | 0.8643 |
466
+ | cosine_ndcg@10 | 0.7382 |
467
+ | cosine_mrr@10 | 0.6983 |
468
+ | **cosine_map@100** | **0.7028** |
469
+
470
+ #### Information Retrieval
471
+ * Dataset: `dim_256`
472
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
473
+
474
+ | Metric | Value |
475
+ |:--------------------|:-----------|
476
+ | cosine_accuracy@1 | 0.6 |
477
+ | cosine_accuracy@3 | 0.7271 |
478
+ | cosine_accuracy@5 | 0.7929 |
479
+ | cosine_accuracy@10 | 0.8443 |
480
+ | cosine_precision@1 | 0.6 |
481
+ | cosine_precision@3 | 0.2424 |
482
+ | cosine_precision@5 | 0.1586 |
483
+ | cosine_precision@10 | 0.0844 |
484
+ | cosine_recall@1 | 0.6 |
485
+ | cosine_recall@3 | 0.7271 |
486
+ | cosine_recall@5 | 0.7929 |
487
+ | cosine_recall@10 | 0.8443 |
488
+ | cosine_ndcg@10 | 0.7182 |
489
+ | cosine_mrr@10 | 0.6783 |
490
+ | **cosine_map@100** | **0.6836** |
491
+
492
+ #### Information Retrieval
493
+ * Dataset: `dim_128`
494
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
495
+
496
+ | Metric | Value |
497
+ |:--------------------|:----------|
498
+ | cosine_accuracy@1 | 0.5729 |
499
+ | cosine_accuracy@3 | 0.7014 |
500
+ | cosine_accuracy@5 | 0.7557 |
501
+ | cosine_accuracy@10 | 0.8157 |
502
+ | cosine_precision@1 | 0.5729 |
503
+ | cosine_precision@3 | 0.2338 |
504
+ | cosine_precision@5 | 0.1511 |
505
+ | cosine_precision@10 | 0.0816 |
506
+ | cosine_recall@1 | 0.5729 |
507
+ | cosine_recall@3 | 0.7014 |
508
+ | cosine_recall@5 | 0.7557 |
509
+ | cosine_recall@10 | 0.8157 |
510
+ | cosine_ndcg@10 | 0.6915 |
511
+ | cosine_mrr@10 | 0.6522 |
512
+ | **cosine_map@100** | **0.658** |
513
+
514
+ #### Information Retrieval
515
+ * Dataset: `dim_64`
516
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
517
+
518
+ | Metric | Value |
519
+ |:--------------------|:-----------|
520
+ | cosine_accuracy@1 | 0.5143 |
521
+ | cosine_accuracy@3 | 0.6371 |
522
+ | cosine_accuracy@5 | 0.6729 |
523
+ | cosine_accuracy@10 | 0.7357 |
524
+ | cosine_precision@1 | 0.5143 |
525
+ | cosine_precision@3 | 0.2124 |
526
+ | cosine_precision@5 | 0.1346 |
527
+ | cosine_precision@10 | 0.0736 |
528
+ | cosine_recall@1 | 0.5143 |
529
+ | cosine_recall@3 | 0.6371 |
530
+ | cosine_recall@5 | 0.6729 |
531
+ | cosine_recall@10 | 0.7357 |
532
+ | cosine_ndcg@10 | 0.6197 |
533
+ | cosine_mrr@10 | 0.5832 |
534
+ | **cosine_map@100** | **0.5907** |
535
+
536
+ <!--
537
+ ## Bias, Risks and Limitations
538
+
539
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
540
+ -->
541
+
542
+ <!--
543
+ ### Recommendations
544
+
545
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
546
+ -->
547
+
548
+ ## Training Details
549
+
550
+ ### Training Dataset
551
+
552
+ #### Unnamed Dataset
553
+
554
+
555
+ * Size: 6,300 training samples
556
+ * Columns: <code>positive</code> and <code>anchor</code>
557
+ * Approximate statistics based on the first 1000 samples:
558
+ | | positive | anchor |
559
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
560
+ | type | string | string |
561
+ | details | <ul><li>min: 2 tokens</li><li>mean: 45.35 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 20.67 tokens</li><li>max: 46 tokens</li></ul> |
562
+ * Samples:
563
+ | positive | anchor |
564
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------|
565
+ | <code>Our ability to develop and operate units at the right locations and to deliver a customer-centric omni-channel experience largely determines our competitive position within the retail industry. We believe price leadership is a critical part of our business model and we continue to focus on moving our markets towards an EDLP approach. Additionally, our ability to operate food departments effectively has a significant impact on our competitive position in the markets where we operate.</code> | <code>What factors contribute to Walmart International's competitive position?</code> |
566
+ | <code>tax annual aggregate losses incurred in any year from U.S. hurricane events could be in excess of $3,827 million (or 6.4 percent of total Chubb shareholders’ equity at December 31, 2023).</code> | <code>What is the expected maximum potential loss from hurricane events for Chubb as of the end of 2023?</code> |
567
+ | <code>The 'Glossary of Terms and Acronyms’ is included on pages 315-321.</code> | <code>What is included on pages 315 to 321 of the document?</code> |
568
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
569
+ ```json
570
+ {
571
+ "loss": "MultipleNegativesRankingLoss",
572
+ "matryoshka_dims": [
573
+ 768,
574
+ 512,
575
+ 256,
576
+ 128,
577
+ 64
578
+ ],
579
+ "matryoshka_weights": [
580
+ 1,
581
+ 1,
582
+ 1,
583
+ 1,
584
+ 1
585
+ ],
586
+ "n_dims_per_step": -1
587
+ }
588
+ ```
589
+
590
+ ### Training Hyperparameters
591
+ #### Non-Default Hyperparameters
592
+
593
+ - `eval_strategy`: epoch
594
+ - `per_device_train_batch_size`: 32
595
+ - `per_device_eval_batch_size`: 16
596
+ - `gradient_accumulation_steps`: 16
597
+ - `learning_rate`: 2e-05
598
+ - `num_train_epochs`: 4
599
+ - `lr_scheduler_type`: cosine
600
+ - `warmup_ratio`: 0.1
601
+ - `bf16`: True
602
+ - `tf32`: True
603
+ - `load_best_model_at_end`: True
604
+ - `optim`: adamw_torch_fused
605
+ - `batch_sampler`: no_duplicates
606
+
607
+ #### All Hyperparameters
608
+ <details><summary>Click to expand</summary>
609
+
610
+ - `overwrite_output_dir`: False
611
+ - `do_predict`: False
612
+ - `eval_strategy`: epoch
613
+ - `prediction_loss_only`: True
614
+ - `per_device_train_batch_size`: 32
615
+ - `per_device_eval_batch_size`: 16
616
+ - `per_gpu_train_batch_size`: None
617
+ - `per_gpu_eval_batch_size`: None
618
+ - `gradient_accumulation_steps`: 16
619
+ - `eval_accumulation_steps`: None
620
+ - `learning_rate`: 2e-05
621
+ - `weight_decay`: 0.0
622
+ - `adam_beta1`: 0.9
623
+ - `adam_beta2`: 0.999
624
+ - `adam_epsilon`: 1e-08
625
+ - `max_grad_norm`: 1.0
626
+ - `num_train_epochs`: 4
627
+ - `max_steps`: -1
628
+ - `lr_scheduler_type`: cosine
629
+ - `lr_scheduler_kwargs`: {}
630
+ - `warmup_ratio`: 0.1
631
+ - `warmup_steps`: 0
632
+ - `log_level`: passive
633
+ - `log_level_replica`: warning
634
+ - `log_on_each_node`: True
635
+ - `logging_nan_inf_filter`: True
636
+ - `save_safetensors`: True
637
+ - `save_on_each_node`: False
638
+ - `save_only_model`: False
639
+ - `restore_callback_states_from_checkpoint`: False
640
+ - `no_cuda`: False
641
+ - `use_cpu`: False
642
+ - `use_mps_device`: False
643
+ - `seed`: 42
644
+ - `data_seed`: None
645
+ - `jit_mode_eval`: False
646
+ - `use_ipex`: False
647
+ - `bf16`: True
648
+ - `fp16`: False
649
+ - `fp16_opt_level`: O1
650
+ - `half_precision_backend`: auto
651
+ - `bf16_full_eval`: False
652
+ - `fp16_full_eval`: False
653
+ - `tf32`: True
654
+ - `local_rank`: 0
655
+ - `ddp_backend`: None
656
+ - `tpu_num_cores`: None
657
+ - `tpu_metrics_debug`: False
658
+ - `debug`: []
659
+ - `dataloader_drop_last`: False
660
+ - `dataloader_num_workers`: 0
661
+ - `dataloader_prefetch_factor`: None
662
+ - `past_index`: -1
663
+ - `disable_tqdm`: False
664
+ - `remove_unused_columns`: True
665
+ - `label_names`: None
666
+ - `load_best_model_at_end`: True
667
+ - `ignore_data_skip`: False
668
+ - `fsdp`: []
669
+ - `fsdp_min_num_params`: 0
670
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
671
+ - `fsdp_transformer_layer_cls_to_wrap`: None
672
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
673
+ - `deepspeed`: None
674
+ - `label_smoothing_factor`: 0.0
675
+ - `optim`: adamw_torch_fused
676
+ - `optim_args`: None
677
+ - `adafactor`: False
678
+ - `group_by_length`: False
679
+ - `length_column_name`: length
680
+ - `ddp_find_unused_parameters`: None
681
+ - `ddp_bucket_cap_mb`: None
682
+ - `ddp_broadcast_buffers`: False
683
+ - `dataloader_pin_memory`: True
684
+ - `dataloader_persistent_workers`: False
685
+ - `skip_memory_metrics`: True
686
+ - `use_legacy_prediction_loop`: False
687
+ - `push_to_hub`: False
688
+ - `resume_from_checkpoint`: None
689
+ - `hub_model_id`: None
690
+ - `hub_strategy`: every_save
691
+ - `hub_private_repo`: False
692
+ - `hub_always_push`: False
693
+ - `gradient_checkpointing`: False
694
+ - `gradient_checkpointing_kwargs`: None
695
+ - `include_inputs_for_metrics`: False
696
+ - `eval_do_concat_batches`: True
697
+ - `fp16_backend`: auto
698
+ - `push_to_hub_model_id`: None
699
+ - `push_to_hub_organization`: None
700
+ - `mp_parameters`:
701
+ - `auto_find_batch_size`: False
702
+ - `full_determinism`: False
703
+ - `torchdynamo`: None
704
+ - `ray_scope`: last
705
+ - `ddp_timeout`: 1800
706
+ - `torch_compile`: False
707
+ - `torch_compile_backend`: None
708
+ - `torch_compile_mode`: None
709
+ - `dispatch_batches`: None
710
+ - `split_batches`: None
711
+ - `include_tokens_per_second`: False
712
+ - `include_num_input_tokens_seen`: False
713
+ - `neftune_noise_alpha`: None
714
+ - `optim_target_modules`: None
715
+ - `batch_eval_metrics`: False
716
+ - `batch_sampler`: no_duplicates
717
+ - `multi_dataset_batch_sampler`: proportional
718
+
719
+ </details>
720
+
721
+ ### Training Logs
722
+ | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
723
+ |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
724
+ | 0.8122 | 10 | 1.3939 | - | - | - | - | - |
725
+ | **0.9746** | **12** | **-** | **0.658** | **0.6836** | **0.7028** | **0.5907** | **0.7016** |
726
+ | 1.6244 | 20 | 1.3574 | - | - | - | - | - |
727
+ | 1.9492 | 24 | - | 0.6580 | 0.6836 | 0.7028 | 0.5907 | 0.7016 |
728
+ | 2.4365 | 30 | 1.3485 | - | - | - | - | - |
729
+ | 2.9239 | 36 | - | 0.6580 | 0.6836 | 0.7028 | 0.5907 | 0.7016 |
730
+ | 3.2487 | 40 | 1.3606 | - | - | - | - | - |
731
+ | 3.8985 | 48 | - | 0.6580 | 0.6836 | 0.7028 | 0.5907 | 0.7016 |
732
+
733
+ * The bold row denotes the saved checkpoint.
734
+
735
+ ### Framework Versions
736
+ - Python: 3.9.19
737
+ - Sentence Transformers: 3.0.1
738
+ - Transformers: 4.41.2
739
+ - PyTorch: 2.1.2+cu121
740
+ - Accelerate: 0.33.0
741
+ - Datasets: 2.19.1
742
+ - Tokenizers: 0.19.1
743
+
744
+ ## Citation
745
+
746
+ ### BibTeX
747
+
748
+ #### Sentence Transformers
749
+ ```bibtex
750
+ @inproceedings{reimers-2019-sentence-bert,
751
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
752
+ author = "Reimers, Nils and Gurevych, Iryna",
753
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
754
+ month = "11",
755
+ year = "2019",
756
+ publisher = "Association for Computational Linguistics",
757
+ url = "https://arxiv.org/abs/1908.10084",
758
+ }
759
+ ```
760
+
761
+ #### MatryoshkaLoss
762
+ ```bibtex
763
+ @misc{kusupati2024matryoshka,
764
+ title={Matryoshka Representation Learning},
765
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
766
+ year={2024},
767
+ eprint={2205.13147},
768
+ archivePrefix={arXiv},
769
+ primaryClass={cs.LG}
770
+ }
771
+ ```
772
+
773
+ #### MultipleNegativesRankingLoss
774
+ ```bibtex
775
+ @misc{henderson2017efficient,
776
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
777
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
778
+ year={2017},
779
+ eprint={1705.00652},
780
+ archivePrefix={arXiv},
781
+ primaryClass={cs.CL}
782
+ }
783
+ ```
784
+
785
+ <!--
786
+ ## Glossary
787
+
788
+ *Clearly define terms in order to be accessible across audiences.*
789
+ -->
790
+
791
+ <!--
792
+ ## Model Card Authors
793
+
794
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
795
+ -->
796
+
797
+ <!--
798
+ ## Model Card Contact
799
+
800
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
801
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.41.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d4db737f56aaea90796b5a8d219de0eee958295a575c611f6b417ad340151da
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff