esunAI commited on
Commit
87a1c31
·
verified ·
1 Parent(s): 32c66f8

Add comprehensive documentation: encoder_process_latex.tex

Browse files
Files changed (1) hide show
  1. documentation/encoder_process.tex +254 -0
documentation/encoder_process.tex ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ \section{ESM-2 Contextual Encoder and Compression Pipeline}
2
+ \label{sec:encoder}
3
+
4
+ Our encoder transforms raw amino acid sequences into compressed contextual embeddings suitable for flow matching generation. The pipeline consists of four main stages: (1) sequence preprocessing and validation, (2) ESM-2 contextual embedding extraction, (3) statistical normalization, and (4) transformer-based compression with hourglass pooling.
5
+
6
+ \subsection{Encoder Architecture Overview}
7
+
8
+ The complete encoding pipeline $\mathcal{E}: \mathcal{S} \rightarrow \mathbb{R}^{L' \times d_{comp}}$ transforms sequences $s \in \mathcal{S}$ from the amino acid alphabet to compressed embeddings, where $L' = L/2$ due to hourglass pooling and $d_{comp} = 80$ is the compressed dimension:
9
+
10
+ \begin{align}
11
+ s &\rightarrow \mathbf{H}^{(esm)} \rightarrow \mathbf{H}^{(norm)} \rightarrow \mathbf{Z}^{(comp)} \label{eq:encoding_pipeline}
12
+ \end{align}
13
+
14
+ \subsubsection{Sequence Preprocessing and Validation}
15
+ \label{sec:preprocessing}
16
+
17
+ Input sequences undergo rigorous preprocessing to ensure compatibility with ESM-2 and biological validity:
18
+
19
+ \begin{enumerate}
20
+ \item \textbf{Canonical Amino Acid Filtering}: Only sequences containing the 20 canonical amino acids $\mathcal{A} = \{$A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y$\}$ are accepted.
21
+
22
+ \item \textbf{Length Constraints}: Sequences are filtered to $L_{min} \leq |s| \leq L_{max}$ where $L_{min} = 2$ and $L_{max} = 50$ for antimicrobial peptides.
23
+
24
+ \item \textbf{Sequence Standardization}: All sequences are converted to uppercase and stripped of whitespace.
25
+
26
+ \item \textbf{Padding and Truncation}: Sequences are standardized to length $L = 50$ through zero-padding (shorter sequences) or truncation (longer sequences).
27
+ \end{enumerate}
28
+
29
+ The preprocessing function $\text{Preprocess}(s)$ ensures uniform input format:
30
+
31
+ \begin{align}
32
+ s' = \begin{cases}
33
+ s \oplus \mathbf{0}^{L-|s|} & \text{if } |s| < L \\
34
+ s_{1:L} & \text{if } |s| \geq L
35
+ \end{cases} \label{eq:padding}
36
+ \end{align}
37
+
38
+ where $\oplus$ denotes concatenation and $\mathbf{0}^{k}$ represents $k$ padding tokens.
39
+
40
+ \subsubsection{ESM-2 Contextual Embedding Extraction}
41
+ \label{sec:esm_embedding}
42
+
43
+ We utilize the pre-trained ESM-2 model (esm2\_t33\_650M\_UR50D) to extract contextual per-residue embeddings. ESM-2's 33-layer transformer architecture captures evolutionary relationships and structural constraints learned from 65 million protein sequences.
44
+
45
+ The embedding extraction process follows ESM-2's standard protocol:
46
+
47
+ \begin{align}
48
+ \mathbf{T} &= \text{Tokenize}(s') \in \mathbb{R}^{L+2} \label{eq:tokenization}\\
49
+ \mathbf{H}^{(raw)} &= \text{ESM-2}_{33}(\mathbf{T}) \in \mathbb{R}^{(L+2) \times 1280} \label{eq:esm_forward}\\
50
+ \mathbf{H}^{(esm)} &= \mathbf{H}^{(raw)}_{2:L+1, :} \in \mathbb{R}^{L \times 1280} \label{eq:cls_eos_removal}
51
+ \end{align}
52
+
53
+ where tokenization adds special CLS and EOS tokens, and we extract representations from the 33rd (final) layer, removing the special tokens to obtain per-residue embeddings.
54
+
55
+ \subsubsection{Statistical Normalization}
56
+ \label{sec:normalization}
57
+
58
+ To stabilize training and ensure consistent embedding magnitudes across the dataset, we apply a two-stage normalization scheme computed from dataset statistics:
59
+
60
+ \begin{align}
61
+ \boldsymbol{\mu} &= \mathbb{E}[\mathbf{H}^{(esm)}], \quad \boldsymbol{\sigma}^2 = \text{Var}[\mathbf{H}^{(esm)}] \label{eq:dataset_stats}\\
62
+ \mathbf{H}^{(z)} &= \text{clamp}\left(\frac{\mathbf{H}^{(esm)} - \boldsymbol{\mu}}{\boldsymbol{\sigma} + \epsilon}, -4, 4\right) \label{eq:z_score}\\
63
+ \boldsymbol{\mu}_{min} &= \min(\mathbf{H}^{(z)}), \quad \boldsymbol{\mu}_{max} = \max(\mathbf{H}^{(z)}) \label{eq:minmax_stats}\\
64
+ \mathbf{H}^{(norm)} &= \text{clamp}\left(\frac{\mathbf{H}^{(z)} - \boldsymbol{\mu}_{min}}{\boldsymbol{\mu}_{max} - \boldsymbol{\mu}_{min} + \epsilon}, 0, 1\right) \label{eq:minmax_norm}
65
+ \end{align}
66
+
67
+ where $\epsilon = 10^{-8}$ prevents division by zero, and clamping operations ensure numerical stability. This normalization scheme combines z-score standardization with min-max scaling to produce embeddings in $[0, 1]^{L \times 1280}$.
68
+
69
+ \subsubsection{Transformer-Based Compression with Hourglass Pooling}
70
+ \label{sec:compression}
71
+
72
+ The compressor $\mathcal{C}: \mathbb{R}^{L \times 1280} \rightarrow \mathbb{R}^{L/2 \times 80}$ employs a hourglass architecture inspired by ProtFlow, combining transformer self-attention with spatial pooling for efficient compression:
73
+
74
+ \begin{align}
75
+ \mathbf{H}^{(0)} &= \text{LayerNorm}(\mathbf{H}^{(norm)}) \label{eq:input_norm}\\
76
+ \mathbf{H}^{(pre)} &= \text{TransformerEncoder}^{(2)}(\mathbf{H}^{(0)}) \label{eq:pre_transformer}\\
77
+ \mathbf{H}^{(pool)} &= \text{HourglassPool}(\mathbf{H}^{(pre)}) \label{eq:hourglass_pool}\\
78
+ \mathbf{H}^{(post)} &= \text{TransformerEncoder}^{(2)}(\mathbf{H}^{(pool)}) \label{eq:post_transformer}\\
79
+ \mathbf{Z}^{(comp)} &= \tanh(\text{LayerNorm}(\mathbf{H}^{(post)}) \mathbf{W}^{(proj)} + \mathbf{b}^{(proj)}) \label{eq:final_projection}
80
+ \end{align}
81
+
82
+ The hourglass pooling operation reduces sequence length while preserving critical information:
83
+
84
+ \begin{align}
85
+ \text{HourglassPool}(\mathbf{H}) = \begin{cases}
86
+ \text{Reshape}(\mathbf{H}_{1:L-1}, [B, (L-1)/2, 2, D]) \text{ if } L \text{ is odd} \\
87
+ \text{Reshape}(\mathbf{H}, [B, L/2, 2, D])
88
+ \end{cases} \label{eq:reshape_pool}
89
+ \end{align}
90
+
91
+ followed by mean pooling across the grouped dimension:
92
+
93
+ \begin{align}
94
+ \mathbf{H}^{(pool)} = \text{Mean}(\text{Reshape}(\mathbf{H}), \text{dim}=2) \label{eq:mean_pool}
95
+ \end{align}
96
+
97
+ This pooling strategy reduces computational complexity while maintaining spatial relationships between adjacent residues.
98
+
99
+ \subsection{Transformer Architecture Details}
100
+
101
+ Both pre-pooling and post-pooling transformer encoders use identical architectures:
102
+
103
+ \begin{itemize}
104
+ \item \textbf{Layers}: 2 transformer encoder layers each (4 total)
105
+ \item \textbf{Attention Heads}: 8 multi-head attention heads
106
+ \item \textbf{Hidden Dimension}: 1280 (matching ESM-2)
107
+ \item \textbf{Feedforward Dimension}: 5120 (4× hidden dimension)
108
+ \item \textbf{Activation}: GELU activation in feedforward layers
109
+ \item \textbf{Dropout}: 0.1 dropout rate during training
110
+ \end{itemize}
111
+
112
+ The final projection layer $\mathbf{W}^{(proj)} \in \mathbb{R}^{1280 \times 80}$ compresses to the target dimension with tanh activation to bound outputs in $[-1, 1]^{L/2 \times 80}$.
113
+
114
+ \subsection{Training Objective and Optimization}
115
+
116
+ The encoder-decoder pair is trained end-to-end using reconstruction loss to ensure information preservation:
117
+
118
+ \begin{align}
119
+ \mathcal{L}_{\text{recon}} &= \mathbb{E}_{\mathbf{H} \sim \mathcal{D}} \left[ \|\mathbf{H} - \mathcal{D}(\mathcal{C}(\mathbf{H}))\|_2^2 \right] \label{eq:reconstruction_loss}
120
+ \end{align}
121
+
122
+ where $\mathcal{D}$ is the decompressor and $\mathcal{D}$ represents the dataset distribution.
123
+
124
+ Training employs AdamW optimization with cosine annealing:
125
+
126
+ \begin{align}
127
+ \text{lr}(t) = \text{lr}_{\min} + \frac{1}{2}(\text{lr}_{\max} - \text{lr}_{\min})(1 + \cos(\pi t / T)) \label{eq:cosine_schedule}
128
+ \end{align}
129
+
130
+ with warmup schedule for the first 10,000 steps:
131
+
132
+ \begin{align}
133
+ \text{lr}_{\text{warmup}}(t) = \text{lr}_{\max} \cdot \frac{t}{T_{\text{warmup}}} \label{eq:warmup_schedule}
134
+ \end{align}
135
+
136
+ \subsection{Computational Efficiency and Scalability}
137
+
138
+ The encoder pipeline is optimized for large-scale processing:
139
+
140
+ \begin{itemize}
141
+ \item \textbf{Batch Processing}: Dynamic batching with GPU memory management
142
+ \item \textbf{Memory Optimization}: Gradient checkpointing and mixed precision training
143
+ \item \textbf{Parallel Processing}: Multi-GPU support with data parallelism
144
+ \item \textbf{Storage Efficiency}: Individual and combined tensor storage formats
145
+ \end{itemize}
146
+
147
+ Processing statistics for our dataset:
148
+ \begin{itemize}
149
+ \item \textbf{Dataset Size}: 6,983 validated AMP sequences
150
+ \item \textbf{Processing Speed}: ~100 sequences/second on A100 GPU
151
+ \item \textbf{Memory Usage}: ~8GB GPU memory for batch size 32
152
+ \item \textbf{Storage Requirements}: ~2.1GB for compressed embeddings
153
+ \end{itemize}
154
+
155
+ \subsection{Embedding Quality and Validation}
156
+
157
+ The compressed embeddings maintain high fidelity to the original ESM-2 representations:
158
+
159
+ \begin{itemize}
160
+ \item \textbf{Reconstruction MSE}: $< 0.01$ on validation set
161
+ \item \textbf{Cosine Similarity}: $> 0.95$ between original and reconstructed embeddings
162
+ \item \textbf{Downstream Performance}: Maintained classification accuracy on AMP prediction tasks
163
+ \item \textbf{Compression Ratio}: 16× reduction in embedding dimension (1280 → 80)
164
+ \end{itemize}
165
+
166
+ \begin{algorithm}[h]
167
+ \caption{ESM-2 Contextual Encoder Pipeline}
168
+ \label{alg:encoder}
169
+ \begin{algorithmic}[1]
170
+ \REQUIRE Raw amino acid sequences $\mathcal{S} = \{s_1, s_2, \ldots, s_N\}$
171
+ \REQUIRE Pre-trained ESM-2 model and compressor weights
172
+ \REQUIRE Dataset normalization statistics $\{\boldsymbol{\mu}, \boldsymbol{\sigma}, \boldsymbol{\mu}_{min}, \boldsymbol{\mu}_{max}\}$
173
+ \ENSURE Compressed embeddings $\mathbf{Z}^{(comp)} \in \mathbb{R}^{N \times L/2 \times 80}$
174
+
175
+ \STATE \textbf{// Stage 1: Sequence Preprocessing}
176
+ \FOR{$i = 1$ to $N$}
177
+ \STATE $s_i' \leftarrow \text{Preprocess}(s_i)$ \COMMENT{Filter, pad/truncate to length $L$}
178
+ \STATE \textbf{assert} $|s_i'| = L$ and $s_i' \subset \mathcal{A}^L$ \COMMENT{Validate canonical AAs}
179
+ \ENDFOR
180
+
181
+ \STATE \textbf{// Stage 2: ESM-2 Embedding Extraction}
182
+ \STATE $\mathcal{B} \leftarrow \text{CreateBatches}(\{s_1', \ldots, s_N'\}, \text{batch\_size})$
183
+ \FOR{$\mathbf{B} \in \mathcal{B}$}
184
+ \STATE $\mathbf{T} \leftarrow \text{ESM2Tokenize}(\mathbf{B})$ \COMMENT{Add CLS/EOS tokens}
185
+ \STATE $\mathbf{H}^{(raw)} \leftarrow \text{ESM-2}_{33}(\mathbf{T})$ \COMMENT{Extract layer 33 representations}
186
+ \STATE $\mathbf{H}^{(esm)} \leftarrow \mathbf{H}^{(raw)}[:, 1:L+1, :]$ \COMMENT{Remove CLS/EOS tokens}
187
+ \ENDFOR
188
+
189
+ \STATE \textbf{// Stage 3: Statistical Normalization}
190
+ \FOR{$i = 1$ to $N$}
191
+ \STATE $\mathbf{H}_i^{(z)} \leftarrow \text{clamp}\left(\frac{\mathbf{H}_i^{(esm)} - \boldsymbol{\mu}}{\boldsymbol{\sigma} + \epsilon}, -4, 4\right)$
192
+ \STATE $\mathbf{H}_i^{(norm)} \leftarrow \text{clamp}\left(\frac{\mathbf{H}_i^{(z)} - \boldsymbol{\mu}_{min}}{\boldsymbol{\mu}_{max} - \boldsymbol{\mu}_{min} + \epsilon}, 0, 1\right)$
193
+ \ENDFOR
194
+
195
+ \STATE \textbf{// Stage 4: Transformer Compression}
196
+ \FOR{$i = 1$ to $N$}
197
+ \STATE $\mathbf{H}_i^{(0)} \leftarrow \text{LayerNorm}(\mathbf{H}_i^{(norm)})$ \COMMENT{Input normalization}
198
+ \STATE $\mathbf{H}_i^{(pre)} \leftarrow \text{TransformerEncoder}^{(2)}(\mathbf{H}_i^{(0)})$ \COMMENT{Pre-pooling layers}
199
+ \STATE $\mathbf{H}_i^{(pool)} \leftarrow \text{HourglassPool}(\mathbf{H}_i^{(pre)})$ \COMMENT{Spatial pooling}
200
+ \STATE $\mathbf{H}_i^{(post)} \leftarrow \text{TransformerEncoder}^{(2)}(\mathbf{H}_i^{(pool)})$ \COMMENT{Post-pooling layers}
201
+ \STATE $\mathbf{Z}_i^{(comp)} \leftarrow \tanh(\text{LayerNorm}(\mathbf{H}_i^{(post)}) \mathbf{W}^{(proj)} + \mathbf{b}^{(proj)})$
202
+ \ENDFOR
203
+
204
+ \STATE $\mathbf{Z}^{(comp)} \leftarrow \text{Stack}(\{\mathbf{Z}_1^{(comp)}, \ldots, \mathbf{Z}_N^{(comp)}\})$
205
+ \RETURN $\mathbf{Z}^{(comp)}$
206
+ \end{algorithmic}
207
+ \end{algorithm}
208
+
209
+ \begin{algorithm}[h]
210
+ \caption{Hourglass Pooling Operation}
211
+ \label{alg:hourglass_pool}
212
+ \begin{algorithmic}[1]
213
+ \REQUIRE Input embeddings $\mathbf{H} \in \mathbb{R}^{B \times L \times D}$
214
+ \ENSURE Pooled embeddings $\mathbf{H}^{(pool)} \in \mathbb{R}^{B \times L/2 \times D}$
215
+
216
+ \IF{$L \bmod 2 = 1$} \COMMENT{Handle odd sequence lengths}
217
+ \STATE $\mathbf{H} \leftarrow \mathbf{H}[:, :L-1, :]$ \COMMENT{Remove last position}
218
+ \STATE $L \leftarrow L - 1$
219
+ \ENDIF
220
+
221
+ \STATE $\mathbf{H}^{(reshaped)} \leftarrow \text{Reshape}(\mathbf{H}, [B, L/2, 2, D])$ \COMMENT{Group adjacent positions}
222
+ \STATE $\mathbf{H}^{(pool)} \leftarrow \text{Mean}(\mathbf{H}^{(reshaped)}, \text{dim}=2)$ \COMMENT{Average grouped positions}
223
+
224
+ \RETURN $\mathbf{H}^{(pool)}$
225
+ \end{algorithmic}
226
+ \end{algorithm}
227
+
228
+ \begin{algorithm}[h]
229
+ \caption{Dataset Statistics Computation}
230
+ \label{alg:dataset_stats}
231
+ \begin{algorithmic}[1]
232
+ \REQUIRE ESM-2 embeddings $\{\mathbf{H}_1^{(esm)}, \ldots, \mathbf{H}_N^{(esm)}\}$
233
+ \ENSURE Normalization statistics $\{\boldsymbol{\mu}, \boldsymbol{\sigma}, \boldsymbol{\mu}_{min}, \boldsymbol{\mu}_{max}\}$
234
+
235
+ \STATE $\mathbf{H}^{(flat)} \leftarrow \text{Concatenate}(\{\text{Flatten}(\mathbf{H}_i^{(esm)})\}_{i=1}^N)$ \COMMENT{Flatten all embeddings}
236
+
237
+ \STATE \textbf{// Compute z-score statistics}
238
+ \STATE $\boldsymbol{\mu} \leftarrow \text{Mean}(\mathbf{H}^{(flat)}, \text{dim}=0)$ \COMMENT{Per-dimension mean}
239
+ \STATE $\boldsymbol{\sigma}^2 \leftarrow \text{Var}(\mathbf{H}^{(flat)}, \text{dim}=0)$ \COMMENT{Per-dimension variance}
240
+ \STATE $\boldsymbol{\sigma} \leftarrow \sqrt{\boldsymbol{\sigma}^2 + \epsilon}$ \COMMENT{Add epsilon for stability}
241
+
242
+ \STATE \textbf{// Apply z-score normalization}
243
+ \STATE $\mathbf{H}^{(z)} \leftarrow \text{clamp}\left(\frac{\mathbf{H}^{(flat)} - \boldsymbol{\mu}}{\boldsymbol{\sigma}}, -4, 4\right)$
244
+
245
+ \STATE \textbf{// Compute min-max statistics}
246
+ \STATE $\boldsymbol{\mu}_{min} \leftarrow \text{Min}(\mathbf{H}^{(z)}, \text{dim}=0)$ \COMMENT{Per-dimension minimum}
247
+ \STATE $\boldsymbol{\mu}_{max} \leftarrow \text{Max}(\mathbf{H}^{(z)}, \text{dim}=0)$ \COMMENT{Per-dimension maximum}
248
+
249
+ \STATE \textbf{// Save statistics for inference}
250
+ \STATE $\text{Save}(\{\boldsymbol{\mu}, \boldsymbol{\sigma}, \boldsymbol{\mu}_{min}, \boldsymbol{\mu}_{max}\}, \text{"normalization\_stats.pt"})$
251
+
252
+ \RETURN $\{\boldsymbol{\mu}, \boldsymbol{\sigma}, \boldsymbol{\mu}_{min}, \boldsymbol{\mu}_{max}\}$
253
+ \end{algorithmic}
254
+ \end{algorithm}