| \section{Experimental Results and Comprehensive Analysis} | |
| \label{sec:results_analysis} | |
| Our flow matching model with classifier-free guidance successfully generated 80 novel antimicrobial peptide sequences across four different conditioning strengths. This section presents comprehensive analysis of generation quality, antimicrobial activity predictions, physicochemical properties, and strategic insights for future model development. | |
| \subsection{Generation Results Overview} | |
| The complete generation experiment produced 80 unique sequences of 50 amino acids each, distributed equally across four CFG scales to systematically evaluate the impact of conditioning strength on generation quality and antimicrobial potential. | |
| \subsubsection{Generated Sequence Distribution} | |
| \label{sec:sequence_distribution} | |
| \textbf{CFG Scale Distribution:} | |
| \begin{itemize} | |
| \item \textbf{No CFG (Scale 0.0)}: 20 sequences - Maximum diversity, unconditional generation | |
| \item \textbf{Weak CFG (Scale 3.0)}: 20 sequences - Balanced control and diversity | |
| \item \textbf{Strong CFG (Scale 7.5)}: 20 sequences - Optimal conditioning strength | |
| \item \textbf{Very Strong CFG (Scale 15.0)}: 20 sequences - Maximum conditioning control | |
| \end{itemize} | |
| All 80 sequences passed quality validation criteria: | |
| \begin{itemize} | |
| \item \textbf{Sequence Validity}: 100\% contain only canonical amino acids | |
| \item \textbf{Length Consistency}: All sequences exactly 50 residues | |
| \item \textbf{Structural Diversity}: No identical sequences generated | |
| \item \textbf{Complexity Filter}: All sequences passed low-complexity filtering | |
| \end{itemize} | |
| \subsection{Complete Generated Sequence Catalog} | |
| \subsubsection{No CFG Sequences (Scale 0.0)} | |
| \label{sec:no_cfg_sequences} | |
| Unconditional generation produced the most diverse sequences with natural protein-like characteristics: | |
| \begin{small} | |
| \begin{longtable}{|p{0.15\textwidth}|p{0.75\textwidth}|} | |
| \hline | |
| \textbf{Sequence ID} & \textbf{Amino Acid Sequence} \\ | |
| \hline | |
| no\_cfg\_1 & SVTRATKLLTIIDLTDSILLTTILLTIRTIYATVLTEFDDVLSFLRDVLV \\ | |
| no\_cfg\_2 & TLTLEKFFEYTLAFVKQIAQFQATLVSLLSLSFVVVTSQQVVGKQFLVRL \\ | |
| no\_cfg\_3 & FEVGDRVLVSVAIAEYELLVSLGYDTELAERLRAQGVTDKLSTYVGRDGI \\ | |
| no\_cfg\_4 & RILLLVFLVFLLGAALFVSTTGEGELIRLSFVAALIGVTRASVIVYLTVL \\ | |
| no\_cfg\_5 & SAGEDSVETGLLLSYIADDIFVILDSAVDSVDFIAVTRIILTGVAARSAL \\ | |
| no\_cfg\_6 & KVVRESESFQYESKVTLDFLLAIFLGDSRAVIDEYQAIVLVAAYSTTESI \\ | |
| no\_cfg\_7 & SLIRLEAFIVASIQLLISRAYQTISTTLQVILSFRVLAIQDRQVKIYILR \\ | |
| no\_cfg\_8 & IFVVIYITLLSKGILLASFARTVLGFDSIDGLAVLTTGASLVLTLDEDYF \\ | |
| no\_cfg\_9 & VVLSELIATSSVVYDEDVKAAYALIQIAETVVLLLTAYLQQDRLLARYTI \\ | |
| no\_cfg\_10 & IFLSEILIYTLIAVRITRSVLVRVVALLELEFGQLTTKAAVAETQTIAAQ \\ | |
| no\_cfg\_11 & \cellcolor{green!20}ILVLVLARRIVGVIVAKVVLYAIVRSVVAAAKSISAVTVAKVTVFFQTTA \\ | |
| no\_cfg\_12 & TFVITRVSFLAVLSAFVGLFLVVATVVEQTSTLKLIATYESTLVEVKLYL \\ | |
| no\_cfg\_13 & TGTTSYELLIISSDSGRESSDTTLFTEKDATAQLITSIAAGVELALLYFG \\ | |
| no\_cfg\_14 & FRRVVTTSLRYVGVRLVTTVILTLSIAQIVVKGSQQYFLEVEIEEQSDEL \\ | |
| no\_cfg\_15 & DIAAIRRSSFEESIQEDFLESTVLVLQKISLIALYAGVAAVIFSTVVEQA \\ | |
| no\_cfg\_16 & SLELEVSLLTEIESIKFAALVFAYAAFLELYLDVAVRLVIALVLDTVKLA \\ | |
| no\_cfg\_17 & LSIAVEASRFRVKGFLRQSLETLYTLETTFASSATLADDDYVTDLAALAK \\ | |
| no\_cfg\_18 & FQGTLFATLLKRSATRVLRRIFGQSRESAIISYDFVVEAREAAYLIYVQE \\ | |
| no\_cfg\_19 & LGRYVFLISLVVVASLRLAETLFAKAESAALIAAVFSTVRSATRLAEAIE \\ | |
| no\_cfg\_20 & TGVLLRRLLVGKSGQTVDLTDLQLTLITSIALIQQFGAADRDVLKEKSVF \\ | |
| \hline | |
| \end{longtable} | |
| \end{small} | |
| \textbf{No CFG Analysis:} One sequence (no\_cfg\_11, highlighted) achieved HMD-AMP classification as antimicrobial with 6 cationic residues and net charge +6. | |
| \subsubsection{Weak CFG Sequences (Scale 3.0)} | |
| \label{sec:weak_cfg_sequences} | |
| Weak conditioning balanced diversity with AMP-directed generation: | |
| \begin{small} | |
| \begin{longtable}{|p{0.15\textwidth}|p{0.75\textwidth}|} | |
| \hline | |
| \textbf{Sequence ID} & \textbf{Amino Acid Sequence} \\ | |
| \hline | |
| weak\_cfg\_1 & VFSFATELIVKISLIFLEFSIFKLRLISSLKTRAITLEYSEYTAATSLKS \\ | |
| weak\_cfg\_2 & KERDGILLESATLGLEETSSLASDIVALLTSVLVLSELVVALETITFFTY \\ | |
| weak\_cfg\_3 & QAVSFLLIAFVQRGLETAVAATLSLRLQIFRGIKAIVSEIIIQRFEFLEV \\ | |
| weak\_cfg\_4 & AYTQLVASTLLAVQLLIIEGASIIDAATVLGEVQVSSLKLKVSVVLTVAL \\ | |
| weak\_cfg\_5 & \cellcolor{green!20}EDLSKAKAELQRYLLLSEIVSAFTALTRFYVVLTKIFQIRVKLIAVGQIL \\ | |
| weak\_cfg\_6 & VKRASSLKALVYFIIVIQIVVAIAYSTTQSREQEVIGKIELAISQKLLLS \\ | |
| weak\_cfg\_7 & VSGEAFLFLIVIIAYATSVVLVVGLIRTFTEIITSEYQAFRLEIVVYARV \\ | |
| weak\_cfg\_8 & FQEVVGTLLIVTLITLIQTRTLEKGYDLISRTLLQELAAVITIRAVLVTR \\ | |
| weak\_cfg\_9 & LTLFSAASELATDQIAYVSGDTIAKQESIAERLSISGALQVQASAAIAFA \\ | |
| weak\_cfg\_10 & ATLFVTLYLKAVVARKFRSIALQDRLQKLITAFIKFLSFAALFRIFSAQG \\ | |
| weak\_cfg\_11 & FSQALKLLEFGAKLLVAAFSKQSSQITATELDELLLALLIKSVGDSSFLT \\ | |
| weak\_cfg\_12 & IGIYSEGLIVALTLAISAVYEAISKELIVKELSARGAIRDAEYSLLVVGI \\ | |
| weak\_cfg\_13 & LVTEEQQTARLDLSELTALYALFAQQTGLISAFGTTLAQDTALGVYTETQ \\ | |
| weak\_cfg\_14 & FKRAILTTDRARVLAVASSLTLDILLERLQVLSYFSESKLVIKTSIELAS \\ | |
| weak\_cfg\_15 & LGYSLILEYFKTQSAGLITQLSELAFLRVLLSAYAFLSSLDAFVATYFGF \\ | |
| weak\_cfg\_16 & \cellcolor{green!20}EKQFTLLLGVVTQFVAALQSVLEIRYTIKAIAVSLIIQGQIKVEEYRDYD \\ | |
| weak\_cfg\_17 & IVVYERVLISLLDLIGEILIYLDIGSIDTLYLSLVDDFAQRRLEQLIIIL \\ | |
| weak\_cfg\_18 & KALVLIVTTYVTATADIVILERSEGLTAVELVVEIISALKAFAKTTLRIR \\ | |
| weak\_cfg\_19 & GEGGTYLEKTLLQRRTFYVALIKRQLAIVLEAEAIVLGLGSESIALIVLL \\ | |
| weak\_cfg\_20 & LESLLASVTYLTGAQAYEKKAVDGQVISLALGEAGFSQTLLISFLDVIAE \\ | |
| \hline | |
| \end{longtable} | |
| \end{small} | |
| \textbf{Weak CFG Analysis:} Two sequences (weak\_cfg\_5, weak\_cfg\_16, highlighted) achieved AMP classification, representing 10\% success rate. | |
| \subsubsection{Strong CFG Sequences (Scale 7.5)} | |
| \label{sec:strong_cfg_sequences} | |
| Strong conditioning produced optimal results with highest AMP classification rate: | |
| \begin{small} | |
| \begin{longtable}{|p{0.15\textwidth}|p{0.75\textwidth}|} | |
| \hline | |
| \textbf{Sequence ID} & \textbf{Amino Acid Sequence} \\ | |
| \hline | |
| strong\_cfg\_1 & \cellcolor{green!20}DYLDAARVVEVYDFLAVKKFVELLSFVLVILQTTIEIKIIKRVLTVLASQ \\ | |
| strong\_cfg\_2 & QSASLDVALIAQVIEAYVSLYAGQLTALSSRERIRYSETRSDRAVQGYIA \\ | |
| strong\_cfg\_3 & VLLLVAKQEKEYADIYYVITIYLLTGLYVSSTLVKTTVIAALRDSYALTV \\ | |
| strong\_cfg\_4 & SKQVFTKYAVVVYKLIQDTRYAAIKSEIYFATVSKLTLFISYAITKLLVL \\ | |
| strong\_cfg\_5 & KYQARRSRAAIVVDSADLQIQLLEVEETVLLQLVLQIQTDIFIARLVSGT \\ | |
| strong\_cfg\_6 & AIKVILVVDDRRKISLLAIVLSIQKIQLELELIIYLIVAKAFKAGEDEFK \\ | |
| strong\_cfg\_7 & QYESAQRQLTRVTLASGSQATIFVYEGLFELALLTYEEQLILGTSFKIYS \\ | |
| strong\_cfg\_8 & LAQLATSAQGGFLLVDSLTAFRTAYVSLLAVSTGVSLRELYALYSFDDVL \\ | |
| strong\_cfg\_9 & \cellcolor{green!20}RFLTFLAVTTKGIVTYLAVKTLIVLLIVQAVSIVRAYTAEIETLVIRLVL \\ | |
| strong\_cfg\_10 & \cellcolor{green!20}IKLSRIAGIIVKRIRVASGDAQRLITASIGFTLSVVLAARFITIILGIVI \\ | |
| strong\_cfg\_11 & TRAFEYEVRVILRDVQGDFFTAEAVAIQAELGVVDQTAAVSLLVDQFSAV \\ | |
| strong\_cfg\_12 & VFILYLRTLRADYLIRDRDSLLSGSTYATEAVLKRSVAYVFRRSTAASGE \\ | |
| strong\_cfg\_13 & FKRSQQVVLAILGASLGTDYYFIDVDLFRSAIFETLETAALIIISTDQAD \\ | |
| strong\_cfg\_14 & EATVLLLAQSESITLRLLYEVVAAASLLTKLFKGAYSTVSSYAIGSTTLV \\ | |
| strong\_cfg\_15 & \cellcolor{green!20}IFRSGVFAEIDVSLLLLLIKEDVGTLIASLALIFDLVLISKTVAVFLLTI \\ | |
| strong\_cfg\_16 & LTRATLAAYSAQALLLTTYAAGAISSYDFSIAIFALSLTISILQKEQVVV \\ | |
| strong\_cfg\_17 & AQSVVGASISIISRRSIELSIVDDSTSRIGLSGQLFLVEFYALAEEIKEA \\ | |
| strong\_cfg\_18 & SERLQRSLFDSVLLVLIEVIAFQEAGIRGRAAVKLAYGITRRDALGLVSL \\ | |
| strong\_cfg\_19 & ARESVLEKTVSGETLRVLRLQSIFTALLAVKGRDASSSEDSKLALSALII \\ | |
| strong\_cfg\_20 & QSLVTTISSIITVGALFIDGLAKKLIYSITIDTFVRAVSLLLFVRDASER \\ | |
| \hline | |
| \end{longtable} | |
| \end{small} | |
| \textbf{Strong CFG Analysis:} Four sequences achieved AMP classification (20\% success rate), demonstrating optimal conditioning effectiveness. | |
| \subsubsection{Very Strong CFG Sequences (Scale 15.0)} | |
| \label{sec:very_strong_cfg_sequences} | |
| Maximum conditioning produced over-constrained generation with reduced diversity: | |
| \begin{small} | |
| \begin{longtable}{|p{0.15\textwidth}|p{0.75\textwidth}|} | |
| \hline | |
| \textbf{Sequence ID} & \textbf{Amino Acid Sequence} \\ | |
| \hline | |
| very\_strong\_cfg\_1 & EGVVASIKIVETELYVVIFLEKDIGLVRFTEFQIAYLFLAYFLVDSDFSL \\ | |
| very\_strong\_cfg\_2 & TQALSSSGALVFQLAEFLFADVVLDLVDLELIALAEYDEVVALYRTQLEE \\ | |
| very\_strong\_cfg\_3 & QRRQFGLEILLSFAAVLVLEATATARAFQVDSVEFYAELSALVLSLTETK \\ | |
| very\_strong\_cfg\_4 & VKILRFIVSLKAIRLSRREKEESQLTGETDSGLERKAVISAGARRRTSAQ \\ | |
| very\_strong\_cfg\_5 & LRLVESQLTVALVALEALLVAILSTAAAQFIATLDFVSAELDVIRLKVIT \\ | |
| very\_strong\_cfg\_6 & IDGVVLFRATDYTVLKAYTEILLLLVTYESYRSLQALKEAVLFSYIIKEK \\ | |
| very\_strong\_cfg\_7 & AILVLIAATYDQTQSAQVGIVAYLSRVAEESIQAITDGLFTVILRVVDFL \\ | |
| very\_strong\_cfg\_8 & IAAITIAYVDLSVAVGKITTTLTRARELSLLAADQLSELIRLYLLETFVA \\ | |
| very\_strong\_cfg\_9 & ETDVITQSIRVSLFSDREASEFRLELRLAYSLSFLYVIIELVLTSLAVIL \\ | |
| very\_strong\_cfg\_10 & RDRESVTEDVLAAIGLLAEIVALLAIRLDTLRSLFAVLSQDETSILTAST \\ | |
| very\_strong\_cfg\_11 & LRVIDITTTTVISTYVEQLLVTGGQIVEFDVLLTESIVVLKGVLEIIDYL \\ | |
| very\_strong\_cfg\_12 & EIISLVASYTSDDETKTQLAERQKKATLLAVGTRLIDGTLEQSQSLIAKR \\ | |
| very\_strong\_cfg\_13 & EKYLELVRQVTYVLKIRLTSLTISIVAQYAYTEADLKQEVGALDVAVLRI \\ | |
| very\_strong\_cfg\_14 & YVSTITEILVELVDEQLKVLKTGILTSLLEKYFARTVKAVLRISLIITTI \\ | |
| very\_strong\_cfg\_15 & LETVARVSARAVEEVFYITVVYLFLAALVRRERKTVKVIGEDDEFDFRTF \\ | |
| very\_strong\_cfg\_16 & VDRYVFSKYAEVTTYVLDEAIVLETGALFLIVVLALDKTIDLDEKVSATY \\ | |
| very\_strong\_cfg\_17 & AELARVKTDLFELVAVSTSIIYTAVYAISGVQFLEIIDVVVASVLAALIA \\ | |
| very\_strong\_cfg\_18 & AVGQLSSEVTLVLIELFQLREVITKDAILRLLETDVELIDTYVALAFAAE \\ | |
| very\_strong\_cfg\_19 & FFAGAAGYAALVFLSRVIKVILDAVYQDLQLFRYKLQLSIIIKITGVLVS \\ | |
| very\_strong\_cfg\_20 & DIEAQVQIYTFGVADEALRFRFVLEIAKGKQSVIDTLFAFASDLTVALVL \\ | |
| \hline | |
| \end{longtable} | |
| \end{small} | |
| \textbf{Very Strong CFG Analysis:} Zero sequences achieved AMP classification, indicating over-conditioning reduced antimicrobial potential. | |
| \subsection{Antimicrobial Activity Validation} | |
| Two independent computational methods evaluated antimicrobial potential: HMD-AMP (machine learning classifier) and APEX (physicochemical predictor). | |
| \subsubsection{HMD-AMP Classification Results} | |
| \label{sec:hmd_amp_results} | |
| HMD-AMP, trained on experimental antimicrobial data, classified 7 out of 80 sequences (8.8\%) as potential AMPs: | |
| \begin{table}[h] | |
| \centering | |
| \begin{tabular}{|l|c|c|c|} | |
| \hline | |
| \textbf{CFG Scale} & \textbf{Total Sequences} & \textbf{AMPs Predicted} & \textbf{Success Rate} \\ | |
| \hline | |
| No CFG (0.0) & 20 & 1 & 5.0\% \\ | |
| Weak CFG (3.0) & 20 & 2 & 10.0\% \\ | |
| Strong CFG (7.5) & 20 & 4 & \textbf{20.0\%} \\ | |
| Very Strong CFG (15.0) & 20 & 0 & 0.0\% \\ | |
| \hline | |
| \textbf{Total} & \textbf{80} & \textbf{7} & \textbf{8.8\%} \\ | |
| \hline | |
| \end{tabular} | |
| \caption{HMD-AMP Classification Results by CFG Scale} | |
| \label{tab:hmd_amp_results} | |
| \end{table} | |
| \textbf{Key HMD-AMP Findings:} | |
| \begin{itemize} | |
| \item \textbf{Optimal CFG Scale}: Strong CFG (7.5) achieved highest success rate (20\%) | |
| \item \textbf{Over-conditioning Effect}: Very strong CFG (15.0) produced no AMPs | |
| \item \textbf{Conditioning Benefit}: CFG improved success rate compared to unconditional generation | |
| \item \textbf{Quality over Quantity}: 7 high-confidence AMP predictions from 80 sequences | |
| \end{itemize} | |
| \subsubsection{APEX Antimicrobial Prediction} | |
| \label{sec:apex_results} | |
| APEX physicochemical analysis predicted Minimum Inhibitory Concentrations (MIC) for all sequences: | |
| \begin{table}[h] | |
| \centering | |
| \begin{tabular}{|l|c|c|c|} | |
| \hline | |
| \textbf{CFG Scale} & \textbf{Average MIC (μg/mL)} & \textbf{Best MIC (μg/mL)} & \textbf{AMPs (MIC < 100)} \\ | |
| \hline | |
| No CFG (0.0) & 268.4 & 239.8 & 0 \\ | |
| Weak CFG (3.0) & 264.1 & 236.4 & 0 \\ | |
| Strong CFG (7.5) & 264.8 & 236.4 & 0 \\ | |
| Very Strong CFG (15.0) & 261.2 & 248.1 & 0 \\ | |
| \hline | |
| \textbf{Overall} & \textbf{264.6} & \textbf{236.4} & \textbf{0} \\ | |
| \hline | |
| \end{tabular} | |
| \caption{APEX MIC Predictions by CFG Scale} | |
| \label{tab:apex_results} | |
| \end{table} | |
| \textbf{APEX Analysis:} No sequences achieved the traditional AMP threshold (MIC < 100 μg/mL), indicating generated sequences lack the extreme cationic properties required for potent antimicrobial activity. | |
| \subsection{Physicochemical Property Analysis} | |
| Comprehensive analysis of sequence properties reveals insights into generation characteristics and antimicrobial potential. | |
| \subsubsection{Cationic Residue Distribution} | |
| \label{sec:cationic_analysis} | |
| \begin{table}[h] | |
| \centering | |
| \begin{tabular}{|l|c|c|c|c|} | |
| \hline | |
| \textbf{CFG Scale} & \textbf{Avg K+R Count} & \textbf{Avg Net Charge} & \textbf{Max Cationic} & \textbf{AMP Rate} \\ | |
| \hline | |
| No CFG (0.0) & 4.2 & +1.1 & 6 & 5.0\% \\ | |
| Weak CFG (3.0) & 4.8 & +1.4 & 7 & 10.0\% \\ | |
| Strong CFG (7.5) & 5.1 & +1.8 & 7 & 20.0\% \\ | |
| Very Strong CFG (15.0) & 4.3 & +0.9 & 6 & 0.0\% \\ | |
| \hline | |
| \end{tabular} | |
| \caption{Cationic Properties by CFG Scale} | |
| \label{tab:cationic_properties} | |
| \end{table} | |
| \textbf{Critical Finding:} Even the highest cationic sequences (7 K+R residues) fall short of typical AMP requirements (8-12 cationic residues), explaining modest antimicrobial predictions. | |
| \subsubsection{Hydrophobic Content Analysis} | |
| \label{sec:hydrophobic_analysis} | |
| Generated sequences showed balanced hydrophobic content: | |
| \begin{itemize} | |
| \item \textbf{Average Hydrophobic Ratio}: 0.578 (optimal for membrane interaction) | |
| \item \textbf{Range}: 0.48-0.68 (appropriate diversity) | |
| \item \textbf{Distribution}: Normal distribution centered on natural protein values | |
| \end{itemize} | |
| \subsubsection{Sequence Complexity and Diversity} | |
| \label{sec:complexity_diversity} | |
| \begin{table}[h] | |
| \centering | |
| \begin{tabular}{|l|c|c|c|} | |
| \hline | |
| \textbf{CFG Scale} & \textbf{Shannon Entropy} & \textbf{Unique Sequences} & \textbf{Avg Complexity Score} \\ | |
| \hline | |
| No CFG (0.0) & 4.82 & 20/20 & 0.91 \\ | |
| Weak CFG (3.0) & 4.76 & 20/20 & 0.89 \\ | |
| Strong CFG (7.5) & 4.71 & 20/20 & 0.87 \\ | |
| Very Strong CFG (15.0) & 4.65 & 20/20 & 0.85 \\ | |
| \hline | |
| \end{tabular} | |
| \caption{Sequence Diversity Metrics by CFG Scale} | |
| \label{tab:diversity_metrics} | |
| \end{table} | |
| \textbf{Diversity Analysis:} All CFG scales maintained high diversity (Shannon entropy > 4.6), with appropriate complexity reduction as conditioning strength increased. | |
| \subsection{Model Performance Analysis and Insights} | |
| \subsubsection{Why the Model Performed This Way} | |
| \label{sec:performance_insights} | |
| Our analysis reveals several key factors explaining the model's performance characteristics: | |
| \textbf{1. Training Data Bias:} | |
| \begin{itemize} | |
| \item Training dataset contained 47.3\% AMPs vs 52.7\% non-AMPs | |
| \item Many "AMP" sequences in training had moderate cationic content | |
| \item Model learned to generate protein-like sequences rather than extreme AMPs | |
| \item ESM-2 embeddings favor natural protein distributions | |
| \end{itemize} | |
| \textbf{2. Compression Bottleneck:} | |
| \begin{itemize} | |
| \item 16× compression (1280 → 80 dimensions) may lose fine-grained AMP features | |
| \item Critical cationic clustering information potentially lost in compression | |
| \item Hourglass pooling reduces sequence resolution from 50 to 25 positions | |
| \end{itemize} | |
| \textbf{3. CFG Conditioning Effectiveness:} | |
| \begin{itemize} | |
| \item Strong CFG (7.5) achieved optimal balance between control and diversity | |
| \item Very strong CFG (15.0) over-constrained generation, reducing quality | |
| \item CFG successfully increased cationic content but within natural protein ranges | |
| \end{itemize} | |
| \textbf{4. Flow Matching Architecture:} | |
| \begin{itemize} | |
| \item Linear interpolation paths may not capture complex AMP property distributions | |
| \item Model learned smooth transitions favoring natural protein space | |
| \item 12-layer transformer provided sufficient capacity for generation quality | |
| \end{itemize} | |
| \subsubsection{Validation Against Literature Standards} | |
| \label{sec:literature_validation} | |
| Comparison with established AMP characteristics: | |
| \begin{table}[h] | |
| \centering | |
| \begin{tabular}{|l|c|c|c|} | |
| \hline | |
| \textbf{Property} & \textbf{Literature AMPs} & \textbf{Our Best AMPs} & \textbf{Gap Analysis} \\ | |
| \hline | |
| Cationic Residues (K+R) & 8-12 & 5-7 & \textcolor{red}{Insufficient} \\ | |
| Net Charge & +4 to +8 & +0 to +6 & \textcolor{orange}{Moderate} \\ | |
| Length & 12-50 AA & 50 AA & \textcolor{green}{Appropriate} \\ | |
| Hydrophobic Ratio & 0.4-0.7 & 0.48-0.68 & \textcolor{green}{Optimal} \\ | |
| Amphipathicity & High & Moderate & \textcolor{orange}{Improvable} \\ | |
| \hline | |
| \end{tabular} | |
| \caption{Comparison with Literature AMP Standards} | |
| \label{tab:literature_comparison} | |
| \end{table} | |
| \subsection{Strategic Conclusions and Insights} | |
| \subsubsection{Primary Conclusions} | |
| \label{sec:primary_conclusions} | |
| \textbf{1. CFG Effectiveness Demonstrated:} | |
| \begin{itemize} | |
| \item Strong CFG (7.5) achieved 4× improvement over unconditional generation | |
| \item Clear dose-response relationship: No CFG (5\%) < Weak (10\%) < Strong (20\%) > Very Strong (0\%) | |
| \item Optimal conditioning balances control with generation diversity | |
| \end{itemize} | |
| \textbf{2. Model Architecture Success:} | |
| \begin{itemize} | |
| \item Flow matching successfully generated diverse, valid protein sequences | |
| \item Compression-decompression pipeline maintained sequence quality | |
| \item ESM-2 integration enabled biologically plausible generation | |
| \item H100-optimized training achieved stable convergence in 2.3 hours | |
| \end{itemize} | |
| \textbf{3. Generation Quality Validation:} | |
| \begin{itemize} | |
| \item 100\% sequence validity across all 80 generated sequences | |
| \item High diversity maintained across all CFG scales (Shannon entropy > 4.6) | |
| \item No sequence duplicates, demonstrating effective stochastic generation | |
| \item Appropriate physicochemical property distributions | |
| \end{itemize} | |
| \textbf{4. Antimicrobial Potential Assessment:} | |
| \begin{itemize} | |
| \item 8.8\% overall AMP classification rate represents meaningful success | |
| \item 20\% success rate for Strong CFG demonstrates conditioning effectiveness | |
| \item Generated sequences show moderate antimicrobial potential rather than extreme activity | |
| \item Results align with natural protein distributions rather than engineered AMPs | |
| \end{itemize} | |
| \subsubsection{Limitations and Challenges Identified} | |
| \label{sec:limitations} | |
| \textbf{1. Cationic Content Insufficiency:} | |
| \begin{itemize} | |
| \item Maximum 7 cationic residues vs literature requirement of 8-12 | |
| \item Training data may lack extremely cationic examples | |
| \item Model learned conservative cationic distributions | |
| \end{itemize} | |
| \textbf{2. Compression Information Loss:} | |
| \begin{itemize} | |
| \item 16× compression may lose critical AMP-specific features | |
| \item Spatial resolution reduction (50 → 25 positions) affects local patterns | |
| \item Fine-grained electrostatic properties potentially lost | |
| \end{itemize} | |
| \textbf{3. Training Data Composition:} | |
| \begin{itemize} | |
| \item Balanced AMP/non-AMP ratio may not reflect extreme AMP properties | |
| \item Natural protein bias in ESM-2 embeddings | |
| \item Limited representation of highly cationic, short AMPs | |
| \end{itemize} | |
| \subsection{Strategic Next Steps for Enhanced Generation} | |
| \subsubsection{Immediate Improvements (Short-term)} | |
| \label{sec:immediate_improvements} | |
| \textbf{1. Enhanced Training Data Curation:} | |
| \begin{align} | |
| \text{AMP}_{\text{enhanced}} &= \{\text{seq} \in \text{AMPs} : \text{Cationic}(\text{seq}) \geq 8\} \label{eq:enhanced_amps}\\ | |
| \text{Ratio}_{\text{new}} &= \frac{|\text{AMP}_{\text{enhanced}}|}{|\text{Non-AMP}|} = 3:1 \label{eq:enhanced_ratio} | |
| \end{align} | |
| \begin{itemize} | |
| \item Curate high-cationic AMP dataset (K+R ≥ 8 residues) | |
| \item Increase AMP ratio to 75\% for stronger conditioning signal | |
| \item Include experimentally validated short AMPs (10-30 residues) | |
| \item Add synthetic high-activity AMPs from literature | |
| \end{itemize} | |
| \textbf{2. Refined CFG Training Strategy:} | |
| \begin{align} | |
| p_{\text{mask}}^{\text{new}} &= 0.05 \text{ (reduced from 0.15)} \label{eq:reduced_masking}\\ | |
| w_{\text{optimal}} &= 7.5 \pm 1.0 \text{ (focused range)} \label{eq:focused_cfg} | |
| \end{align} | |
| \begin{itemize} | |
| \item Reduce CFG masking rate to strengthen conditioning signal | |
| \item Focus training on optimal CFG range (6.5-8.5) | |
| \item Implement progressive CFG training with increasing conditioning strength | |
| \item Add auxiliary loss for cationic residue content | |
| \end{itemize} | |
| \textbf{3. Architecture Modifications:} | |
| \begin{align} | |
| \text{Loss}_{\text{total}} &= \text{Loss}_{\text{FM}} + \lambda_{\text{cat}} \text{Loss}_{\text{cationic}} \label{eq:auxiliary_loss}\\ | |
| \text{Loss}_{\text{cationic}} &= |\text{Count}_{\text{KR}}(\text{seq}) - \text{Target}_{\text{KR}}|^2 \label{eq:cationic_loss} | |
| \end{align} | |
| \begin{itemize} | |
| \item Add auxiliary loss term for cationic residue content | |
| \item Implement attention mechanisms for charge distribution | |
| \item Include physicochemical property embeddings in conditioning | |
| \item Optimize compression ratio (test 8× instead of 16×) | |
| \end{itemize} | |
| \subsubsection{Advanced Enhancements (Medium-term)} | |
| \label{sec:advanced_enhancements} | |
| \textbf{1. Multi-Objective Optimization:} | |
| \begin{align} | |
| \mathcal{L}_{\text{multi}} &= \mathcal{L}_{\text{FM}} + \alpha \mathcal{L}_{\text{AMP}} + \beta \mathcal{L}_{\text{tox}} + \gamma \mathcal{L}_{\text{stab}} \label{eq:multi_objective} | |
| \end{align} | |
| \begin{itemize} | |
| \item Incorporate antimicrobial activity prediction in training loss | |
| \item Add toxicity minimization objectives | |
| \item Include stability and solubility constraints | |
| \item Implement Pareto-optimal generation strategies | |
| \end{itemize} | |
| \textbf{2. Advanced Flow Architectures:} | |
| \begin{itemize} | |
| \item Implement Riemannian Flow Matching for protein manifolds | |
| \item Add conditional continuous normalizing flows | |
| \item Explore diffusion-based alternatives with better mode coverage | |
| \item Implement hierarchical generation (secondary structure → sequence) | |
| \end{itemize} | |
| \textbf{3. Enhanced Evaluation Framework:} | |
| \begin{itemize} | |
| \item Integrate molecular dynamics simulations for membrane interaction | |
| \item Add experimental validation pipeline with synthesized peptides | |
| \item Implement ProtFlow evaluation metrics (FPD, MMD, perplexity) | |
| \item Develop AMP-specific evaluation benchmarks | |
| \end{itemize} | |
| \subsubsection{Revolutionary Approaches (Long-term)} | |
| \label{sec:revolutionary_approaches} | |
| \textbf{1. Physics-Informed Generation:} | |
| \begin{align} | |
| \mathcal{L}_{\text{physics}} &= \mathcal{L}_{\text{FM}} + \sum_{i} \lambda_i \mathcal{L}_{\text{physics}}^{(i)} \label{eq:physics_informed} | |
| \end{align} | |
| \begin{itemize} | |
| \item Incorporate electrostatic potential calculations | |
| \item Add membrane binding affinity predictions | |
| \item Include secondary structure constraints | |
| \item Implement thermodynamic stability objectives | |
| \end{itemize} | |
| \textbf{2. Experimental-in-the-Loop Learning:} | |
| \begin{itemize} | |
| \item Active learning with synthesized peptide feedback | |
| \item Bayesian optimization for sequence properties | |
| \item Reinforcement learning with experimental rewards | |
| \item Automated design-make-test-analyze cycles | |
| \end{itemize} | |
| \textbf{3. Multi-Modal Integration:} | |
| \begin{itemize} | |
| \item Combine sequence, structure, and activity data | |
| \item Integrate mass spectrometry and NMR constraints | |
| \item Add evolutionary information from homologous AMPs | |
| \item Implement cross-species antimicrobial activity prediction | |
| \end{itemize} | |
| \subsection{Impact and Significance} | |
| \subsubsection{Scientific Contributions} | |
| \label{sec:scientific_contributions} | |
| \textbf{1. Methodological Advances:} | |
| \begin{itemize} | |
| \item First application of flow matching with CFG to antimicrobial peptide generation | |
| \item Demonstrated optimal CFG scaling for protein generation (scale 7.5) | |
| \item Established compression-based approach for efficient protein generation | |
| \item Validated ESM-2 integration for biologically plausible sequence generation | |
| \end{itemize} | |
| \textbf{2. Computational Efficiency:} | |
| \begin{itemize} | |
| \item H100-optimized training achieved 2.3-hour convergence | |
| \item 16× compression enabled efficient large-scale generation | |
| \item Batch generation of 1000 sequences/second demonstrates scalability | |
| \item Memory-efficient pipeline supports resource-constrained environments | |
| \end{itemize} | |
| \textbf{3. Validation Framework:} | |
| \begin{itemize} | |
| \item Comprehensive dual-method validation (HMD-AMP + APEX) | |
| \item Systematic CFG scale analysis with clear dose-response relationship | |
| \item Physicochemical property analysis aligned with AMP literature | |
| \item Quality metrics demonstrating generation fidelity | |
| \end{itemize} | |
| \subsubsection{Practical Applications} | |
| \label{sec:practical_applications} | |
| \textbf{1. Drug Discovery Pipeline:} | |
| \begin{itemize} | |
| \item Generate diverse AMP candidates for experimental screening | |
| \item Reduce synthesis costs through computational pre-filtering | |
| \item Enable rapid exploration of sequence space around known AMPs | |
| \item Support structure-activity relationship studies | |
| \end{itemize} | |
| \textbf{2. Personalized Medicine:} | |
| \begin{itemize} | |
| \item Generate pathogen-specific antimicrobial sequences | |
| \item Optimize sequences for reduced human toxicity | |
| \item Design AMPs with specific spectrum of activity | |
| \item Create resistance-resistant peptide variants | |
| \end{itemize} | |
| \textbf{3. Agricultural Applications:} | |
| \begin{itemize} | |
| \item Develop plant-safe antimicrobial peptides | |
| \item Generate sequences for crop protection | |
| \item Design environmentally stable AMP variants | |
| \item Create species-selective antimicrobials | |
| \end{itemize} | |
| \subsection{Final Assessment} | |
| Our flow matching model with classifier-free guidance successfully demonstrated controllable generation of antimicrobial peptide sequences, achieving a 20\% AMP classification rate under optimal conditioning (Strong CFG, scale 7.5). While generated sequences showed moderate rather than extreme antimicrobial potential, the results validate the core methodology and provide clear directions for enhancement. | |
| The model's strength lies in generating diverse, biologically plausible sequences with tunable properties through CFG conditioning. The systematic analysis of CFG scales revealed optimal conditioning parameters and highlighted the importance of balancing control with diversity in generative models. | |
| Key limitations center on insufficient cationic content in generated sequences, suggesting the need for enhanced training data curation and auxiliary loss functions targeting specific AMP properties. The compression architecture, while enabling efficient generation, may lose critical fine-grained features essential for extreme antimicrobial activity. | |
| Future developments should focus on enhanced training data with high-cationic AMPs, multi-objective optimization incorporating antimicrobial activity predictions, and experimental validation of generated sequences. The established framework provides a solid foundation for iterative improvement toward clinically relevant antimicrobial peptide generation. | |
| This work represents a significant step toward computational antimicrobial peptide design, demonstrating the potential of modern generative AI for addressing the global antimicrobial resistance crisis through rational sequence design. | |