erodola commited on
Commit
a27fa68
1 Parent(s): bb54cd8

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 257.11 +/- 17.88
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a6cbda98ee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a6cbda98f70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a6cbda99000>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a6cbda99090>", "_build": "<function ActorCriticPolicy._build at 0x7a6cbda99120>", "forward": "<function ActorCriticPolicy.forward at 0x7a6cbda991b0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a6cbda99240>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a6cbda992d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a6cbda99360>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a6cbda993f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a6cbda99480>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a6cbda99510>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a6cbda46500>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1697094754977025047, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABojjr2uS4a6o+uNuVf8l7SwuhI7y/CkOAAAAAAAAIA/LoXVvqtG1D48SJ0+adXCvneTWL6iBFc+AAAAAAAAAADTHw++QRjRPY5LfT5jGze+TMBePcuUTb0AAAAAAAAAAGaBzTzDVU+6ayNAuneNnbTHS5k7a2BgOQAAgD8AAIA/zXDXu+yp5bnujUQzFnD2LqX4WDtEp8azAACAPwAAgD/zMpW9BcYlPgjs5z3HXki+zoAovI97FboAAAAAAAAAAELsu77HiZ8+0PC3Pkbp5L5uiYS+LiSCPgAAAAAAAAAATeKGvXEZD7uroKs7baOKPAh0oryw0G89AACAPwAAgD/Nygi9ezquuibNirey5YqypR7LuU7FnjYAAIA/AACAPxNuLD6a1Rw/9rglvgAm7r6uh2c9iH1IvQAAAAAAAAAATbIjvj2VDbvgB+K3NeeAtKBFNTyOcgU3AACAPwAAgD8zz6A7w7E7urarOrnAqr81AJTFungCWTgAAIA/AACAP6YSyj3AW34/bQAPPikJyb4Ufhw+gugkPQAAAAAAAAAA5keTPeyD6rtRcg68GqSAPJl1N73WrFk9AACAPwAAgD+AkRq9CvqePkX/E71nSZe+o8rxvD6SRLwAAAAAAAAAAEoIU742cHY/9a0SvzTxL7/Mw4q+SsqBvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVGAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHC0Fd5Y5kuMAWyUTQsBjAF0lEdAlORgTmGM43V9lChoBkdAb6x9Q40dimgHTQoBaAhHQJTkvNSqEOB1fZQoaAZHQHDUNpAUtZpoB0vYaAhHQJTkyeK8+Rp1fZQoaAZHQHIo92xIJ7doB0veaAhHQJTlP2kBS1p1fZQoaAZHQHDMn/o7muFoB0vsaAhHQJTlZvOyE+R1fZQoaAZHQHHATkuHvc9oB00WAWgIR0CU5WmjCYTkdX2UKGgGR0BzK1/ZuhsZaAdL9mgIR0CU5fRZU1htdX2UKGgGR0BzqZb7j1f3aAdL+GgIR0CU5hEORT0hdX2UKGgGR0BxNN0knkT6aAdNBgFoCEdAlOkp8jRlYnV9lChoBkdAcoQVLBbfQGgHTQUBaAhHQJTpItBfKIV1fZQoaAZHQHAhIKUmlZZoB00KAWgIR0CU6hjSG8EndX2UKGgGR0By/Zn8KohqaAdNHAFoCEdAlOppJ04io3V9lChoBkdAcssf5k9U0mgHTQABaAhHQJTqp1hb4ah1fZQoaAZHQHFUMIVuaWpoB00LAWgIR0CU6t0zCUHIdX2UKGgGR0Bw4+Fdszl+aAdL8WgIR0CU6wxcE/0NdX2UKGgGR0B0LE2S+xnnaAdL42gIR0CU62IH1OCYdX2UKGgGR0BxyB5IH1OCaAdL5mgIR0CU7DVWCEpRdX2UKGgGR0BxsqE+PikwaAdL+2gIR0CU7F5Xlr/LdX2UKGgGR0Bv4uW0JF9baAdL/mgIR0CU7OyMkyDadX2UKGgGR0BxTwlsxfv4aAdL+WgIR0CU7TSn+AEudX2UKGgGR0BR8Ee+23KCaAdN6ANoCEdAlO1lBppN9HV9lChoBkdAcWF2xIJ7cGgHTQIBaAhHQJTthXp4bCJ1fZQoaAZHQHD0oc/+sHVoB0vaaAhHQJTvcQK8cuJ1fZQoaAZHQG/tFCswL3NoB0vdaAhHQJTvkHv+fiB1fZQoaAZHQHOPJGKAJ9loB01rAWgIR0CU79J79hqkdX2UKGgGR0Bx5KzE74i5aAdL2WgIR0CU8XJd0JWvdX2UKGgGR0Bu34EjgQ6IaAdL72gIR0CU8YF9roGIdX2UKGgGR0Bwm3kwN9YwaAdL6WgIR0CU8ZbWEsasdX2UKGgGR0BxfmumrKeTaAdL6mgIR0CU8egIyCWedX2UKGgGR0BwSkjJMg2ZaAdNCQFoCEdAlPI9YKYzBXV9lChoBkdAbcvo/RmbsmgHS/hoCEdAlPNC0F8ohXV9lChoBkdAcanaFVT722gHS7hoCEdAlPNqdxyXD3V9lChoBkdAc1zuK4x1xWgHS/ZoCEdAlPQ4fjjrA3V9lChoBkdAZoD/nW8RMGgHTe4BaAhHQJT0V57gKnh1fZQoaAZHQHLiXgDRtxdoB0vkaAhHQJT0cM/hVEN1fZQoaAZHQHKOihJyyUtoB00NAWgIR0CU9SSWqtHQdX2UKGgGR0BygfSMLncMaAdL8WgIR0CU9Yh/RVp9dX2UKGgGR0BzVTU2DQJHaAdNFAFoCEdAlPZHQID5kHV9lChoBkdAcwMxvegte2gHS8toCEdAlPa+y/sVtXV9lChoBkdAcIzu/UONHmgHS+FoCEdAlPdff8/D+HV9lChoBkdAb+JZg5R0l2gHS9NoCEdAlPlJeJHiFXV9lChoBkdAcZnejEehf2gHS9hoCEdAlPlpgb6xgXV9lChoBkdAcsMLOiWVvGgHTRQBaAhHQJT50Mtsen11fZQoaAZHQHBrNCzC1qpoB0v6aAhHQJT6tWdVea91fZQoaAZHQHE5oAXEZR9oB0v1aAhHQJT68CJXQt11fZQoaAZHQHDNq0MPSUloB0vSaAhHQJT7AoKD0191fZQoaAZHQHAUJ+H8CPpoB00PAWgIR0CU/FvF3pwCdX2UKGgGR0ByIL8ZUDMeaAdL82gIR0CVEVnKW9lFdX2UKGgGR0BxZuerdWQwaAdL7WgIR0CVEV052hZhdX2UKGgGR0BvX10xM36zaAdNEgFoCEdAlRGUse4kNXV9lChoBkdAcVDz/IbOvGgHS+hoCEdAlRHugctGu3V9lChoBkdAcNuQla8pTmgHS/RoCEdAlRLGgJ1JUnV9lChoBkdAccS1RceKbmgHTR4BaAhHQJUS6uwHJLd1fZQoaAZHQHDgjuBtk4FoB0vwaAhHQJUT/LX+VC51fZQoaAZHQGz9S9/SYw9oB00SAWgIR0CVFMj94u9OdX2UKGgGR0Bv7xYPoV2zaAdL5mgIR0CVFuCYkVvddX2UKGgGR0Bxcp9v0h/zaAdL82gIR0CVFwSeyzHCdX2UKGgGR0By+O1gH/tIaAdNLQFoCEdAlRcsqz7di3V9lChoBkdAcrrViF0xM2gHS+5oCEdAlRoTye7L+3V9lChoBkdAcsNljVhCt2gHTUEBaAhHQJUagCZF5Od1fZQoaAZHQHEd1Aqur6toB00pAWgIR0CVG1tkFwDOdX2UKGgGR0BxiIN+b3GoaAdNOAFoCEdAlRvavFFUhnV9lChoBkdAcgmDOkcjq2gHTTMBaAhHQJUb9uMuOCJ1fZQoaAZHQHLyclHBk7RoB00AAWgIR0CVHFrC3w1BdX2UKGgGR0BxW9yHVPN3aAdNGQFoCEdAlR0yOearm3V9lChoBkdAc2l5bhWHUWgHTQIBaAhHQJUeCx6fJ3h1fZQoaAZHQHClJgCwKShoB00GAWgIR0CVHmZ8KG+LdX2UKGgGR0BstLIeYD1XaAdNNgFoCEdAlR57DVH4GnV9lChoBkdAbptFNtZV42gHTRIBaAhHQJUg/XOGCZp1fZQoaAZHQHMgOFUQ041oB013AWgIR0CVIg0YCQtBdX2UKGgGR0Bw8nkxREWqaAdNAwFoCEdAlSKdZ/0/W3V9lChoBkdAcgppeu3c6GgHTQUBaAhHQJUjAl5WzWx1fZQoaAZHQHMn54W1twdoB0vlaAhHQJUk4qe9SMt1fZQoaAZHQHM9/FirksBoB01AAWgIR0CVKFUvf0mMdX2UKGgGR0BtYdb3XZoPaAdNAQFoCEdAlShsTBZZCHV9lChoBkdAccx2kzoECGgHTdkBaAhHQJUoyGM4tHx1fZQoaAZHQHBcA7YChexoB02UAWgIR0CVKQ4Fiay9dX2UKGgGR0ByX3lXA/LUaAdNBAFoCEdAlSlOzlcQiHV9lChoBkdAcMUcvugHvGgHTUUBaAhHQJUp5+MIeHV1fZQoaAZHQHI43JcPe55oB01fAWgIR0CVKn0b961LdX2UKGgGR0BxVbv6TGHYaAdL12gIR0CVKv+LWI43dX2UKGgGR0Bvr4oy9EkTaAdNOAFoCEdAlSt9zS1E3XV9lChoBkdAcOYoAGSpzmgHTVUBaAhHQJUsYUHpr1x1fZQoaAZHQHCTvjsD4g1oB03SAWgIR0CVLtU7Sy+pdX2UKGgGR0BxYtIwudwvaAdNZAFoCEdAlS8NEkSmInV9lChoBkdAcfVrz5GjK2gHTdABaAhHQJUvGA8Swnp1fZQoaAZHQHKSjNMXaaloB00iAWgIR0CVL5Lsa86FdX2UKGgGR0Bvpa86FM7EaAdNWwFoCEdAlTAc5S3sonV9lChoBkdAccLs6q8142gHS9xoCEdAlTB7RfF72XV9lChoBkdAcF1y7f51vGgHS/RoCEdAlTC1wgkkbHV9lChoBkdAcTKvb48EFGgHTQgBaAhHQJUxMi3XqaB1fZQoaAZHQHPm7bpNbkhoB00JAWgIR0CVMeDOTq0MdX2UKGgGR0BxF/hegL7XaAdNtAFoCEdAlTJZSm65G3V9lChoBkdAcaMQ176YV2gHTQcBaAhHQJUyuoUBXCF1fZQoaAZHQG9N9uxbB45oB0v5aAhHQJUz8dq+Jxh1fZQoaAZHQHKJGw/xDstoB01mAWgIR0CVNCuGsV+JdX2UKGgGR0Byyh2W6bvxaAdNUwFoCEdAlTR42Kl54XV9lChoBkdAbp66FuejEmgHTTYBaAhHQJU0j0SRKYl1fZQoaAZHQHByHw9aEBdoB0vlaAhHQJU2Hundfsx1fZQoaAZHQHEPPXK8tf5oB0v+aAhHQJU2VIOH3111ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53c3ccdbdc98a8dfd48b7cb46eabb12f81fed30705a2c706f062d2a8814ddd3d
3
+ size 146699
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7a6cbda98ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a6cbda98f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a6cbda99000>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a6cbda99090>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7a6cbda99120>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7a6cbda991b0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a6cbda99240>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a6cbda992d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7a6cbda99360>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a6cbda993f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a6cbda99480>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a6cbda99510>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7a6cbda46500>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1697094754977025047,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABojjr2uS4a6o+uNuVf8l7SwuhI7y/CkOAAAAAAAAIA/LoXVvqtG1D48SJ0+adXCvneTWL6iBFc+AAAAAAAAAADTHw++QRjRPY5LfT5jGze+TMBePcuUTb0AAAAAAAAAAGaBzTzDVU+6ayNAuneNnbTHS5k7a2BgOQAAgD8AAIA/zXDXu+yp5bnujUQzFnD2LqX4WDtEp8azAACAPwAAgD/zMpW9BcYlPgjs5z3HXki+zoAovI97FboAAAAAAAAAAELsu77HiZ8+0PC3Pkbp5L5uiYS+LiSCPgAAAAAAAAAATeKGvXEZD7uroKs7baOKPAh0oryw0G89AACAPwAAgD/Nygi9ezquuibNirey5YqypR7LuU7FnjYAAIA/AACAPxNuLD6a1Rw/9rglvgAm7r6uh2c9iH1IvQAAAAAAAAAATbIjvj2VDbvgB+K3NeeAtKBFNTyOcgU3AACAPwAAgD8zz6A7w7E7urarOrnAqr81AJTFungCWTgAAIA/AACAP6YSyj3AW34/bQAPPikJyb4Ufhw+gugkPQAAAAAAAAAA5keTPeyD6rtRcg68GqSAPJl1N73WrFk9AACAPwAAgD+AkRq9CvqePkX/E71nSZe+o8rxvD6SRLwAAAAAAAAAAEoIU742cHY/9a0SvzTxL7/Mw4q+SsqBvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVGAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHC0Fd5Y5kuMAWyUTQsBjAF0lEdAlORgTmGM43V9lChoBkdAb6x9Q40dimgHTQoBaAhHQJTkvNSqEOB1fZQoaAZHQHDUNpAUtZpoB0vYaAhHQJTkyeK8+Rp1fZQoaAZHQHIo92xIJ7doB0veaAhHQJTlP2kBS1p1fZQoaAZHQHDMn/o7muFoB0vsaAhHQJTlZvOyE+R1fZQoaAZHQHHATkuHvc9oB00WAWgIR0CU5WmjCYTkdX2UKGgGR0BzK1/ZuhsZaAdL9mgIR0CU5fRZU1htdX2UKGgGR0BzqZb7j1f3aAdL+GgIR0CU5hEORT0hdX2UKGgGR0BxNN0knkT6aAdNBgFoCEdAlOkp8jRlYnV9lChoBkdAcoQVLBbfQGgHTQUBaAhHQJTpItBfKIV1fZQoaAZHQHAhIKUmlZZoB00KAWgIR0CU6hjSG8EndX2UKGgGR0By/Zn8KohqaAdNHAFoCEdAlOppJ04io3V9lChoBkdAcssf5k9U0mgHTQABaAhHQJTqp1hb4ah1fZQoaAZHQHFUMIVuaWpoB00LAWgIR0CU6t0zCUHIdX2UKGgGR0Bw4+Fdszl+aAdL8WgIR0CU6wxcE/0NdX2UKGgGR0B0LE2S+xnnaAdL42gIR0CU62IH1OCYdX2UKGgGR0BxyB5IH1OCaAdL5mgIR0CU7DVWCEpRdX2UKGgGR0BxsqE+PikwaAdL+2gIR0CU7F5Xlr/LdX2UKGgGR0Bv4uW0JF9baAdL/mgIR0CU7OyMkyDadX2UKGgGR0BxTwlsxfv4aAdL+WgIR0CU7TSn+AEudX2UKGgGR0BR8Ee+23KCaAdN6ANoCEdAlO1lBppN9HV9lChoBkdAcWF2xIJ7cGgHTQIBaAhHQJTthXp4bCJ1fZQoaAZHQHD0oc/+sHVoB0vaaAhHQJTvcQK8cuJ1fZQoaAZHQG/tFCswL3NoB0vdaAhHQJTvkHv+fiB1fZQoaAZHQHOPJGKAJ9loB01rAWgIR0CU79J79hqkdX2UKGgGR0Bx5KzE74i5aAdL2WgIR0CU8XJd0JWvdX2UKGgGR0Bu34EjgQ6IaAdL72gIR0CU8YF9roGIdX2UKGgGR0Bwm3kwN9YwaAdL6WgIR0CU8ZbWEsasdX2UKGgGR0BxfmumrKeTaAdL6mgIR0CU8egIyCWedX2UKGgGR0BwSkjJMg2ZaAdNCQFoCEdAlPI9YKYzBXV9lChoBkdAbcvo/RmbsmgHS/hoCEdAlPNC0F8ohXV9lChoBkdAcanaFVT722gHS7hoCEdAlPNqdxyXD3V9lChoBkdAc1zuK4x1xWgHS/ZoCEdAlPQ4fjjrA3V9lChoBkdAZoD/nW8RMGgHTe4BaAhHQJT0V57gKnh1fZQoaAZHQHLiXgDRtxdoB0vkaAhHQJT0cM/hVEN1fZQoaAZHQHKOihJyyUtoB00NAWgIR0CU9SSWqtHQdX2UKGgGR0BygfSMLncMaAdL8WgIR0CU9Yh/RVp9dX2UKGgGR0BzVTU2DQJHaAdNFAFoCEdAlPZHQID5kHV9lChoBkdAcwMxvegte2gHS8toCEdAlPa+y/sVtXV9lChoBkdAcIzu/UONHmgHS+FoCEdAlPdff8/D+HV9lChoBkdAb+JZg5R0l2gHS9NoCEdAlPlJeJHiFXV9lChoBkdAcZnejEehf2gHS9hoCEdAlPlpgb6xgXV9lChoBkdAcsMLOiWVvGgHTRQBaAhHQJT50Mtsen11fZQoaAZHQHBrNCzC1qpoB0v6aAhHQJT6tWdVea91fZQoaAZHQHE5oAXEZR9oB0v1aAhHQJT68CJXQt11fZQoaAZHQHDNq0MPSUloB0vSaAhHQJT7AoKD0191fZQoaAZHQHAUJ+H8CPpoB00PAWgIR0CU/FvF3pwCdX2UKGgGR0ByIL8ZUDMeaAdL82gIR0CVEVnKW9lFdX2UKGgGR0BxZuerdWQwaAdL7WgIR0CVEV052hZhdX2UKGgGR0BvX10xM36zaAdNEgFoCEdAlRGUse4kNXV9lChoBkdAcVDz/IbOvGgHS+hoCEdAlRHugctGu3V9lChoBkdAcNuQla8pTmgHS/RoCEdAlRLGgJ1JUnV9lChoBkdAccS1RceKbmgHTR4BaAhHQJUS6uwHJLd1fZQoaAZHQHDgjuBtk4FoB0vwaAhHQJUT/LX+VC51fZQoaAZHQGz9S9/SYw9oB00SAWgIR0CVFMj94u9OdX2UKGgGR0Bv7xYPoV2zaAdL5mgIR0CVFuCYkVvddX2UKGgGR0Bxcp9v0h/zaAdL82gIR0CVFwSeyzHCdX2UKGgGR0By+O1gH/tIaAdNLQFoCEdAlRcsqz7di3V9lChoBkdAcrrViF0xM2gHS+5oCEdAlRoTye7L+3V9lChoBkdAcsNljVhCt2gHTUEBaAhHQJUagCZF5Od1fZQoaAZHQHEd1Aqur6toB00pAWgIR0CVG1tkFwDOdX2UKGgGR0BxiIN+b3GoaAdNOAFoCEdAlRvavFFUhnV9lChoBkdAcgmDOkcjq2gHTTMBaAhHQJUb9uMuOCJ1fZQoaAZHQHLyclHBk7RoB00AAWgIR0CVHFrC3w1BdX2UKGgGR0BxW9yHVPN3aAdNGQFoCEdAlR0yOearm3V9lChoBkdAc2l5bhWHUWgHTQIBaAhHQJUeCx6fJ3h1fZQoaAZHQHClJgCwKShoB00GAWgIR0CVHmZ8KG+LdX2UKGgGR0BstLIeYD1XaAdNNgFoCEdAlR57DVH4GnV9lChoBkdAbptFNtZV42gHTRIBaAhHQJUg/XOGCZp1fZQoaAZHQHMgOFUQ041oB013AWgIR0CVIg0YCQtBdX2UKGgGR0Bw8nkxREWqaAdNAwFoCEdAlSKdZ/0/W3V9lChoBkdAcgppeu3c6GgHTQUBaAhHQJUjAl5WzWx1fZQoaAZHQHMn54W1twdoB0vlaAhHQJUk4qe9SMt1fZQoaAZHQHM9/FirksBoB01AAWgIR0CVKFUvf0mMdX2UKGgGR0BtYdb3XZoPaAdNAQFoCEdAlShsTBZZCHV9lChoBkdAccx2kzoECGgHTdkBaAhHQJUoyGM4tHx1fZQoaAZHQHBcA7YChexoB02UAWgIR0CVKQ4Fiay9dX2UKGgGR0ByX3lXA/LUaAdNBAFoCEdAlSlOzlcQiHV9lChoBkdAcMUcvugHvGgHTUUBaAhHQJUp5+MIeHV1fZQoaAZHQHI43JcPe55oB01fAWgIR0CVKn0b961LdX2UKGgGR0BxVbv6TGHYaAdL12gIR0CVKv+LWI43dX2UKGgGR0Bvr4oy9EkTaAdNOAFoCEdAlSt9zS1E3XV9lChoBkdAcOYoAGSpzmgHTVUBaAhHQJUsYUHpr1x1fZQoaAZHQHCTvjsD4g1oB03SAWgIR0CVLtU7Sy+pdX2UKGgGR0BxYtIwudwvaAdNZAFoCEdAlS8NEkSmInV9lChoBkdAcfVrz5GjK2gHTdABaAhHQJUvGA8Swnp1fZQoaAZHQHKSjNMXaaloB00iAWgIR0CVL5Lsa86FdX2UKGgGR0Bvpa86FM7EaAdNWwFoCEdAlTAc5S3sonV9lChoBkdAccLs6q8142gHS9xoCEdAlTB7RfF72XV9lChoBkdAcF1y7f51vGgHS/RoCEdAlTC1wgkkbHV9lChoBkdAcTKvb48EFGgHTQgBaAhHQJUxMi3XqaB1fZQoaAZHQHPm7bpNbkhoB00JAWgIR0CVMeDOTq0MdX2UKGgGR0BxF/hegL7XaAdNtAFoCEdAlTJZSm65G3V9lChoBkdAcaMQ176YV2gHTQcBaAhHQJUyuoUBXCF1fZQoaAZHQG9N9uxbB45oB0v5aAhHQJUz8dq+Jxh1fZQoaAZHQHKJGw/xDstoB01mAWgIR0CVNCuGsV+JdX2UKGgGR0Byyh2W6bvxaAdNUwFoCEdAlTR42Kl54XV9lChoBkdAbp66FuejEmgHTTYBaAhHQJU0j0SRKYl1fZQoaAZHQHByHw9aEBdoB0vlaAhHQJU2Hundfsx1fZQoaAZHQHEPPXK8tf5oB0v+aAhHQJU2VIOH3111ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7f3dd31cc079ac4f2f2851460f7e7ed6995ba68845202ed28e88ea61623479f
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:105d7b1ec3a1dcd699965d1d818e634acee49c5c218347a077a6c53150d957a1
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (180 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 257.1099425008096, "std_reward": 17.875693461240257, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-12T07:37:03.640295"}