erniechiew commited on
Commit
1114864
1 Parent(s): d5f267c

Ern test 1

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 256.59 +/- 22.26
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9a88164430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9a881644c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9a88164550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9a881645e0>", "_build": "<function ActorCriticPolicy._build at 0x7f9a88164670>", "forward": "<function ActorCriticPolicy.forward at 0x7f9a88164700>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9a88164790>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9a88164820>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9a881648b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9a88164940>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9a881649d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f9a88160540>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670937511651506932, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2Vybi9hbmFjb25kYTMvZW52cy9kZWVwcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2Vybi9hbmFjb25kYTMvZW52cy9kZWVwcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA11wD0pUCS6dRtYuNOcPbYyetu6Hd59NwAAgD8AAIA/Gp8lPdcTNblRfcO5y/p7NciH2jqFIeU4AACAPwAAgD+agxa89nBlutA4kTntI7Y0A6r8Ouv+qLgAAIA/AACAP2ZwdrwpDES6A7zUui/0ALY9/xc7mED3OQAAgD8AAIA/zUQTOx9F3LlTXFw8Ly17tZoINbsFEoa0AACAPwAAgD9zo4S9Chc2uY35kDm8o8Ex5j3Bu4JJrrgAAIA/AACAPxq4XT0U/oS6oN3UuuZvurW3iQy72Dv3OQAAgD8AAIA/muG0u0h7kLrmmfs7NqUMNgMQMbr65AI1AACAPwAAgD/myRa99uwous3vqLrT2Y21ml/bN8aiwzkAAIA/AACAPwB+C7wpiEC6sF+NOXyWmjQYIKE6/wenuAAAgD8AAIA/ALsgvrZsLrwewYI7NsXWOcawkD0uZaq6AACAPwAAgD9ARZ69jXu7P3NYkL6iZXi+SNlrvFoyj70AAAAAAAAAABp5vj1Ii6G6bvBbuPecYLNHey26vnl8NwAAgD8AAIA/TagKPmpPjD6B67+9/OI9vtmGMTyhcky9AAAAAAAAAAAAKaq8j4YUuoh0ZTqOgPm1o9NQu3fJh7kAAIA/AACAP5oemT3DwWq64KotPMkSpTbx+pC7oFKeNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcy1agDaGY0CUhpRSlIwBbJRN6AOMAXSUR0CIqUbVBlcydX2UKGgGaAloD0MI7BSrBuE2Y0CUhpRSlGgVTegDaBZHQIivuFJxvNx1fZQoaAZoCWgPQwjAWyBB8dBkQJSGlFKUaBVN6ANoFkdAiLYZrpJPInV9lChoBmgJaA9DCMhbrn5sRmVAlIaUUpRoFU3oA2gWR0CItvFsHjZMdX2UKGgGaAloD0MIEAUzpuAYY0CUhpRSlGgVTegDaBZHQIi7+K4x1xN1fZQoaAZoCWgPQwhH6Gfq9f1hQJSGlFKUaBVN6ANoFkdAiLztoSL613V9lChoBmgJaA9DCDBinwCKjmJAlIaUUpRoFU3oA2gWR0CIyZIHTqjadX2UKGgGaAloD0MIisqGNRVFb0CUhpRSlGgVTScBaBZHQIjJtlTWGyp1fZQoaAZoCWgPQwggYoOFE7BmQJSGlFKUaBVN6ANoFkdAiMqifHxSYXV9lChoBmgJaA9DCGoWaHfI3mVAlIaUUpRoFU3oA2gWR0CI1a5qdpZfdX2UKGgGaAloD0MIgdHlzWHbZkCUhpRSlGgVTegDaBZHQIjWBOFg2Ih1fZQoaAZoCWgPQwhqaW6FMLBlQJSGlFKUaBVN6ANoFkdAiNepvP1L8XV9lChoBmgJaA9DCOvFUE50mnFAlIaUUpRoFU0IA2gWR0CI900DU3GXdX2UKGgGaAloD0MIKc5RR0elZ0CUhpRSlGgVTegDaBZHQIj5jY9Pk7x1fZQoaAZoCWgPQwjFceDV8mpnQJSGlFKUaBVN6ANoFkdAiPnAYxcmjXV9lChoBmgJaA9DCMTqjzAMZmVAlIaUUpRoFU3oA2gWR0CI/XqEeyRkdX2UKGgGaAloD0MIyenr+Zq9Y0CUhpRSlGgVTegDaBZHQIj/8FW4mTl1fZQoaAZoCWgPQwi4yD1d3bJjQJSGlFKUaBVN6ANoFkdAiQSu8kD6nHV9lChoBmgJaA9DCANf0a1XpXJAlIaUUpRoFU0bAWgWR0CJDXffoA4odX2UKGgGaAloD0MIvFmD99UQZ0CUhpRSlGgVTegDaBZHQIkOjSb6P811fZQoaAZoCWgPQwiaP6a16aVoQJSGlFKUaBVN6ANoFkdAiRfRrzoUz3V9lChoBmgJaA9DCP4KmSuDhWBAlIaUUpRoFU3oA2gWR0CJHgoVmBe5dX2UKGgGaAloD0MI9+l4zMDlY0CUhpRSlGgVTegDaBZHQIkfT9AHE/B1fZQoaAZoCWgPQwjkgjP4e2BmQJSGlFKUaBVN6ANoFkdAiS1n+hoM8nV9lChoBmgJaA9DCDB/hcwVamRAlIaUUpRoFU3oA2gWR0CJLZCfHxSYdX2UKGgGaAloD0MIPfNy2H2WY0CUhpRSlGgVTegDaBZHQIkug3BHkLh1fZQoaAZoCWgPQwjTpBR0e+BSQJSGlFKUaBVL72gWR0CJMKQ0XP7fdX2UKGgGaAloD0MI7PZZZSZdZECUhpRSlGgVTegDaBZHQIk5ebqhUR51fZQoaAZoCWgPQwio5QeucgVlQJSGlFKUaBVN6ANoFkdAiTnOFpPAPHV9lChoBmgJaA9DCP4o6sw9cl9AlIaUUpRoFU3oA2gWR0CJO11e0G/vdX2UKGgGaAloD0MISDSBIpYVY0CUhpRSlGgVTegDaBZHQIlapBeHBUJ1fZQoaAZoCWgPQwgIym37njZkQJSGlFKUaBVN6ANoFkdAiVzGgam4zHV9lChoBmgJaA9DCKzj+KFSM2dAlIaUUpRoFU3oA2gWR0CJYF+T/yXldX2UKGgGaAloD0MI4C77dSf4YECUhpRSlGgVTegDaBZHQIliuOAAhjh1fZQoaAZoCWgPQwh7Z7RVSbA+QJSGlFKUaBVL6GgWR0CJY2sFMZgpdX2UKGgGaAloD0MITfc6qa+SYkCUhpRSlGgVTegDaBZHQIlnFQbdadN1fZQoaAZoCWgPQwgdHVcju0lkQJSGlFKUaBVN6ANoFkdAiW67Llmvn3V9lChoBmgJaA9DCB6Jl6dzY2FAlIaUUpRoFU3oA2gWR0CJb7Whh6SldX2UKGgGaAloD0MILQjlfRzJVECUhpRSlGgVS9ZoFkdAiXGDXnQpnnV9lChoBmgJaA9DCPlp3JsfaXJAlIaUUpRoFU0kAWgWR0CJdg45tFa0dX2UKGgGaAloD0MI5Lz/jxNAY0CUhpRSlGgVTegDaBZHQIl3bqW1MM91fZQoaAZoCWgPQwjsUbgeBRBoQJSGlFKUaBVN6ANoFkdAiXynpB5X2nV9lChoBmgJaA9DCAH5Eio4lWFAlIaUUpRoFU3oA2gWR0CJi6z+FUQ1dX2UKGgGaAloD0MIuHTMeUb6aECUhpRSlGgVTegDaBZHQImL1b1RLsd1fZQoaAZoCWgPQwhe9BWkGU5iQJSGlFKUaBVN6ANoFkdAiYzb9qDbrXV9lChoBmgJaA9DCI3TEFV4e2BAlIaUUpRoFU3oA2gWR0CJjxzcynDSdX2UKGgGaAloD0MI9bpFYKwCYUCUhpRSlGgVTegDaBZHQImYkvkBCD51fZQoaAZoCWgPQwiQos7cQ6hkQJSGlFKUaBVN6ANoFkdAiZqQhwEQoXV9lChoBmgJaA9DCC52+6wyFl9AlIaUUpRoFU3oA2gWR0CJuk1iONo8dX2UKGgGaAloD0MIoyJOJ1nlYkCUhpRSlGgVTegDaBZHQIm8kBuGbkR1fZQoaAZoCWgPQwjfMxKhkSBjQJSGlFKUaBVN6ANoFkdAicCb212JSHV9lChoBmgJaA9DCHk/br986ElAlIaUUpRoFUu/aBZHQInC56D5CWx1fZQoaAZoCWgPQwhnKsQj8U1iQJSGlFKUaBVN6ANoFkdAicgPzWf9P3V9lChoBmgJaA9DCFBxHHi1a2VAlIaUUpRoFU3oA2gWR0CJz9JkoWpIdX2UKGgGaAloD0MIouwt5XwXZECUhpRSlGgVTegDaBZHQInQyXY150N1fZQoaAZoCWgPQwgAqrhxC6RlQJSGlFKUaBVN6ANoFkdAidKNq59Vm3V9lChoBmgJaA9DCDVeukkMrGRAlIaUUpRoFU3oA2gWR0CJ1xEb5uZUdX2UKGgGaAloD0MIDrxa7kzOYkCUhpRSlGgVTegDaBZHQInYiqXF98Z1fZQoaAZoCWgPQwg83XniObNfQJSGlFKUaBVN6ANoFkdAid4Jwjt5U3V9lChoBmgJaA9DCNu+R/11RW5AlIaUUpRoFU0wA2gWR0CJ36RgZ0jkdX2UKGgGaAloD0MIVtKKbyicOUCUhpRSlGgVS+VoFkdAieDlhgE2YXV9lChoBmgJaA9DCAh3Z+02M2VAlIaUUpRoFU3oA2gWR0CJ7TsSCe3AdX2UKGgGaAloD0MIEDtT6Lz6ZkCUhpRSlGgVTegDaBZHQInuii/O+qR1fZQoaAZoCWgPQwhUH0jeOYNhQJSGlFKUaBVN6ANoFkdAifEZ6+nIhnV9lChoBmgJaA9DCIL+Qo+Yc2ZAlIaUUpRoFU3oA2gWR0CJ/OXb/Ot5dX2UKGgGaAloD0MI6pJxjGRRY0CUhpRSlGgVTegDaBZHQIoEiydFvyd1fZQoaAZoCWgPQwjmsPuO4RJhQJSGlFKUaBVN6ANoFkdAiiMzbFjur3V9lChoBmgJaA9DCOqT3GETpWBAlIaUUpRoFU3oA2gWR0CKKHMlkYoBdX2UKGgGaAloD0MIGhcOhGRYY0CUhpRSlGgVTegDaBZHQIorQ2qDK5l1fZQoaAZoCWgPQwgK9Ik8Se9lQJSGlFKUaBVN6ANoFkdAijEadtl7MXV9lChoBmgJaA9DCPG9v0H79mJAlIaUUpRoFU3oA2gWR0CKOgfCAMDwdX2UKGgGaAloD0MIPzc0ZSfAY0CUhpRSlGgVTegDaBZHQIo9Lonrpq11fZQoaAZoCWgPQwj5FADjmXhmQJSGlFKUaBVN6ANoFkdAikJT37DVIHV9lChoBmgJaA9DCNU+HY+Z6mNAlIaUUpRoFU3oA2gWR0CKQ7/Ot4iYdX2UKGgGaAloD0MIduEH59ONYUCUhpRSlGgVTegDaBZHQIpJCjvd/KB1fZQoaAZoCWgPQwgK9Ik8yWVmQJSGlFKUaBVN6ANoFkdAikqP0h/y5XV9lChoBmgJaA9DCBGrP8KwPGJAlIaUUpRoFU3oA2gWR0CKS7aIvalDdX2UKGgGaAloD0MIXyf1ZWkrNkCUhpRSlGgVS+9oFkdAilHJR4yGjHV9lChoBmgJaA9DCJKU9DC0EGFAlIaUUpRoFU3oA2gWR0CKVaYxcmjTdX2UKGgGaAloD0MIhJohVRT4Y0CUhpRSlGgVTegDaBZHQIpWmafBeol1fZQoaAZoCWgPQwg0nZ0Mjh9iQJSGlFKUaBVN6ANoFkdAiliAz544ZXV9lChoBmgJaA9DCL1xUph3Q2dAlIaUUpRoFU3oA2gWR0CKYIw/xDsudX2UKGgGaAloD0MIu0VgrG8WZkCUhpRSlGgVTegDaBZHQIpmdCu2ZzB1fZQoaAZoCWgPQwgF/YUeMexfQJSGlFKUaBVN6ANoFkdAimjCcG1QZXV9lChoBmgJaA9DCCzX22YqB2RAlIaUUpRoFU3oA2gWR0CKiUojOcDsdX2UKGgGaAloD0MIWAIpset7YECUhpRSlGgVTegDaBZHQIqLpCMPz4F1fZQoaAZoCWgPQwjdek0PCtJHQJSGlFKUaBVLx2gWR0CKkE7cwg1WdX2UKGgGaAloD0MIYoTwaGMJYkCUhpRSlGgVTegDaBZHQIqQwG2TgVJ1fZQoaAZoCWgPQwhtcvikExlmQJSGlFKUaBVN6ANoFkdAiph4etCAtnV9lChoBmgJaA9DCN52obnO2mNAlIaUUpRoFU3oA2gWR0CKmzLJ0W/KdX2UKGgGaAloD0MI4nMn2H/PYUCUhpRSlGgVTegDaBZHQIqg/HWBjF11fZQoaAZoCWgPQwg4Z0Rpb1FdQJSGlFKUaBVN6ANoFkdAiqZhLf1pTXV9lChoBmgJaA9DCJAwDFhy5WRAlIaUUpRoFU3oA2gWR0CKp++Yc/+sdX2UKGgGaAloD0MIfT81XroGZUCUhpRSlGgVTegDaBZHQIqpNg4Otnx1fZQoaAZoCWgPQwjOFhBaD1NiQJSGlFKUaBVN6ANoFkdAiq+ydFvyb3V9lChoBmgJaA9DCDI+zF420mdAlIaUUpRoFU3oA2gWR0CKs2it7rs0dX2UKGgGaAloD0MIks8rnvr2YkCUhpRSlGgVTegDaBZHQIq0Y04zabp1fZQoaAZoCWgPQwim7V9Z6Q9kQJSGlFKUaBVN6ANoFkdAirZBmGucMHV9lChoBmgJaA9DCCkhWFUvJ2VAlIaUUpRoFU3oA2gWR0CKvnF0gbIcdX2UKGgGaAloD0MIuaZAZmfMZ0CUhpRSlGgVTegDaBZHQIrG0rTYukF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 256, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2Vybi9hbmFjb25kYTMvZW52cy9kZWVwcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2Vybi9hbmFjb25kYTMvZW52cy9kZWVwcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-56-generic-x86_64-with-glibc2.17 #62~20.04.1-Ubuntu SMP Tue Nov 22 21:24:20 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu117", "GPU Enabled": "True", "Numpy": "1.23.5", "Gym": "0.21.0"}}
ppo_1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c447b303d97fd6730ecaf2a8d4bac35e8e347778366cb630a49811669af3874
3
+ size 147348
ppo_1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo_1/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9a88164430>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9a881644c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9a88164550>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9a881645e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9a88164670>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9a88164700>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9a88164790>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9a88164820>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9a881648b0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9a88164940>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9a881649d0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f9a88160540>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000.0,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670937511651506932,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2Vybi9hbmFjb25kYTMvZW52cy9kZWVwcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2Vybi9hbmFjb25kYTMvZW52cy9kZWVwcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA11wD0pUCS6dRtYuNOcPbYyetu6Hd59NwAAgD8AAIA/Gp8lPdcTNblRfcO5y/p7NciH2jqFIeU4AACAPwAAgD+agxa89nBlutA4kTntI7Y0A6r8Ouv+qLgAAIA/AACAP2ZwdrwpDES6A7zUui/0ALY9/xc7mED3OQAAgD8AAIA/zUQTOx9F3LlTXFw8Ly17tZoINbsFEoa0AACAPwAAgD9zo4S9Chc2uY35kDm8o8Ex5j3Bu4JJrrgAAIA/AACAPxq4XT0U/oS6oN3UuuZvurW3iQy72Dv3OQAAgD8AAIA/muG0u0h7kLrmmfs7NqUMNgMQMbr65AI1AACAPwAAgD/myRa99uwous3vqLrT2Y21ml/bN8aiwzkAAIA/AACAPwB+C7wpiEC6sF+NOXyWmjQYIKE6/wenuAAAgD8AAIA/ALsgvrZsLrwewYI7NsXWOcawkD0uZaq6AACAPwAAgD9ARZ69jXu7P3NYkL6iZXi+SNlrvFoyj70AAAAAAAAAABp5vj1Ii6G6bvBbuPecYLNHey26vnl8NwAAgD8AAIA/TagKPmpPjD6B67+9/OI9vtmGMTyhcky9AAAAAAAAAAAAKaq8j4YUuoh0ZTqOgPm1o9NQu3fJh7kAAIA/AACAP5oemT3DwWq64KotPMkSpTbx+pC7oFKeNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcy1agDaGY0CUhpRSlIwBbJRN6AOMAXSUR0CIqUbVBlcydX2UKGgGaAloD0MI7BSrBuE2Y0CUhpRSlGgVTegDaBZHQIivuFJxvNx1fZQoaAZoCWgPQwjAWyBB8dBkQJSGlFKUaBVN6ANoFkdAiLYZrpJPInV9lChoBmgJaA9DCMhbrn5sRmVAlIaUUpRoFU3oA2gWR0CItvFsHjZMdX2UKGgGaAloD0MIEAUzpuAYY0CUhpRSlGgVTegDaBZHQIi7+K4x1xN1fZQoaAZoCWgPQwhH6Gfq9f1hQJSGlFKUaBVN6ANoFkdAiLztoSL613V9lChoBmgJaA9DCDBinwCKjmJAlIaUUpRoFU3oA2gWR0CIyZIHTqjadX2UKGgGaAloD0MIisqGNRVFb0CUhpRSlGgVTScBaBZHQIjJtlTWGyp1fZQoaAZoCWgPQwggYoOFE7BmQJSGlFKUaBVN6ANoFkdAiMqifHxSYXV9lChoBmgJaA9DCGoWaHfI3mVAlIaUUpRoFU3oA2gWR0CI1a5qdpZfdX2UKGgGaAloD0MIgdHlzWHbZkCUhpRSlGgVTegDaBZHQIjWBOFg2Ih1fZQoaAZoCWgPQwhqaW6FMLBlQJSGlFKUaBVN6ANoFkdAiNepvP1L8XV9lChoBmgJaA9DCOvFUE50mnFAlIaUUpRoFU0IA2gWR0CI900DU3GXdX2UKGgGaAloD0MIKc5RR0elZ0CUhpRSlGgVTegDaBZHQIj5jY9Pk7x1fZQoaAZoCWgPQwjFceDV8mpnQJSGlFKUaBVN6ANoFkdAiPnAYxcmjXV9lChoBmgJaA9DCMTqjzAMZmVAlIaUUpRoFU3oA2gWR0CI/XqEeyRkdX2UKGgGaAloD0MIyenr+Zq9Y0CUhpRSlGgVTegDaBZHQIj/8FW4mTl1fZQoaAZoCWgPQwi4yD1d3bJjQJSGlFKUaBVN6ANoFkdAiQSu8kD6nHV9lChoBmgJaA9DCANf0a1XpXJAlIaUUpRoFU0bAWgWR0CJDXffoA4odX2UKGgGaAloD0MIvFmD99UQZ0CUhpRSlGgVTegDaBZHQIkOjSb6P811fZQoaAZoCWgPQwiaP6a16aVoQJSGlFKUaBVN6ANoFkdAiRfRrzoUz3V9lChoBmgJaA9DCP4KmSuDhWBAlIaUUpRoFU3oA2gWR0CJHgoVmBe5dX2UKGgGaAloD0MI9+l4zMDlY0CUhpRSlGgVTegDaBZHQIkfT9AHE/B1fZQoaAZoCWgPQwjkgjP4e2BmQJSGlFKUaBVN6ANoFkdAiS1n+hoM8nV9lChoBmgJaA9DCDB/hcwVamRAlIaUUpRoFU3oA2gWR0CJLZCfHxSYdX2UKGgGaAloD0MIPfNy2H2WY0CUhpRSlGgVTegDaBZHQIkug3BHkLh1fZQoaAZoCWgPQwjTpBR0e+BSQJSGlFKUaBVL72gWR0CJMKQ0XP7fdX2UKGgGaAloD0MI7PZZZSZdZECUhpRSlGgVTegDaBZHQIk5ebqhUR51fZQoaAZoCWgPQwio5QeucgVlQJSGlFKUaBVN6ANoFkdAiTnOFpPAPHV9lChoBmgJaA9DCP4o6sw9cl9AlIaUUpRoFU3oA2gWR0CJO11e0G/vdX2UKGgGaAloD0MISDSBIpYVY0CUhpRSlGgVTegDaBZHQIlapBeHBUJ1fZQoaAZoCWgPQwgIym37njZkQJSGlFKUaBVN6ANoFkdAiVzGgam4zHV9lChoBmgJaA9DCKzj+KFSM2dAlIaUUpRoFU3oA2gWR0CJYF+T/yXldX2UKGgGaAloD0MI4C77dSf4YECUhpRSlGgVTegDaBZHQIliuOAAhjh1fZQoaAZoCWgPQwh7Z7RVSbA+QJSGlFKUaBVL6GgWR0CJY2sFMZgpdX2UKGgGaAloD0MITfc6qa+SYkCUhpRSlGgVTegDaBZHQIlnFQbdadN1fZQoaAZoCWgPQwgdHVcju0lkQJSGlFKUaBVN6ANoFkdAiW67Llmvn3V9lChoBmgJaA9DCB6Jl6dzY2FAlIaUUpRoFU3oA2gWR0CJb7Whh6SldX2UKGgGaAloD0MILQjlfRzJVECUhpRSlGgVS9ZoFkdAiXGDXnQpnnV9lChoBmgJaA9DCPlp3JsfaXJAlIaUUpRoFU0kAWgWR0CJdg45tFa0dX2UKGgGaAloD0MI5Lz/jxNAY0CUhpRSlGgVTegDaBZHQIl3bqW1MM91fZQoaAZoCWgPQwjsUbgeBRBoQJSGlFKUaBVN6ANoFkdAiXynpB5X2nV9lChoBmgJaA9DCAH5Eio4lWFAlIaUUpRoFU3oA2gWR0CJi6z+FUQ1dX2UKGgGaAloD0MIuHTMeUb6aECUhpRSlGgVTegDaBZHQImL1b1RLsd1fZQoaAZoCWgPQwhe9BWkGU5iQJSGlFKUaBVN6ANoFkdAiYzb9qDbrXV9lChoBmgJaA9DCI3TEFV4e2BAlIaUUpRoFU3oA2gWR0CJjxzcynDSdX2UKGgGaAloD0MI9bpFYKwCYUCUhpRSlGgVTegDaBZHQImYkvkBCD51fZQoaAZoCWgPQwiQos7cQ6hkQJSGlFKUaBVN6ANoFkdAiZqQhwEQoXV9lChoBmgJaA9DCC52+6wyFl9AlIaUUpRoFU3oA2gWR0CJuk1iONo8dX2UKGgGaAloD0MIoyJOJ1nlYkCUhpRSlGgVTegDaBZHQIm8kBuGbkR1fZQoaAZoCWgPQwjfMxKhkSBjQJSGlFKUaBVN6ANoFkdAicCb212JSHV9lChoBmgJaA9DCHk/br986ElAlIaUUpRoFUu/aBZHQInC56D5CWx1fZQoaAZoCWgPQwhnKsQj8U1iQJSGlFKUaBVN6ANoFkdAicgPzWf9P3V9lChoBmgJaA9DCFBxHHi1a2VAlIaUUpRoFU3oA2gWR0CJz9JkoWpIdX2UKGgGaAloD0MIouwt5XwXZECUhpRSlGgVTegDaBZHQInQyXY150N1fZQoaAZoCWgPQwgAqrhxC6RlQJSGlFKUaBVN6ANoFkdAidKNq59Vm3V9lChoBmgJaA9DCDVeukkMrGRAlIaUUpRoFU3oA2gWR0CJ1xEb5uZUdX2UKGgGaAloD0MIDrxa7kzOYkCUhpRSlGgVTegDaBZHQInYiqXF98Z1fZQoaAZoCWgPQwg83XniObNfQJSGlFKUaBVN6ANoFkdAid4Jwjt5U3V9lChoBmgJaA9DCNu+R/11RW5AlIaUUpRoFU0wA2gWR0CJ36RgZ0jkdX2UKGgGaAloD0MIVtKKbyicOUCUhpRSlGgVS+VoFkdAieDlhgE2YXV9lChoBmgJaA9DCAh3Z+02M2VAlIaUUpRoFU3oA2gWR0CJ7TsSCe3AdX2UKGgGaAloD0MIEDtT6Lz6ZkCUhpRSlGgVTegDaBZHQInuii/O+qR1fZQoaAZoCWgPQwhUH0jeOYNhQJSGlFKUaBVN6ANoFkdAifEZ6+nIhnV9lChoBmgJaA9DCIL+Qo+Yc2ZAlIaUUpRoFU3oA2gWR0CJ/OXb/Ot5dX2UKGgGaAloD0MI6pJxjGRRY0CUhpRSlGgVTegDaBZHQIoEiydFvyd1fZQoaAZoCWgPQwjmsPuO4RJhQJSGlFKUaBVN6ANoFkdAiiMzbFjur3V9lChoBmgJaA9DCOqT3GETpWBAlIaUUpRoFU3oA2gWR0CKKHMlkYoBdX2UKGgGaAloD0MIGhcOhGRYY0CUhpRSlGgVTegDaBZHQIorQ2qDK5l1fZQoaAZoCWgPQwgK9Ik8Se9lQJSGlFKUaBVN6ANoFkdAijEadtl7MXV9lChoBmgJaA9DCPG9v0H79mJAlIaUUpRoFU3oA2gWR0CKOgfCAMDwdX2UKGgGaAloD0MIPzc0ZSfAY0CUhpRSlGgVTegDaBZHQIo9Lonrpq11fZQoaAZoCWgPQwj5FADjmXhmQJSGlFKUaBVN6ANoFkdAikJT37DVIHV9lChoBmgJaA9DCNU+HY+Z6mNAlIaUUpRoFU3oA2gWR0CKQ7/Ot4iYdX2UKGgGaAloD0MIduEH59ONYUCUhpRSlGgVTegDaBZHQIpJCjvd/KB1fZQoaAZoCWgPQwgK9Ik8yWVmQJSGlFKUaBVN6ANoFkdAikqP0h/y5XV9lChoBmgJaA9DCBGrP8KwPGJAlIaUUpRoFU3oA2gWR0CKS7aIvalDdX2UKGgGaAloD0MIXyf1ZWkrNkCUhpRSlGgVS+9oFkdAilHJR4yGjHV9lChoBmgJaA9DCJKU9DC0EGFAlIaUUpRoFU3oA2gWR0CKVaYxcmjTdX2UKGgGaAloD0MIhJohVRT4Y0CUhpRSlGgVTegDaBZHQIpWmafBeol1fZQoaAZoCWgPQwg0nZ0Mjh9iQJSGlFKUaBVN6ANoFkdAiliAz544ZXV9lChoBmgJaA9DCL1xUph3Q2dAlIaUUpRoFU3oA2gWR0CKYIw/xDsudX2UKGgGaAloD0MIu0VgrG8WZkCUhpRSlGgVTegDaBZHQIpmdCu2ZzB1fZQoaAZoCWgPQwgF/YUeMexfQJSGlFKUaBVN6ANoFkdAimjCcG1QZXV9lChoBmgJaA9DCCzX22YqB2RAlIaUUpRoFU3oA2gWR0CKiUojOcDsdX2UKGgGaAloD0MIWAIpset7YECUhpRSlGgVTegDaBZHQIqLpCMPz4F1fZQoaAZoCWgPQwjdek0PCtJHQJSGlFKUaBVLx2gWR0CKkE7cwg1WdX2UKGgGaAloD0MIYoTwaGMJYkCUhpRSlGgVTegDaBZHQIqQwG2TgVJ1fZQoaAZoCWgPQwhtcvikExlmQJSGlFKUaBVN6ANoFkdAiph4etCAtnV9lChoBmgJaA9DCN52obnO2mNAlIaUUpRoFU3oA2gWR0CKmzLJ0W/KdX2UKGgGaAloD0MI4nMn2H/PYUCUhpRSlGgVTegDaBZHQIqg/HWBjF11fZQoaAZoCWgPQwg4Z0Rpb1FdQJSGlFKUaBVN6ANoFkdAiqZhLf1pTXV9lChoBmgJaA9DCJAwDFhy5WRAlIaUUpRoFU3oA2gWR0CKp++Yc/+sdX2UKGgGaAloD0MIfT81XroGZUCUhpRSlGgVTegDaBZHQIqpNg4Otnx1fZQoaAZoCWgPQwjOFhBaD1NiQJSGlFKUaBVN6ANoFkdAiq+ydFvyb3V9lChoBmgJaA9DCDI+zF420mdAlIaUUpRoFU3oA2gWR0CKs2it7rs0dX2UKGgGaAloD0MIks8rnvr2YkCUhpRSlGgVTegDaBZHQIq0Y04zabp1fZQoaAZoCWgPQwim7V9Z6Q9kQJSGlFKUaBVN6ANoFkdAirZBmGucMHV9lChoBmgJaA9DCCkhWFUvJ2VAlIaUUpRoFU3oA2gWR0CKvnF0gbIcdX2UKGgGaAloD0MIuaZAZmfMZ0CUhpRSlGgVTegDaBZHQIrG0rTYukF1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 256,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWV7QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXS9ob21lL2Vybi9hbmFjb25kYTMvZW52cy9kZWVwcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMXS9ob21lL2Vybi9hbmFjb25kYTMvZW52cy9kZWVwcmwvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo_1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:213d0fa4a4cb0500cdc10f6b1a6c424f313dc6b27d06359de8b7f4768682240b
3
+ size 87929
ppo_1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abb48da0429111ca949e7d5a2109d75387bd068c40c6793072508322860fa37a
3
+ size 43201
ppo_1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo_1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.15.0-56-generic-x86_64-with-glibc2.17 #62~20.04.1-Ubuntu SMP Tue Nov 22 21:24:20 UTC 2022
2
+ Python: 3.8.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu117
5
+ GPU Enabled: True
6
+ Numpy: 1.23.5
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (222 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 256.586800589232, "std_reward": 22.261223812948323, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-13T21:43:11.741165"}