Initial commit
Browse files- .gitattributes +1 -0
- README.md +79 -0
- args.yml +81 -0
- config.yml +25 -0
- env_kwargs.yml +1 -0
- results.json +1 -0
- sac-seals-Swimmer-v1.zip +3 -0
- sac-seals-Swimmer-v1/_stable_baselines3_version +1 -0
- sac-seals-Swimmer-v1/actor.optimizer.pth +3 -0
- sac-seals-Swimmer-v1/critic.optimizer.pth +3 -0
- sac-seals-Swimmer-v1/data +129 -0
- sac-seals-Swimmer-v1/ent_coef_optimizer.pth +3 -0
- sac-seals-Swimmer-v1/policy.pth +3 -0
- sac-seals-Swimmer-v1/pytorch_variables.pth +3 -0
- sac-seals-Swimmer-v1/system_info.txt +9 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- seals/Swimmer-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: SAC
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: seals/Swimmer-v1
|
16 |
+
type: seals/Swimmer-v1
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 28.90 +/- 1.67
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **SAC** Agent playing **seals/Swimmer-v1**
|
25 |
+
This is a trained model of a **SAC** agent playing **seals/Swimmer-v1**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo sac --env seals/Swimmer-v1 -orga ernestum -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo sac --env seals/Swimmer-v1 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo sac --env seals/Swimmer-v1 -orga ernestum -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo sac --env seals/Swimmer-v1 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo sac --env seals/Swimmer-v1 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo sac --env seals/Swimmer-v1 -f logs/ -orga ernestum
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 128),
|
66 |
+
('buffer_size', 100000),
|
67 |
+
('gamma', 0.995),
|
68 |
+
('learning_rate', 0.00039981805535514633),
|
69 |
+
('learning_starts', 1000),
|
70 |
+
('n_timesteps', 1000000.0),
|
71 |
+
('policy', 'MlpPolicy'),
|
72 |
+
('policy_kwargs',
|
73 |
+
{'log_std_init': -2.689958330139309,
|
74 |
+
'net_arch': [400, 300],
|
75 |
+
'use_sde': False}),
|
76 |
+
('tau', 0.01),
|
77 |
+
('train_freq', 256),
|
78 |
+
('normalize', False)])
|
79 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- sac
|
4 |
+
- - conf_file
|
5 |
+
- hyperparams/python/sac.py
|
6 |
+
- - device
|
7 |
+
- cpu
|
8 |
+
- - env
|
9 |
+
- seals/Swimmer-v1
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 0
|
14 |
+
- - eval_freq
|
15 |
+
- 25000
|
16 |
+
- - gym_packages
|
17 |
+
- - seals
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- gymnasium_models
|
22 |
+
- - log_interval
|
23 |
+
- -1
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 1
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- -1
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- 4
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- false
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- -1
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 3450306094
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- ''
|
64 |
+
- - track
|
65 |
+
- false
|
66 |
+
- - trained_agent
|
67 |
+
- ''
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- dummy
|
74 |
+
- - verbose
|
75 |
+
- 1
|
76 |
+
- - wandb_entity
|
77 |
+
- null
|
78 |
+
- - wandb_project_name
|
79 |
+
- sb3
|
80 |
+
- - wandb_tags
|
81 |
+
- []
|
config.yml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 128
|
4 |
+
- - buffer_size
|
5 |
+
- 100000
|
6 |
+
- - gamma
|
7 |
+
- 0.995
|
8 |
+
- - learning_rate
|
9 |
+
- 0.00039981805535514633
|
10 |
+
- - learning_starts
|
11 |
+
- 1000
|
12 |
+
- - n_timesteps
|
13 |
+
- 1000000.0
|
14 |
+
- - policy
|
15 |
+
- MlpPolicy
|
16 |
+
- - policy_kwargs
|
17 |
+
- log_std_init: -2.689958330139309
|
18 |
+
net_arch:
|
19 |
+
- 400
|
20 |
+
- 300
|
21 |
+
use_sde: false
|
22 |
+
- - tau
|
23 |
+
- 0.01
|
24 |
+
- - train_freq
|
25 |
+
- 256
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 28.9023299, "std_reward": 1.6711585563886182, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-15T13:55:41.749317"}
|
sac-seals-Swimmer-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8c995510e331e9b3b1660f1e4df2df5e89512b21af0c698b852460bceb9d07e6
|
3 |
+
size 5580789
|
sac-seals-Swimmer-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
sac-seals-Swimmer-v1/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:716c0ebc3d6687f9cc18cac17b2f11d175a53909dcad32e42ed8d6daf852c65c
|
3 |
+
size 1013341
|
sac-seals-Swimmer-v1/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:473b30242d77fbaa85e3797c9de06d5e0bb285901df466f8f69671dcd0450354
|
3 |
+
size 2021689
|
sac-seals-Swimmer-v1/data
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.sac.policies",
|
6 |
+
"__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}",
|
7 |
+
"__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
8 |
+
"__init__": "<function SACPolicy.__init__ at 0x7f739ad838b0>",
|
9 |
+
"_build": "<function SACPolicy._build at 0x7f739ad83940>",
|
10 |
+
"_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7f739ad839d0>",
|
11 |
+
"reset_noise": "<function SACPolicy.reset_noise at 0x7f739ad83a60>",
|
12 |
+
"make_actor": "<function SACPolicy.make_actor at 0x7f739ad83af0>",
|
13 |
+
"make_critic": "<function SACPolicy.make_critic at 0x7f739ad83b80>",
|
14 |
+
"forward": "<function SACPolicy.forward at 0x7f739ad83c10>",
|
15 |
+
"_predict": "<function SACPolicy._predict at 0x7f739ad83ca0>",
|
16 |
+
"set_training_mode": "<function SACPolicy.set_training_mode at 0x7f739ad83d30>",
|
17 |
+
"__abstractmethods__": "frozenset()",
|
18 |
+
"_abc_impl": "<_abc_data object at 0x7f739ad84870>"
|
19 |
+
},
|
20 |
+
"verbose": 1,
|
21 |
+
"policy_kwargs": {
|
22 |
+
"net_arch": [
|
23 |
+
400,
|
24 |
+
300
|
25 |
+
],
|
26 |
+
"log_std_init": -2.689958330139309,
|
27 |
+
"use_sde": false
|
28 |
+
},
|
29 |
+
"num_timesteps": 1000192,
|
30 |
+
"_total_timesteps": 1000000,
|
31 |
+
"_num_timesteps_at_start": 0,
|
32 |
+
"seed": 0,
|
33 |
+
"action_noise": null,
|
34 |
+
"start_time": 1694771152591166862,
|
35 |
+
"learning_rate": {
|
36 |
+
":type:": "<class 'function'>",
|
37 |
+
":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzoz1Xjblu+FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
38 |
+
},
|
39 |
+
"tensorboard_log": null,
|
40 |
+
"_last_obs": null,
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'numpy.ndarray'>",
|
47 |
+
":serialized:": "gAWVxQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZQAAAAAAAAAPglUX4fOfQ/v4z3FTJ65D+rQaBeSPMCwOihJP/B7/o/fXe6Mvzt+T8sg72TRe3mv+ofXhCAPtY/ZeKV/L397z/4R/DzoW34vyPyUOZOavI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwqGlIwBQ5R0lFKULg=="
|
48 |
+
},
|
49 |
+
"_episode_num": 1000,
|
50 |
+
"use_sde": false,
|
51 |
+
"sde_sample_freq": -1,
|
52 |
+
"_current_progress_remaining": -0.00019199999999996997,
|
53 |
+
"_stats_window_size": 100,
|
54 |
+
"ep_info_buffer": {
|
55 |
+
":type:": "<class 'collections.deque'>",
|
56 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDtbJzT4L1GMAWyUTegDjAF0lEdAfw/sJpnHvXV9lChoBkdAPhyLVFx4p2gHTegDaAhHQH8YmJ3xFy91fZQoaAZHQDcOMtK7I1doB03oA2gIR0B/IU73fyf+dX2UKGgGR0A4HUmD15B1aAdN6ANoCEdAfyoGEPDpDHV9lChoBkdAO+Hu3MINVmgHTegDaAhHQH8yr3TNMXd1fZQoaAZHQDm/BYV6/qRoB03oA2gIR0B/O1cNYr8SdX2UKGgGR0A43fA9FF2FaAdN6ANoCEdAf0PcmjTKDHV9lChoBkdAOr3A6+36RGgHTegDaAhHQH9Mh/ZuhsZ1fZQoaAZHQD2MDDCP6sRoB03oA2gIR0B/VS4YrJ8wdX2UKGgGR0A4F3WnTAnEaAdN6ANoCEdAf13GRmseXHV9lChoBkdAPbGWMS9M9WgHTegDaAhHQH9maef7Jnx1fZQoaAZHQDghCOWBz3hoB03oA2gIR0B/bwx+KCQLdX2UKGgGR0A8zVrylN1yaAdN6ANoCEdAf3etqpLmIXV9lChoBkdAOtnA6+36RGgHTegDaAhHQH+AROgxrSF1fZQoaAZHQDv2VQhwEQpoB03oA2gIR0B/iO8AaNuMdX2UKGgGR0A484dZJTVEaAdN6ANoCEdAf5GxA0Kqn3V9lChoBkdAOl0tVaOghGgHTegDaAhHQH+adDQZ4wB1fZQoaAZHQDrxylvZRKpoB03oA2gIR0B/owIu5BkadX2UKGgGR0A6avsqril0aAdN6ANoCEdAf6vAIIF/x3V9lChoBkdAQKmDYh+vyWgHTegDaAhHQH+0cRUWEbp1fZQoaAZHQDpSAskIHC5oB03oA2gIR0B/vTwH7gsLdX2UKGgGR0A0yTmW+oLoaAdN6ANoCEdAf8YJdjXnQ3V9lChoBkdAOpADJU5uImgHTegDaAhHQH/OxvrGBFx1fZQoaAZHQDtdhlUZNwloB03oA2gIR0B/15Enb7CSdX2UKGgGR0A73bb1yvLYaAdN6ANoCEdAf+BZR8+ianV9lChoBkdAOTzin5zo2WgHTegDaAhHQH/pHJ5mh/R1fZQoaAZHQDn8Rbr1M/RoB03oA2gIR0B/8dWxQizLdX2UKGgGR0A6z7gbZOBUaAdN6ANoCEdAf/p1e0G/vnV9lChoBkdAO6VMqSX+l2gHTegDaAhHQIABk25xzaN1fZQoaAZHQDls8+zMRpVoB03oA2gIR0CABeSpR4yHdX2UKGgGR0A5ePRArxy5aAdN6ANoCEdAgAoz37DVIHV9lChoBkdAOXNUfgaWHGgHTegDaAhHQIAOjEpAlfJ1fZQoaAZHQDj+MUAT7EZoB03oA2gIR0CAEt2JSBK+dX2UKGgGR0A3j0uDjBEbaAdN6ANoCEdAgBc2gOBlMHV9lChoBkdAOsRwZOzpo2gHTegDaAhHQIAbpFd9lVd1fZQoaAZHQDkmbI91U2loB03oA2gIR0CAIAzXSSeRdX2UKGgGR0A9m1rqMWGiaAdN6ANoCEdAgCRyTY/Vy3V9lChoBkdAPQlrAP/aQGgHTegDaAhHQIAo2WdEsrd1fZQoaAZHQD06reZXuE5oB03oA2gIR0CALSoQWepXdX2UKGgGR0A5NvllsguAaAdN6ANoCEdAgDGRYigTRXV9lChoBkdAOLQzxgAp8WgHTegDaAhHQIA1+fTTfBN1fZQoaAZHQDkrJ+2E0zloB03oA2gIR0CAOmoBJZntdX2UKGgGR0A6a4fwI+nqaAdN6ANoCEdAgD7NrKvFFXV9lChoBkdAOLLo8p1A7mgHTegDaAhHQIBDKmEXcg11fZQoaAZHQDghgSeyzHFoB03oA2gIR0CAR3+glF+edX2UKGgGR0A5i31jAi3YaAdN6ANoCEdAgEvZqEeyRnV9lChoBkdAPvOwTufEoGgHTegDaAhHQIBQJqsU7CB1fZQoaAZHQDsRihFmWdFoB03oA2gIR0CAVH1/Ue+3dX2UKGgGR0A574fOlfqpaAdN6ANoCEdAgFjSgPEsKHV9lChoBkdAPftNnGsFMmgHTegDaAhHQIBdGCkGiYd1fZQoaAZHQDuWN1hb4ahoB03oA2gIR0CAYXM/yGzsdX2UKGgGR0A53nb7CSA6aAdN6ANoCEdAgGXfzjFQ23V9lChoBkdANveHN5dGAmgHTegDaAhHQIBqQsqaw2V1fZQoaAZHQDilEofCAMFoB03oA2gIR0CAbrgAp8WsdX2UKGgGR0A6x4gieNDMaAdN6ANoCEdAgHMi83++/XV9lChoBkdAPXBgAp8WsWgHTegDaAhHQIB3ig/Tspp1fZQoaAZHQDnsIrvsqrloB03oA2gIR0CAe/+zdDYzdX2UKGgGR0A2Vsny/bj+aAdN6ANoCEdAgIBnlOoHcHV9lChoBkdAPNlgtvn8sWgHTegDaAhHQICEwn4O+Zh1fZQoaAZHQDphisny/bloB03oA2gIR0CAiRCyhSLqdX2UKGgGR0A/lDqGDcubaAdN6ANoCEdAgI1s7MgU13V9lChoBkdAOQYdQwblzWgHTegDaAhHQICR0hRqGlB1fZQoaAZHQDmHAO8TSLJoB03oA2gIR0CAljzbN8mbdX2UKGgGR0A8AdWQwK0EaAdN6ANoCEdAgJqlCkXUIHV9lChoBkdAOQx91EE1VGgHTegDaAhHQICfEOf/WDp1fZQoaAZHQEACmois4kxoB03oA2gIR0CAo2eK8+RpdX2UKGgGR0A4vLy+Yc//aAdN6ANoCEdAgKfBciW3SnV9lChoBkdAPlTzRQaaTmgHTegDaAhHQICsEj3VTaV1fZQoaAZHQDzz7el9BrxoB03oA2gIR0CAsHH3lCC0dX2UKGgGR0A9ZoHcDbJwaAdN6ANoCEdAgLTExh2GI3V9lChoBkdAOdCVObiIcmgHTegDaAhHQIC5GcvugHx1fZQoaAZHQDkSfDk2gnNoB03oA2gIR0CAvXtdAxBWdX2UKGgGR0A7zfPomoitaAdN6ANoCEdAgMHX0PH1e3V9lChoBkdAPStIoVmBfGgHTegDaAhHQIDGMEq2Brh1fZQoaAZHQDqtQ9A5aNdoB03oA2gIR0CAypC/GlyjdX2UKGgGR0A2W2WY4Qz2aAdN6ANoCEdAgM70oa1kUnV9lChoBkdANyCJ9AooeGgHTegDaAhHQIDTVN8E3bV1fZQoaAZHQDhGP4mCyyFoB03oA2gIR0CA161AJLM+dX2UKGgGR0A4yzz3AVO9aAdN6ANoCEdAgNwFg+hXbXV9lChoBkdAOiBTOxB3R2gHTegDaAhHQIDgX6VMVUN1fZQoaAZHQDrCUD+zdDZoB03oA2gIR0CA5LsF+uvEdX2UKGgGR0A5ZagElme2aAdN6ANoCEdAgOkGlZX+2nV9lChoBkdAOr4C6pYLcGgHTegDaAhHQIDtWV9nbqR1fZQoaAZHQDzBGBnSOR1oB03oA2gIR0CA8bmvGIbgdX2UKGgGR0A99ArQPZqVaAdN6ANoCEdAgPYi8OCoTHV9lChoBkdAOKSflIVdomgHTegDaAhHQID6ke2d/ax1fZQoaAZHQDfSs/6frbBoB03oA2gIR0CA/wPiDM/ydX2UKGgGR0A+ZdwvQF9saAdN6ANoCEdAgQN4p2ECeXV9lChoBkdAPy/EKmbb12gHTegDaAhHQIEH62Dxsl91fZQoaAZHQD26lnAZbY9oB03oA2gIR0CBDE8ujASGdX2UKGgGR0A9cnO0LMLXaAdN6ANoCEdAgRC73wkPc3V9lChoBkdAOPgFxGUfP2gHTegDaAhHQIEVE7U5MlF1fZQoaAZHQDpjrLQokRloB03oA2gIR0CBGYfe1rqMdX2UKGgGR0A69pHqeK8+aAdN6ANoCEdAgR4RCpm29nV9lChoBkdAOk0Y0l7dBWgHTegDaAhHQIEicfT1CgN1fZQoaAZHQDtHe67NB4VoB03oA2gIR0CBJt/Tb349dX2UKGgGR0A+p25hBqsVaAdN6ANoCEdAgStJEH+qBHV9lChoBkdAO0Dm8ujASGgHTegDaAhHQIEvtNxlxwR1fZQoaAZHQDrJvJiiItVoB03oA2gIR0CBNCIcinpCdX2UKGgGR0A7d2Yv38GcaAdN6ANoCEdAgTiVBUrCnHVlLg=="
|
57 |
+
},
|
58 |
+
"ep_success_buffer": {
|
59 |
+
":type:": "<class 'collections.deque'>",
|
60 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
61 |
+
},
|
62 |
+
"_n_updates": 3904,
|
63 |
+
"observation_space": {
|
64 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
65 |
+
":serialized:": "gAWVLQIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCgAAAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwqFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYKAAAAAAAAAAAAAAAAAAAAAACUaBRLCoWUaBh0lFKUjAZfc2hhcGWUSwqFlIwDbG93lGgQKJZQAAAAAAAAAAAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSwqFlGgYdJRSlIwEaGlnaJRoECiWUAAAAAAAAAAAAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoCksKhZRoGHSUUpSMCGxvd19yZXBylIwELWluZpSMCWhpZ2hfcmVwcpSMA2luZpSMCl9ucF9yYW5kb22UTnViLg==",
|
66 |
+
"dtype": "float64",
|
67 |
+
"bounded_below": "[False False False False False False False False False False]",
|
68 |
+
"bounded_above": "[False False False False False False False False False False]",
|
69 |
+
"_shape": [
|
70 |
+
10
|
71 |
+
],
|
72 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
73 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf]",
|
74 |
+
"low_repr": "-inf",
|
75 |
+
"high_repr": "inf",
|
76 |
+
"_np_random": null
|
77 |
+
},
|
78 |
+
"action_space": {
|
79 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
80 |
+
":serialized:": "gAWVUAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWAgAAAAAAAAABAZRoFEsChZRoGHSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBAolggAAAAAAAAAAACAvwAAgL+UaApLAoWUaBh0lFKUjARoaWdolGgQKJYIAAAAAAAAAAAAgD8AAIA/lGgKSwKFlGgYdJRSlIwIbG93X3JlcHKUjAQtMS4wlIwJaGlnaF9yZXBylIwDMS4wlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaDGMFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaDyKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
|
81 |
+
"dtype": "float32",
|
82 |
+
"bounded_below": "[ True True]",
|
83 |
+
"bounded_above": "[ True True]",
|
84 |
+
"_shape": [
|
85 |
+
2
|
86 |
+
],
|
87 |
+
"low": "[-1. -1.]",
|
88 |
+
"high": "[1. 1.]",
|
89 |
+
"low_repr": "-1.0",
|
90 |
+
"high_repr": "1.0",
|
91 |
+
"_np_random": "Generator(PCG64)"
|
92 |
+
},
|
93 |
+
"n_envs": 1,
|
94 |
+
"buffer_size": 1,
|
95 |
+
"batch_size": 128,
|
96 |
+
"learning_starts": 1000,
|
97 |
+
"tau": 0.01,
|
98 |
+
"gamma": 0.995,
|
99 |
+
"gradient_steps": 1,
|
100 |
+
"optimize_memory_usage": false,
|
101 |
+
"replay_buffer_class": {
|
102 |
+
":type:": "<class 'abc.ABCMeta'>",
|
103 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
104 |
+
"__module__": "stable_baselines3.common.buffers",
|
105 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
106 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7f739ad4d820>",
|
107 |
+
"add": "<function ReplayBuffer.add at 0x7f739ad4d8b0>",
|
108 |
+
"sample": "<function ReplayBuffer.sample at 0x7f739ad4d940>",
|
109 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f739ad4d9d0>",
|
110 |
+
"_maybe_cast_dtype": "<staticmethod object at 0x7f739ad53580>",
|
111 |
+
"__abstractmethods__": "frozenset()",
|
112 |
+
"_abc_impl": "<_abc_data object at 0x7f739ad535a0>"
|
113 |
+
},
|
114 |
+
"replay_buffer_kwargs": {},
|
115 |
+
"train_freq": {
|
116 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
117 |
+
":serialized:": "gAWVYgAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RNAAFoAIwSVHJhaW5GcmVxdWVuY3lVbml0lJOUjARzdGVwlIWUUpSGlIGULg=="
|
118 |
+
},
|
119 |
+
"use_sde_at_warmup": false,
|
120 |
+
"target_entropy": -2.0,
|
121 |
+
"ent_coef": "auto",
|
122 |
+
"target_update_interval": 1,
|
123 |
+
"lr_schedule": {
|
124 |
+
":type:": "<class 'function'>",
|
125 |
+
":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzoz1Xjblu+FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
126 |
+
},
|
127 |
+
"batch_norm_stats": [],
|
128 |
+
"batch_norm_stats_target": []
|
129 |
+
}
|
sac-seals-Swimmer-v1/ent_coef_optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0dce96ec0543c74863ec1698452dd9a3664c37427a8b0d828bd070cc2752c509
|
3 |
+
size 1507
|
sac-seals-Swimmer-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a05ebd00d8f98d1a432cb953b2faabec55dfcd12dbb82f170d138bbda0bfd1b
|
3 |
+
size 2526661
|
sac-seals-Swimmer-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f59fff7ad49cf0265cde03fb19a50f58219fc864508fbb80b2cec564b0b078d
|
3 |
+
size 747
|
sac-seals-Swimmer-v1/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.4.0-156-generic-x86_64-with-glibc2.29 # 173-Ubuntu SMP Tue Jul 11 07:25:22 UTC 2023
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu117
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.24.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.21.0
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2fd65d60136370c24d24b1bbdd4d9b6ea00503f6a2dc4bb79758537234f8795e
|
3 |
+
size 27986
|