Initial commit
Browse files- README.md +5 -0
- env_kwargs.yml +1 -1
- replay.mp4 +3 -0
- results.json +1 -1
- sac-seals-HalfCheetah-v1.zip +2 -2
- sac-seals-HalfCheetah-v1/_stable_baselines3_version +1 -1
- sac-seals-HalfCheetah-v1/data +16 -16
- sac-seals-HalfCheetah-v1/system_info.txt +1 -1
- train_eval_metrics.zip +1 -1
README.md
CHANGED
@@ -77,3 +77,8 @@ OrderedDict([('batch_size', 2048),
|
|
77 |
('train_freq', 64),
|
78 |
('normalize', False)])
|
79 |
```
|
|
|
|
|
|
|
|
|
|
|
|
77 |
('train_freq', 64),
|
78 |
('normalize', False)])
|
79 |
```
|
80 |
+
|
81 |
+
# Environment Arguments
|
82 |
+
```python
|
83 |
+
{'render_mode': 'rgb_array'}
|
84 |
+
```
|
env_kwargs.yml
CHANGED
@@ -1 +1 @@
|
|
1 |
-
|
|
|
1 |
+
render_mode: rgb_array
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03d977c437d6d6482691926d4170d09b1b96c6f5321d06e5a29e7170de8411f3
|
3 |
+
size 2427924
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": 1183.5162696, "std_reward": 22.649349480775626, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-
|
|
|
1 |
+
{"mean_reward": 1183.5162696, "std_reward": 22.649349480775626, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-18T09:53:15.303444"}
|
sac-seals-HalfCheetah-v1.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9d3e831df0f56ea57935253e2ead4b89c0ad016d816859491e4aa0aa0d9c0e3
|
3 |
+
size 305704
|
sac-seals-HalfCheetah-v1/_stable_baselines3_version
CHANGED
@@ -1 +1 @@
|
|
1 |
-
2.
|
|
|
1 |
+
2.2.0a3
|
sac-seals-HalfCheetah-v1/data
CHANGED
@@ -5,17 +5,17 @@
|
|
5 |
"__module__": "stable_baselines3.sac.policies",
|
6 |
"__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}",
|
7 |
"__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
8 |
-
"__init__": "<function SACPolicy.__init__ at
|
9 |
-
"_build": "<function SACPolicy._build at
|
10 |
-
"_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at
|
11 |
-
"reset_noise": "<function SACPolicy.reset_noise at
|
12 |
-
"make_actor": "<function SACPolicy.make_actor at
|
13 |
-
"make_critic": "<function SACPolicy.make_critic at
|
14 |
-
"forward": "<function SACPolicy.forward at
|
15 |
-
"_predict": "<function SACPolicy._predict at
|
16 |
-
"set_training_mode": "<function SACPolicy.set_training_mode at
|
17 |
"__abstractmethods__": "frozenset()",
|
18 |
-
"_abc_impl": "<_abc_data object at
|
19 |
},
|
20 |
"verbose": 1,
|
21 |
"policy_kwargs": {
|
@@ -103,13 +103,13 @@
|
|
103 |
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
104 |
"__module__": "stable_baselines3.common.buffers",
|
105 |
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
106 |
-
"__init__": "<function ReplayBuffer.__init__ at
|
107 |
-
"add": "<function ReplayBuffer.add at
|
108 |
-
"sample": "<function ReplayBuffer.sample at
|
109 |
-
"_get_samples": "<function ReplayBuffer._get_samples at
|
110 |
-
"_maybe_cast_dtype": "<staticmethod object at
|
111 |
"__abstractmethods__": "frozenset()",
|
112 |
-
"_abc_impl": "<_abc_data object at
|
113 |
},
|
114 |
"replay_buffer_kwargs": {},
|
115 |
"train_freq": {
|
|
|
5 |
"__module__": "stable_baselines3.sac.policies",
|
6 |
"__annotations__": "{'actor': <class 'stable_baselines3.sac.policies.Actor'>, 'critic': <class 'stable_baselines3.common.policies.ContinuousCritic'>, 'critic_target': <class 'stable_baselines3.common.policies.ContinuousCritic'>}",
|
7 |
"__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
8 |
+
"__init__": "<function SACPolicy.__init__ at 0x7f5d920b2700>",
|
9 |
+
"_build": "<function SACPolicy._build at 0x7f5d920b2790>",
|
10 |
+
"_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7f5d920b2820>",
|
11 |
+
"reset_noise": "<function SACPolicy.reset_noise at 0x7f5d920b28b0>",
|
12 |
+
"make_actor": "<function SACPolicy.make_actor at 0x7f5d920b2940>",
|
13 |
+
"make_critic": "<function SACPolicy.make_critic at 0x7f5d920b29d0>",
|
14 |
+
"forward": "<function SACPolicy.forward at 0x7f5d920b2a60>",
|
15 |
+
"_predict": "<function SACPolicy._predict at 0x7f5d920b2af0>",
|
16 |
+
"set_training_mode": "<function SACPolicy.set_training_mode at 0x7f5d920b2b80>",
|
17 |
"__abstractmethods__": "frozenset()",
|
18 |
+
"_abc_impl": "<_abc_data object at 0x7f5d920aab10>"
|
19 |
},
|
20 |
"verbose": 1,
|
21 |
"policy_kwargs": {
|
|
|
103 |
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
104 |
"__module__": "stable_baselines3.common.buffers",
|
105 |
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
106 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7f5d92100700>",
|
107 |
+
"add": "<function ReplayBuffer.add at 0x7f5d92100790>",
|
108 |
+
"sample": "<function ReplayBuffer.sample at 0x7f5d92100820>",
|
109 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f5d921008b0>",
|
110 |
+
"_maybe_cast_dtype": "<staticmethod object at 0x7f5d920f9820>",
|
111 |
"__abstractmethods__": "frozenset()",
|
112 |
+
"_abc_impl": "<_abc_data object at 0x7f5d920f9840>"
|
113 |
},
|
114 |
"replay_buffer_kwargs": {},
|
115 |
"train_freq": {
|
sac-seals-HalfCheetah-v1/system_info.txt
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
- OS: Linux-5.4.0-156-generic-x86_64-with-glibc2.29 # 173-Ubuntu SMP Tue Jul 11 07:25:22 UTC 2023
|
2 |
- Python: 3.8.10
|
3 |
-
- Stable-Baselines3: 2.
|
4 |
- PyTorch: 2.0.1+cu117
|
5 |
- GPU Enabled: False
|
6 |
- Numpy: 1.24.4
|
|
|
1 |
- OS: Linux-5.4.0-156-generic-x86_64-with-glibc2.29 # 173-Ubuntu SMP Tue Jul 11 07:25:22 UTC 2023
|
2 |
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 2.2.0a3
|
4 |
- PyTorch: 2.0.1+cu117
|
5 |
- GPU Enabled: False
|
6 |
- Numpy: 1.24.4
|
train_eval_metrics.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 29294
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be506b28850193dd6638a80f4c095c21b27d667a226cd16e87193ec97bbf5238
|
3 |
size 29294
|