ernestum commited on
Commit
d81c1c2
·
1 Parent(s): b2c67f4

Initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - seals/MountainCar-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: seals/MountainCar-v0
16
+ type: seals/MountainCar-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -97.00 +/- 8.26
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **seals/MountainCar-v0**
25
+ This is a trained model of a **PPO** agent playing **seals/MountainCar-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo ppo --env seals/MountainCar-v0 -orga ernestum -f logs/
47
+ python -m rl_zoo3.enjoy --algo ppo --env seals/MountainCar-v0 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo ppo --env seals/MountainCar-v0 -orga ernestum -f logs/
53
+ python -m rl_zoo3.enjoy --algo ppo --env seals/MountainCar-v0 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo ppo --env seals/MountainCar-v0 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo ppo --env seals/MountainCar-v0 -f logs/ -orga ernestum
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 512),
66
+ ('clip_range', 0.2),
67
+ ('ent_coef', 6.4940755116195606e-06),
68
+ ('gae_lambda', 0.98),
69
+ ('gamma', 0.99),
70
+ ('learning_rate', 0.0004476103728105138),
71
+ ('max_grad_norm', 1),
72
+ ('n_envs', 16),
73
+ ('n_epochs', 20),
74
+ ('n_steps', 256),
75
+ ('n_timesteps', 1000000.0),
76
+ ('normalize',
77
+ {'gamma': 0.99, 'norm_obs': False, 'norm_reward': True}),
78
+ ('policy', 'MlpPolicy'),
79
+ ('policy_kwargs',
80
+ {'activation_fn': <class 'torch.nn.modules.activation.Tanh'>,
81
+ 'features_extractor_class': <class 'imitation.policies.base.NormalizeFeaturesExtractor'>,
82
+ 'net_arch': [{'pi': [64, 64], 'vf': [64, 64]}]}),
83
+ ('vf_coef', 0.25988158989488963),
84
+ ('normalize_kwargs',
85
+ {'norm_obs': {'gamma': 0.99,
86
+ 'norm_obs': False,
87
+ 'norm_reward': True},
88
+ 'norm_reward': False})])
89
+ ```
args.yml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - ppo
4
+ - - conf_file
5
+ - hyperparams/python/ppo.py
6
+ - - device
7
+ - cpu
8
+ - - env
9
+ - seals/MountainCar-v0
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 0
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - - seals
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - gymnasium_models
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - 4
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 392828721
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - ''
64
+ - - track
65
+ - false
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - null
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - wandb_tags
81
+ - []
config.yml ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 512
4
+ - - clip_range
5
+ - 0.2
6
+ - - ent_coef
7
+ - 6.4940755116195606e-06
8
+ - - gae_lambda
9
+ - 0.98
10
+ - - gamma
11
+ - 0.99
12
+ - - learning_rate
13
+ - 0.0004476103728105138
14
+ - - max_grad_norm
15
+ - 1
16
+ - - n_envs
17
+ - 16
18
+ - - n_epochs
19
+ - 20
20
+ - - n_steps
21
+ - 256
22
+ - - n_timesteps
23
+ - 1000000.0
24
+ - - normalize
25
+ - gamma: 0.99
26
+ norm_obs: false
27
+ norm_reward: true
28
+ - - policy
29
+ - MlpPolicy
30
+ - - policy_kwargs
31
+ - activation_fn: !!python/name:torch.nn.modules.activation.Tanh ''
32
+ features_extractor_class: !!python/name:imitation.policies.base.NormalizeFeaturesExtractor ''
33
+ net_arch:
34
+ - pi:
35
+ - 64
36
+ - 64
37
+ vf:
38
+ - 64
39
+ - 64
40
+ - - vf_coef
41
+ - 0.25988158989488963
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
ppo-seals-MountainCar-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eeafa5a1bbde997865f4caf9a026492406ba2c7d94c474013e232411d622c8ab
3
+ size 138501
ppo-seals-MountainCar-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
ppo-seals-MountainCar-v0/data ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f184ff7a040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f184ff7a0d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f184ff7a160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f184ff7a1f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f184ff7a280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f184ff7a310>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f184ff7a3a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f184ff7a430>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f184ff7a4c0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f184ff7a550>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f184ff7a5e0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f184ff7a670>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f184ff55ab0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVuQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJR9lCiMAnBplF2UKEtAS0BljAJ2ZpRdlChLQEtAZXWMGGZlYXR1cmVzX2V4dHJhY3Rvcl9jbGFzc5SMF2ltaXRhdGlvbi5wb2xpY2llcy5iYXNllIwaTm9ybWFsaXplRmVhdHVyZXNFeHRyYWN0b3KUk5R1Lg==",
26
+ "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>",
27
+ "net_arch": {
28
+ "pi": [
29
+ 64,
30
+ 64
31
+ ],
32
+ "vf": [
33
+ 64,
34
+ 64
35
+ ]
36
+ },
37
+ "features_extractor_class": "<class 'imitation.policies.base.NormalizeFeaturesExtractor'>"
38
+ },
39
+ "num_timesteps": 1003520,
40
+ "_total_timesteps": 1000000,
41
+ "_num_timesteps_at_start": 0,
42
+ "seed": 0,
43
+ "action_noise": null,
44
+ "start_time": 1694771152324454564,
45
+ "learning_rate": {
46
+ ":type:": "<class 'function'>",
47
+ ":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPz1Vp+meSZSFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
48
+ },
49
+ "tensorboard_log": null,
50
+ "_last_obs": null,
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAHyIFb8AAAAAANsRvwAAAAAMG92+AAAAAAfI4r4AAAAAqWLhvgAAAAB2KRa/AAAAAGsdDL8AAAAAVwjavgAAAABhC/m+AAAAANRiCr8AAAAAqJ4QvwAAAADaLAi/AAAAAKofB78AAAAAxmMPvwAAAAA0Jem+AAAAAFRmCL8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": false,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": -0.0035199999999999676,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFoAAAAAAACMAWyUS8iMAXSUR0BmG5bbDdgwdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmG22E0zj4dX2UKGgGR8BZgAAAAAAAaAdLyGgIR0BmG2ce8wpOdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0BmG2DOC5EudX2UKGgGR8BWAAAAAAAAaAdLyGgIR0BmMScqe9SNdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0BmMSCFsYVJdX2UKGgGR8BVQAAAAAAAaAdLyGgIR0BmMRnlGPPtdX2UKGgGR8BWAAAAAAAAaAdLyGgIR0BmMRKQJXyRdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmMQw9JSR9dX2UKGgGR8BXgAAAAAAAaAdLyGgIR0BmMQWJrLyMdX2UKGgGR8BZgAAAAAAAaAdLyGgIR0BmMP9xZMcqdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0BmMPlhgE2YdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmMPJtBOYZdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmMOxD9fkWdX2UKGgGR8BZgAAAAAAAaAdLyGgIR0BmMOYYzi0fdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0BmMN+gDifhdX2UKGgGR8BVwAAAAAAAaAdLyGgIR0BmMNmDlHSXdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0BmMLApKBd2dX2UKGgGR8BVQAAAAAAAaAdLyGgIR0BmMKm8/UvxdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmMKNuLrHEdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmRm63AmAtdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0BmRmfqX4TLdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmRmFJxvNvdX2UKGgGR8BVQAAAAAAAaAdLyGgIR0BmRlnwob4rdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmRlOdoWYXdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmRkzuWrwOdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0BmRkbT+ee4dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmRkDKYAsDdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0BmRjnX/YJ3dX2UKGgGR8BZwAAAAAAAaAdLyGgIR0BmRjOzIFNddX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmRi2OQyRCdX2UKGgGR8BjQAAAAAAAaAdLyGgIR0BmRicbzbvgdX2UKGgGR8BWwAAAAAAAaAdLyGgIR0BmRiEFnqVydX2UKGgGR8BVQAAAAAAAaAdLyGgIR0BmRfexfOUudX2UKGgGR8BagAAAAAAAaAdLyGgIR0BmRfFNtZV5dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmResDGLk0dX2UKGgGR8BZgAAAAAAAaAdLyGgIR0BmW9IbwSamdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmW8tVaOghdX2UKGgGR8Bk4AAAAAAAaAdLyGgIR0BmW8S9M9KVdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmW71yvLX+dX2UKGgGR8BVAAAAAAAAaAdLyGgIR0BmW7cqOLiudX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmW7B/I8yOdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmW6pvP1L8dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmW6RyOq//dX2UKGgGR8BVAAAAAAAAaAdLyGgIR0BmW52ZAprldX2UKGgGR8BZwAAAAAAAaAdLyGgIR0BmW5d0JWvKdX2UKGgGR8BjoAAAAAAAaAdLyGgIR0BmW5FTefqYdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0BmW4rjHXEqdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmW4TTOPeYdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmW1uBMBZIdX2UKGgGR8BZgAAAAAAAaAdLyGgIR0BmW1UlzEJjdX2UKGgGR8BVwAAAAAAAaAdLyGgIR0BmW07dSEUTdX2UKGgGR8BUwAAAAAAAaAdLyGgIR0BmYY065oXbdX2UKGgGR8BVAAAAAAAAaAdLyGgIR0BmYYYekpI+dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmYX93r2QGdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0BmYXgYP5HmdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0BmYXG8274BdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0BmYWsFMZgpdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmYWTmnwXqdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmYV7Uoa1kdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0BmYVfgJkXldX2UKGgGR8BaQAAAAAAAaAdLyGgIR0BmYVG3F1jidX2UKGgGR8BVQAAAAAAAaAdLyGgIR0BmYUuJ1q33dX2UKGgGR8BaQAAAAAAAaAdLyGgIR0BmYUUM5OrRdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0BmYT7sOXmedX2UKGgGR8BXQAAAAAAAaAdLyGgIR0BmYRWLgn+idX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmYQ8dPtUodX2UKGgGR8BZwAAAAAAAaAdLyGgIR0BmYQjIJZ4fdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmdvIlt0mudX2UKGgGR8BYwAAAAAAAaAdLyGgIR0BmdutSydFwdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmduSyMUAUdX2UKGgGR8BUwAAAAAAAaAdLyGgIR0Bmdt1ZDArQdX2UKGgGR8BWgAAAAAAAaAdLyGgIR0BmdtcGC7K8dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmdtBUrCm/dX2UKGgGR8BaQAAAAAAAaAdLyGgIR0Bmdso6S1VpdX2UKGgGR8BZQAAAAAAAaAdLyGgIR0BmdsQoTfzjdX2UKGgGR8BVAAAAAAAAaAdLyGgIR0Bmdr04BFNMdX2UKGgGR8BZgAAAAAAAaAdLyGgIR0BmdrcO9WZJdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0BmdrDn/1g6dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmdqprDZUUdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0BmdqRMewLWdX2UKGgGR8BZwAAAAAAAaAdLyGgIR0Bmdnrv9cbBdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmdnSF49owdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0Bmdm4uscQzdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmjAiC8OCodX2UKGgGR8BaAAAAAAAAaAdLyGgIR0BmjAFzMibEdX2UKGgGR8BZgAAAAAAAaAdLyGgIR0Bmi/rQgLZ0dX2UKGgGR8BZgAAAAAAAaAdLyGgIR0Bmi/N1QqI8dX2UKGgGR8BZwAAAAAAAaAdLyGgIR0Bmi+0gKWszdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0Bmi+ZssQNDdX2UKGgGR8BZgAAAAAAAaAdLyGgIR0Bmi+BOHnEEdX2UKGgGR8BaQAAAAAAAaAdLyGgIR0Bmi9o8IRh+dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0Bmi9NHpbD/dX2UKGgGR8BZgAAAAAAAaAdLyGgIR0Bmi80aZQYUdX2UKGgGR8BWAAAAAAAAaAdLyGgIR0Bmi8b1h9b5dX2UKGgGR8BaAAAAAAAAaAdLyGgIR0Bmi8B6rvLHdX2UKGgGR8BZgAAAAAAAaAdLyGgIR0Bmi7pcHGCJdX2UKGgGR8BVQAAAAAAAaAdLyGgIR0Bmi5EBsANodX2UKGgGR8BaAAAAAAAAaAdLyGgIR0Bmi4qXnhbXdX2UKGgGR8BaAAAAAAAAaAdLyGgIR0Bmi4RGtp22dWUu"
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 4900,
73
+ "observation_space": {
74
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
75
+ ":serialized:": "gAWVngEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWAgAAAAAAAAABAZRoFEsChZRoGHSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBAolggAAAAAAAAAmpmZvylcj72UaApLAoWUaBh0lFKUjARoaWdolGgQKJYIAAAAAAAAAJqZGT8pXI89lGgKSwKFlGgYdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=",
76
+ "dtype": "float32",
77
+ "bounded_below": "[ True True]",
78
+ "bounded_above": "[ True True]",
79
+ "_shape": [
80
+ 2
81
+ ],
82
+ "low": "[-1.2 -0.07]",
83
+ "high": "[0.6 0.07]",
84
+ "low_repr": "[-1.2 -0.07]",
85
+ "high_repr": "[0.6 0.07]",
86
+ "_np_random": null
87
+ },
88
+ "action_space": {
89
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
90
+ ":serialized:": "gAWVugEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB6MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCmKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
91
+ "n": "3",
92
+ "start": "0",
93
+ "_shape": [],
94
+ "dtype": "int64",
95
+ "_np_random": "Generator(PCG64)"
96
+ },
97
+ "n_envs": 1,
98
+ "n_steps": 256,
99
+ "gamma": 0.99,
100
+ "gae_lambda": 0.98,
101
+ "ent_coef": 6.4940755116195606e-06,
102
+ "vf_coef": 0.25988158989488963,
103
+ "max_grad_norm": 1,
104
+ "batch_size": 512,
105
+ "n_epochs": 20,
106
+ "clip_range": {
107
+ ":type:": "<class 'function'>",
108
+ ":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
109
+ },
110
+ "clip_range_vf": null,
111
+ "normalize_advantage": true,
112
+ "target_kl": null,
113
+ "lr_schedule": {
114
+ ":type:": "<class 'function'>",
115
+ ":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL21heGltaWxpYW4vcmwtYmFzZWxpbmVzMy16b28vdmVudi9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPz1Vp+meSZSFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
116
+ }
117
+ }
ppo-seals-MountainCar-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe1c31ec7330c2541c0a041c35dbb6fabeaf54167bbb12708858af3318b003d8
3
+ size 80889
ppo-seals-MountainCar-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db04f92e352505178fbc6e573fe383593c3755cbf7097e4ad8672c4c4e3ee434
3
+ size 41528
ppo-seals-MountainCar-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-seals-MountainCar-v0/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.4.0-156-generic-x86_64-with-glibc2.29 # 173-Ubuntu SMP Tue Jul 11 07:25:22 UTC 2023
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu117
5
+ - GPU Enabled: False
6
+ - Numpy: 1.24.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.21.0
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -97.0, "std_reward": 8.258329128825032, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-15T13:50:09.495577"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9f676caa1f922426dddd659c6ed28ee065eb3800b0beb426ced4b03df62e4fb
3
+ size 114460
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5cf903957df5a7298c7c4285b9cfed43095dae50144cf1ef1a12c59f0947389
3
+ size 1687