ernestknurov commited on
Commit
e39631a
1 Parent(s): fa50546

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 246.86 +/- 22.11
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bf1657df0a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bf1657df130>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bf1657df1c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bf1657df250>", "_build": "<function ActorCriticPolicy._build at 0x7bf1657df2e0>", "forward": "<function ActorCriticPolicy.forward at 0x7bf1657df370>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bf1657df400>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bf1657df490>", "_predict": "<function ActorCriticPolicy._predict at 0x7bf1657df520>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bf1657df5b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bf1657df640>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bf1657df6d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bf16578f740>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717771153774302279, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABg5zz5ZX4+W1LhvQPygb6MtBO99osvvAAAAAAAAAAAM6uMPPPpLD+ExgK+UPOZvkFWAbyHGoi9AAAAAAAAAAB2ZWG+LkgDP26UbD3llRW+HH2+vAohgb0AAAAAAAAAAPNwQz4qlkQ/RGA9vmvOhL6Lnom77h+KvQAAAAAAAAAA+ng6PjmfPz/GluG9XfhhvpdmzjyFWtM8AAAAAAAAAABNzY09cQ11uXhLAjQ53wQwX7eiupoqu7MAAIA/AACAP+Z3l73DJV66e7utu60JLbfwexM7WoLHOgAAAAAAAIA/zcxYPBzQnT4CMrG9vz5Evi8Amb0w9TG9AAAAAAAAAADAM7c9rhKuO1p1oD2XxCS+1wooPe5+3b0AAAAAAAAAAPoyiz4Phn4/kpaaPv7CZL7VRnY+tu/ROwAAAAAAAAAAM77fvfYQPT8ITHO9J0Onvt0B3bwlW0u8AAAAAAAAAABaoS4+g8JJvMJUWjzxtJ26myKyvevvgLsAAIA/AACAP3o7WL4Uc9m8jexQvE91zbr4B0E+MZadOwAAgD8AAIA/wKpyvpq0OL3z8lW7AgYtuhuCoT4PpJg6AACAPwAAgD+zOka91z1ru46djztWvZc87IvGvFWsgT0AAIA/AACAP3PtSr7UIEs/4uGxPbB/Zb5w+mm9bfOjPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAY2uX/o7qMAWyUTVcBjAF0lEdAl9Epj2BatHV9lChoBkdAcb0Uz9CNTGgHTVsBaAhHQJfRv0Fr2xp1fZQoaAZHQG5AmVJL/S9oB01TAWgIR0CX0ejdpItldX2UKGgGR0ByNifRNRFaaAdNRAFoCEdAl9OfbwjMV3V9lChoBkdAbuyt3fQ8fWgHTTUBaAhHQJfT3UsnRb91fZQoaAZHQG/YzZHuqm1oB01cAWgIR0CX1cCAMDwIdX2UKGgGR0BuWMGJN0vHaAdNKgFoCEdAl9XNfgJkXnV9lChoBkdAci26ol2NemgHTW8BaAhHQJfXG6wt8NR1fZQoaAZHQHE5s4T9KmNoB00uAWgIR0CX2FrYXfqHdX2UKGgGR0Bx7jUVi4KAaAdNKQFoCEdAl9kqmCROlHV9lChoBkdAbwxfUnXummgHTTMBaAhHQJfZ7F2mpER1fZQoaAZHQHBNb3TNMXdoB01EAWgIR0CX2vSeRPoFdX2UKGgGR0BurVUwSJ0oaAdNVAFoCEdAl9xiYgJTl3V9lChoBkdAcKCF9a2Wp2gHTWkBaAhHQJfcy/9Hc1x1fZQoaAZHQG5wxg7YChhoB01RAWgIR0CX3TGdqcmTdX2UKGgGR0Bvym5vtMPCaAdNlwFoCEdAl+8Vx0dRznV9lChoBkdAcLFMfzSThmgHTYQBaAhHQJfv1taY/ml1fZQoaAZHQGwSTvAoG6hoB01JAWgIR0CX8Jo8ZDRddX2UKGgGR0BvghfMOf/WaAdNjQFoCEdAl/D7Ek0JnnV9lChoBkdAbUjvjOs1bmgHTTsBaAhHQJfyfVbzK9x1fZQoaAZHQHD47iqABktoB01CAWgIR0CX8qx82JizdX2UKGgGR0Bxka/tY0VKaAdNQQFoCEdAl/Wxouf29XV9lChoBkdAcT/Tq0MPSWgHTcEBaAhHQJf2xbxEv011fZQoaAZHQHFyApF1B+poB01TAWgIR0CX+FokiUxEdX2UKGgGR0ByPPjBEa2naAdNDgFoCEdAl/hnbEgnt3V9lChoBkdAcDyxPwd8zGgHTVgBaAhHQJf63v+fh/B1fZQoaAZHQHGL+CsfaHtoB01wAWgIR0CX+xIqLCN0dX2UKGgGR0Bvqz8rI5o5aAdNjAJoCEdAl/weHSF493V9lChoBkdAcWfUnXumamgHTTcBaAhHQJf8uY5T6zp1fZQoaAZHQHB5lOj7AL1oB01CAWgIR0CX/Mhhpg1FdX2UKGgGR0BxuO6/Zdv9aAdNJAFoCEdAl/90/jbSJHV9lChoBkdAa/woo/iYLWgHTU8BaAhHQJf/5ffGdZt1fZQoaAZHQG8nS2Yv38JoB00kAWgIR0CYAWNS619fdX2UKGgGR0BuJNa0QbuMaAdNSQFoCEdAmAMCs8xKx3V9lChoBkdAcJxliz9jw2gHTYoBaAhHQJgDKJfpljF1fZQoaAZHQG4zQiRnvlVoB025AWgIR0CYAz4nndO7dX2UKGgGR0Bwkyd1+y7gaAdNcQFoCEdAmAZV+mWMTHV9lChoBkdAcdczvqkdm2gHTXcBaAhHQJgHk8zQ/ot1fZQoaAZHQGzu7iQ1aW5oB01XAWgIR0CYB7VrAP/adX2UKGgGR0BwDVXgccU/aAdNYQFoCEdAmAgMoUi6hHV9lChoBkdAbcc0PYnOSmgHTTgBaAhHQJgIVeKKpDN1fZQoaAZHQHEjJSR8twtoB00cAWgIR0CYCLsWweNldX2UKGgGR0BwOqlImPYGaAdNMQFoCEdAmAj4XGff43V9lChoBkdAbr653C9AX2gHTVcBaAhHQJgJgvAXVLB1fZQoaAZHQG+YkYoAn2JoB01HAWgIR0CYChS/j81odX2UKGgGR0ByjMTWXkYGaAdNWgFoCEdAmAxbNKRMe3V9lChoBkdAcDu9/jKgZmgHTVQBaAhHQJgNsXwb2lF1fZQoaAZHQHGttOIqLCNoB02AAWgIR0CYDf17pmmMdX2UKGgGR0BxGJOEdvKmaAdNRQFoCEdAmA6++7Dl5nV9lChoBkdAb6ae0Xxe9mgHTXwBaAhHQJgQpg2Ifr91fZQoaAZHQG+Vc5S3soloB00eAWgIR0CYEdbCrLhadX2UKGgGR0BuUmp4rz5HaAdNNQFoCEdAmBJplFtsN3V9lChoBkdAaJKs4DLbH2gHTW4DaAhHQJgS0oH9m6J1fZQoaAZHQG7UySmqHXVoB01GAWgIR0CYEvFEiMYNdX2UKGgGR0Bv1+7rcCYDaAdNaQFoCEdAmBMvoV2zOXV9lChoBkdAbi8teUpuuWgHTVUBaAhHQJgUHkT6BRR1fZQoaAZHQG/UMINVinZoB01SAWgIR0CYFGQDV6NVdX2UKGgGR0Bw5h8YyfthaAdNKwFoCEdAmBR4GyHEdnV9lChoBkdAcXqI3R5TqGgHTWoBaAhHQJgVSvMbFS91fZQoaAZHQGvc1y3kPtloB01gAWgIR0CYFXwxnFo+dX2UKGgGR0BwDu4uscQzaAdNMAFoCEdAmCujlDF6zHV9lChoBkdAcCrXaakRBmgHTWMBaAhHQJgtM9cKPXF1fZQoaAZHQGwp62F36hxoB015AWgIR0CYLgbVz6rOdX2UKGgGR0ByBmrn1WbPaAdNsgFoCEdAmC8sGorFwXV9lChoBkdAcMsL/0dzXGgHTVoBaAhHQJgxI8Swnpl1fZQoaAZHQG4J/ub7TDxoB00yAWgIR0CYMhuIRAbAdX2UKGgGR0Bv+gLkS26TaAdNMQFoCEdAmDI0gW8AaXV9lChoBkdAbPp/vv0AcWgHTUsBaAhHQJgy2xGDtgN1fZQoaAZHQG//xTCLuQZoB01pAWgIR0CYM663iJfqdX2UKGgGR0BvxNIAfdRBaAdNPAFoCEdAmDSj/yXlbXV9lChoBkdAcKbJuEVWS2gHTUoBaAhHQJg1yKO1fE51fZQoaAZHQG8xLZSNwR5oB01wAWgIR0CYNdwNLDhtdX2UKGgGR0Bu9oOBlMAWaAdNTQFoCEdAmDbwezUqhHV9lChoBkdAcGXhpg1FY2gHTXoBaAhHQJg3fYDklu51fZQoaAZHQG7QCL2pQ1toB01eAWgIR0CYN7Bsyi22dX2UKGgGR0Bx/da6jFhoaAdNUwFoCEdAmDtN1dPcjHV9lChoBkdAb3XNNahYeWgHTUcBaAhHQJg76dSVGCt1fZQoaAZHQFbE1AJLM9toB03oA2gIR0CYPJdBBzFNdX2UKGgGR0BwG+8Hv+fiaAdNMwFoCEdAmD2hnvlU63V9lChoBkdAcHG+LFXJYGgHTS8BaAhHQJg+mpbUwzt1fZQoaAZHQHKR5eeFtbdoB02GAWgIR0CYPt5Rjz7NdX2UKGgGR0Bx2s1He7+UaAdNTwFoCEdAmEByih37lHV9lChoBkdAcVDbkwN9Y2gHTXwBaAhHQJhBBYB/7SB1fZQoaAZHQHH2mzSkTHtoB01YAWgIR0CYQnMkyDZldX2UKGgGR0BwL6WOZLIxaAdNfwFoCEdAmEMiWu5jIHV9lChoBkdAcNkpZOi35WgHTTwBaAhHQJhDWc5Ke051fZQoaAZHQHHJcpG4I8hoB002AWgIR0CYQ2KV6eGxdX2UKGgGR0BvS0U21lXjaAdNdwFoCEdAmEOwkka/AXV9lChoBkdAb9RrVvuPWGgHTVsBaAhHQJhDzt+kP+Z1fZQoaAZHQHH9PvF3pwFoB01dAWgIR0CYSFPzWf9QdX2UKGgGR0BtvH+fh/AkaAdNVAFoCEdAmEid30PH1nV9lChoBkdAcIh+VC5VfmgHTUUBaAhHQJhJ4jOcDr91fZQoaAZHQGzGz1schkloB01YAWgIR0CYS/XvH93sdX2UKGgGR0Bq30e+23KCaAdNkgFoCEdAmE47dBSk03V9lChoBkdAboOvLX+VDGgHTUgBaAhHQJhPN9fCyhV1fZQoaAZHQHGF/rKNhmZoB00rAWgIR0CYT2WFN+LFdX2UKGgGR0Bxqr/IbOu8aAdNfwFoCEdAmE94Enssx3V9lChoBkdAcOsRR/EwWWgHTTABaAhHQJhPuIBRyfd1fZQoaAZHQHJA3xri2lVoB02RAWgIR0CYUJ52hZhbdX2UKGgGR0BwDK/+KjzqaAdNbAFoCEdAmFFaRZEDyXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2e9569bd71b2a6a634cbe1d5c3e28e76720235ec07e6dc56b514ad50e4ed931
3
+ size 148088
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7bf1657df0a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bf1657df130>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bf1657df1c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bf1657df250>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7bf1657df2e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7bf1657df370>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bf1657df400>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bf1657df490>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7bf1657df520>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bf1657df5b0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bf1657df640>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bf1657df6d0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7bf16578f740>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1717771153774302279,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAABg5zz5ZX4+W1LhvQPygb6MtBO99osvvAAAAAAAAAAAM6uMPPPpLD+ExgK+UPOZvkFWAbyHGoi9AAAAAAAAAAB2ZWG+LkgDP26UbD3llRW+HH2+vAohgb0AAAAAAAAAAPNwQz4qlkQ/RGA9vmvOhL6Lnom77h+KvQAAAAAAAAAA+ng6PjmfPz/GluG9XfhhvpdmzjyFWtM8AAAAAAAAAABNzY09cQ11uXhLAjQ53wQwX7eiupoqu7MAAIA/AACAP+Z3l73DJV66e7utu60JLbfwexM7WoLHOgAAAAAAAIA/zcxYPBzQnT4CMrG9vz5Evi8Amb0w9TG9AAAAAAAAAADAM7c9rhKuO1p1oD2XxCS+1wooPe5+3b0AAAAAAAAAAPoyiz4Phn4/kpaaPv7CZL7VRnY+tu/ROwAAAAAAAAAAM77fvfYQPT8ITHO9J0Onvt0B3bwlW0u8AAAAAAAAAABaoS4+g8JJvMJUWjzxtJ26myKyvevvgLsAAIA/AACAP3o7WL4Uc9m8jexQvE91zbr4B0E+MZadOwAAgD8AAIA/wKpyvpq0OL3z8lW7AgYtuhuCoT4PpJg6AACAPwAAgD+zOka91z1ru46djztWvZc87IvGvFWsgT0AAIA/AACAP3PtSr7UIEs/4uGxPbB/Zb5w+mm9bfOjPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAY2uX/o7qMAWyUTVcBjAF0lEdAl9Epj2BatHV9lChoBkdAcb0Uz9CNTGgHTVsBaAhHQJfRv0Fr2xp1fZQoaAZHQG5AmVJL/S9oB01TAWgIR0CX0ejdpItldX2UKGgGR0ByNifRNRFaaAdNRAFoCEdAl9OfbwjMV3V9lChoBkdAbuyt3fQ8fWgHTTUBaAhHQJfT3UsnRb91fZQoaAZHQG/YzZHuqm1oB01cAWgIR0CX1cCAMDwIdX2UKGgGR0BuWMGJN0vHaAdNKgFoCEdAl9XNfgJkXnV9lChoBkdAci26ol2NemgHTW8BaAhHQJfXG6wt8NR1fZQoaAZHQHE5s4T9KmNoB00uAWgIR0CX2FrYXfqHdX2UKGgGR0Bx7jUVi4KAaAdNKQFoCEdAl9kqmCROlHV9lChoBkdAbwxfUnXummgHTTMBaAhHQJfZ7F2mpER1fZQoaAZHQHBNb3TNMXdoB01EAWgIR0CX2vSeRPoFdX2UKGgGR0BurVUwSJ0oaAdNVAFoCEdAl9xiYgJTl3V9lChoBkdAcKCF9a2Wp2gHTWkBaAhHQJfcy/9Hc1x1fZQoaAZHQG5wxg7YChhoB01RAWgIR0CX3TGdqcmTdX2UKGgGR0Bvym5vtMPCaAdNlwFoCEdAl+8Vx0dRznV9lChoBkdAcLFMfzSThmgHTYQBaAhHQJfv1taY/ml1fZQoaAZHQGwSTvAoG6hoB01JAWgIR0CX8Jo8ZDRddX2UKGgGR0BvghfMOf/WaAdNjQFoCEdAl/D7Ek0JnnV9lChoBkdAbUjvjOs1bmgHTTsBaAhHQJfyfVbzK9x1fZQoaAZHQHD47iqABktoB01CAWgIR0CX8qx82JizdX2UKGgGR0Bxka/tY0VKaAdNQQFoCEdAl/Wxouf29XV9lChoBkdAcT/Tq0MPSWgHTcEBaAhHQJf2xbxEv011fZQoaAZHQHFyApF1B+poB01TAWgIR0CX+FokiUxEdX2UKGgGR0ByPPjBEa2naAdNDgFoCEdAl/hnbEgnt3V9lChoBkdAcDyxPwd8zGgHTVgBaAhHQJf63v+fh/B1fZQoaAZHQHGL+CsfaHtoB01wAWgIR0CX+xIqLCN0dX2UKGgGR0Bvqz8rI5o5aAdNjAJoCEdAl/weHSF493V9lChoBkdAcWfUnXumamgHTTcBaAhHQJf8uY5T6zp1fZQoaAZHQHB5lOj7AL1oB01CAWgIR0CX/Mhhpg1FdX2UKGgGR0BxuO6/Zdv9aAdNJAFoCEdAl/90/jbSJHV9lChoBkdAa/woo/iYLWgHTU8BaAhHQJf/5ffGdZt1fZQoaAZHQG8nS2Yv38JoB00kAWgIR0CYAWNS619fdX2UKGgGR0BuJNa0QbuMaAdNSQFoCEdAmAMCs8xKx3V9lChoBkdAcJxliz9jw2gHTYoBaAhHQJgDKJfpljF1fZQoaAZHQG4zQiRnvlVoB025AWgIR0CYAz4nndO7dX2UKGgGR0Bwkyd1+y7gaAdNcQFoCEdAmAZV+mWMTHV9lChoBkdAcdczvqkdm2gHTXcBaAhHQJgHk8zQ/ot1fZQoaAZHQGzu7iQ1aW5oB01XAWgIR0CYB7VrAP/adX2UKGgGR0BwDVXgccU/aAdNYQFoCEdAmAgMoUi6hHV9lChoBkdAbcc0PYnOSmgHTTgBaAhHQJgIVeKKpDN1fZQoaAZHQHEjJSR8twtoB00cAWgIR0CYCLsWweNldX2UKGgGR0BwOqlImPYGaAdNMQFoCEdAmAj4XGff43V9lChoBkdAbr653C9AX2gHTVcBaAhHQJgJgvAXVLB1fZQoaAZHQG+YkYoAn2JoB01HAWgIR0CYChS/j81odX2UKGgGR0ByjMTWXkYGaAdNWgFoCEdAmAxbNKRMe3V9lChoBkdAcDu9/jKgZmgHTVQBaAhHQJgNsXwb2lF1fZQoaAZHQHGttOIqLCNoB02AAWgIR0CYDf17pmmMdX2UKGgGR0BxGJOEdvKmaAdNRQFoCEdAmA6++7Dl5nV9lChoBkdAb6ae0Xxe9mgHTXwBaAhHQJgQpg2Ifr91fZQoaAZHQG+Vc5S3soloB00eAWgIR0CYEdbCrLhadX2UKGgGR0BuUmp4rz5HaAdNNQFoCEdAmBJplFtsN3V9lChoBkdAaJKs4DLbH2gHTW4DaAhHQJgS0oH9m6J1fZQoaAZHQG7UySmqHXVoB01GAWgIR0CYEvFEiMYNdX2UKGgGR0Bv1+7rcCYDaAdNaQFoCEdAmBMvoV2zOXV9lChoBkdAbi8teUpuuWgHTVUBaAhHQJgUHkT6BRR1fZQoaAZHQG/UMINVinZoB01SAWgIR0CYFGQDV6NVdX2UKGgGR0Bw5h8YyfthaAdNKwFoCEdAmBR4GyHEdnV9lChoBkdAcXqI3R5TqGgHTWoBaAhHQJgVSvMbFS91fZQoaAZHQGvc1y3kPtloB01gAWgIR0CYFXwxnFo+dX2UKGgGR0BwDu4uscQzaAdNMAFoCEdAmCujlDF6zHV9lChoBkdAcCrXaakRBmgHTWMBaAhHQJgtM9cKPXF1fZQoaAZHQGwp62F36hxoB015AWgIR0CYLgbVz6rOdX2UKGgGR0ByBmrn1WbPaAdNsgFoCEdAmC8sGorFwXV9lChoBkdAcMsL/0dzXGgHTVoBaAhHQJgxI8Swnpl1fZQoaAZHQG4J/ub7TDxoB00yAWgIR0CYMhuIRAbAdX2UKGgGR0Bv+gLkS26TaAdNMQFoCEdAmDI0gW8AaXV9lChoBkdAbPp/vv0AcWgHTUsBaAhHQJgy2xGDtgN1fZQoaAZHQG//xTCLuQZoB01pAWgIR0CYM663iJfqdX2UKGgGR0BvxNIAfdRBaAdNPAFoCEdAmDSj/yXlbXV9lChoBkdAcKbJuEVWS2gHTUoBaAhHQJg1yKO1fE51fZQoaAZHQG8xLZSNwR5oB01wAWgIR0CYNdwNLDhtdX2UKGgGR0Bu9oOBlMAWaAdNTQFoCEdAmDbwezUqhHV9lChoBkdAcGXhpg1FY2gHTXoBaAhHQJg3fYDklu51fZQoaAZHQG7QCL2pQ1toB01eAWgIR0CYN7Bsyi22dX2UKGgGR0Bx/da6jFhoaAdNUwFoCEdAmDtN1dPcjHV9lChoBkdAb3XNNahYeWgHTUcBaAhHQJg76dSVGCt1fZQoaAZHQFbE1AJLM9toB03oA2gIR0CYPJdBBzFNdX2UKGgGR0BwG+8Hv+fiaAdNMwFoCEdAmD2hnvlU63V9lChoBkdAcHG+LFXJYGgHTS8BaAhHQJg+mpbUwzt1fZQoaAZHQHKR5eeFtbdoB02GAWgIR0CYPt5Rjz7NdX2UKGgGR0Bx2s1He7+UaAdNTwFoCEdAmEByih37lHV9lChoBkdAcVDbkwN9Y2gHTXwBaAhHQJhBBYB/7SB1fZQoaAZHQHH2mzSkTHtoB01YAWgIR0CYQnMkyDZldX2UKGgGR0BwL6WOZLIxaAdNfwFoCEdAmEMiWu5jIHV9lChoBkdAcNkpZOi35WgHTTwBaAhHQJhDWc5Ke051fZQoaAZHQHHJcpG4I8hoB002AWgIR0CYQ2KV6eGxdX2UKGgGR0BvS0U21lXjaAdNdwFoCEdAmEOwkka/AXV9lChoBkdAb9RrVvuPWGgHTVsBaAhHQJhDzt+kP+Z1fZQoaAZHQHH9PvF3pwFoB01dAWgIR0CYSFPzWf9QdX2UKGgGR0BtvH+fh/AkaAdNVAFoCEdAmEid30PH1nV9lChoBkdAcIh+VC5VfmgHTUUBaAhHQJhJ4jOcDr91fZQoaAZHQGzGz1schkloB01YAWgIR0CYS/XvH93sdX2UKGgGR0Bq30e+23KCaAdNkgFoCEdAmE47dBSk03V9lChoBkdAboOvLX+VDGgHTUgBaAhHQJhPN9fCyhV1fZQoaAZHQHGF/rKNhmZoB00rAWgIR0CYT2WFN+LFdX2UKGgGR0Bxqr/IbOu8aAdNfwFoCEdAmE94Enssx3V9lChoBkdAcOsRR/EwWWgHTTABaAhHQJhPuIBRyfd1fZQoaAZHQHJA3xri2lVoB02RAWgIR0CYUJ52hZhbdX2UKGgGR0BwDK/+KjzqaAdNbAFoCEdAmFFaRZEDyXVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85cabb5a6a9f54662e200c09fc4d585ee21520bf918788c4cd9fffe871fc8fec
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd6a94fa807ee75d4f8998e6d17a39b119f47d2b5335547fe77e682a91bb4550
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (182 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 246.86200840181036, "std_reward": 22.114343977054123, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-07T15:04:22.572624"}